Fibromyalgia Pathophysiology
Abstract
:1. Introduction
2. Pathophysiology
2.1. Abnormal Pain Signaling in Fibromyalgia
2.2. Imaging in Fibromyalgia
2.3. Small Fiber Neuropathies in Fibromyalgia
2.4. Genetics in Fibromyalgia
2.5. Environmental Triggers in Fibromyalgia
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Growers, W.R. A lecture on lumbago: Its lessons and analogues: Delivered at the national hospital for the paralyzed and epileptic. Br. Med. J. 1904, 1, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Graham, W. The fibrosits syndrome. Bull. Rheum. Dis. 1953, 3, 33–34. [Google Scholar] [PubMed]
- Smythe, H.A.; Moldofsky, H. Two contributions to understanding of the “fibrositis” syndrome. Bull. Rheum. Dis. 1977, 28, 928–931. [Google Scholar] [PubMed]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The American College of Rheumatology 1990. Criteria for the classification of fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef]
- McCarthy, J. Myalgias and Myopathies: Fibromyalgia. FP Essent. 2016, 440, 11–15. [Google Scholar]
- Clauw, D.J. Fibromyalgia: A clinical review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Chinn, S.; Caldwell, W.; Gritsenko, K. Fibromyalgia Pathogenesis and Treatment Options Update. Curr. Pain Headache Rep. 2016, 20, 25. [Google Scholar] [CrossRef]
- Bair, M.J.; Krebs, E.E. Fibromyalgia. Ann. Intern. Med. 2020, 172, ITC33–ITC48. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Lahr, B.D.; Wolfe, F.; Clauw, D.J.; Whipple, M.O.; Oh, T.H.; Barton, D.L.; Sauver, J.S. Prevalence of Fibromyalgia: A Population-Based Study in Olmsted County, Minnesota, Utilizing the Rochester Epidemiology Project. Arthritis Care Res. (Hoboken) 2013, 65, 786–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzcharles, M.-A.; Ste-Marie, P.A.; Goldenberg, D.L.; Pereira, J.X.; Abbey, S.; Choinière, M.; Ko, G.; Moulin, D.E.; Panopalis, P.; Proulx, J.; et al. Canadian Pain Society and Canadian Rheumatology Association Recommendations for Rational Care of Persons with Fibromyalgia. A Summary Report. J. Rheumatol. 2013, 40, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Sarzi-Puttini, P.; Giorgi, V.; Marotto, D.; Atzeni, F. Fibromyalgia: An update on clinical characteristics, aetiopathogenesis and treatment. Nat. Rev. Rheumatol. 2020, 16, 645–660. [Google Scholar] [CrossRef] [PubMed]
- Malcangio, M. Role of the immune system in neuropathic pain. Scand. J. Pain 2019, 20, 33–37. [Google Scholar] [CrossRef]
- Cagnie, B.; Coppieters, I.; Denecker, S.; Six, J.; Danneels, L.; Meeus, M. Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Semin. Arthritis Rheum. 2014, 44, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.B.; Srinivasan, P.; Spaeth, R.; Tan, Y.; Kosek, E.; Petzke, F.; Carville, S.; Fransson, P.; Marcus, H.; Williams, S.; et al. Overlapping Structural and Functional Brain Changes in Patients With Long-Term Exposure to Fibromyalgia Pain. Arthritis Rheum. 2013, 65, 3293–3303. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.B.; Loitoile, R.; Kosek, E.; Petzke, F.; Carville, S.; Fransson, P.; Marcus, H.; Williams, S.C.; Choy, E.; Mainguy, Y.; et al. Patients with Fibromyalgia Display Less Functional Connectivity in the Brain’s Pain Inhibitory Network. Mol. Pain 2012, 8, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, J.; Tu, P.-C.; Zyloney, C.; Su, T.-P. Intrinsic functional connectivity of the periaqueductal gray, a resting fMRI study. Behav. Brain Res. 2010, 211, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care 2014, 8, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Shenoy, S.S.; Lui, F. Biochemistry, Endogenous Opioids. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532899/ (accessed on 23 October 2022).
- Ribeiro, H.; Sarmento-Ribeiro, A.B.; Andrade, J.P.; Dourado, M. Apoptosis and (in) Pain—Potential Clinical Implications. Biomedicines 2022, 10, 1255. [Google Scholar] [CrossRef]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152 (Suppl. 3), S2–S15. [Google Scholar] [CrossRef]
- Patten, D.K.; Schultz, B.G.; Berlau, D.J. The Safety and Efficacy of Low-Dose Naltrexone in the Management of Chronic Pain and Inflammation in Multiple Sclerosis, Fibromyalgia, Crohn’s Disease, and Other Chronic Pain Disorders. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterwijck, J.; Nijs, J.; Meeus, M.; Paul, L. Evidence for central sensitization in chronic whiplash: A systematic literature review. Eur. J. Pain 2013, 17, 299–312. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.A.; Williams, D.A.; Harris, R.E.; Kop, W.J.; Groner, K.H.; Ambrose, K.; Lyden, A.K.; Gracely, R.H.; Crofford, L.J.; Geisser, M.E.; et al. Momentary relationship between cortisol secretion and symptoms in patients with fibromyalgia. Arthritis Care Res. 2005, 52, 3660–3669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, G.K.; Kinsley, B.T.; Hurwitz, S.; Mossey, C.J.; Goldenberg, D.L. Reduced hypothalamic-pituitary and sympathoadrenal responses to hypoglycemia in women with fibromyalgia syndrome. Am. J. Med. 1999, 106, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, K.; Twe, C.; Lotaif, A.; Chiappelli, F.; Clark, G.T. Function of beta-adrenergic receptors on mononuclear cells in female patients with fibromyalgia. J. Rheumatol. 2003, 30, 364–368. [Google Scholar] [PubMed]
- Kosek, E.; Kadetoff, D. Evidence of reduced sympatho-adrenal and hypothalamic-pituitary activity during static muscular work in patients with fibromyalgia. J. Rehabil. Med. 2010, 42, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Martínez, L.-A.; Mora, T.; Vargas, A.; Fuentes-Iniestra, M.; Martínez-Lavín, M. Sympathetic Nervous System Dysfunction in Fibromyalgia, Chronic Fatigue Syndrome, Irritable Bowel Syndrome, and Interstitial Cystitis. JCR J. Clin. Rheumatol. 2014, 20, 146–150. [Google Scholar] [CrossRef]
- Jurczak, A.; Delay, L.; Barbier, J.; Simon, N.; Krock, E.; Sandor, K.; Agalave, N.M.; Rudjito, R.; Wigerblad, G.; Rogóż, K.; et al. Antibody-induced pain-like behavior and bone erosion: Links to subclinical inflammation, osteoclast activity, and acid-sensing ion channel 3–dependent sensitization. Pain 2022, 163, 1542–1559. [Google Scholar] [CrossRef]
- Goebel, A.; Krock, E.; Gentry, C.; Israel, M.R.; Jurczak, A.; Urbina, C.M.; Sandor, K.; Vastani, N.; Maurer, M.; Cuhadar, U.; et al. Passive transfer of fibromyalgia symptoms from patients to mice. J. Clin. Investig. 2021, 131, e144201. [Google Scholar] [CrossRef] [PubMed]
- Krock, E.; Morado-Urbina, C.E.; Menezes, J.; Hunt, M.A.; Sandstrom, A.; Kadetoff, D.; Tour, J.; Verma, V.; Kultima, K.; Haglund, L.; et al. Svensson Fibromyalgia patients with high levels o anti-satellite glia cell IgG antibodies present with more severe symptoms. bioRxiv 2022, 131, e144201. [Google Scholar] [CrossRef]
- Adigüzel, O.; Kaptanoglu, E.; Turgut, B.; Nacitarhan, V. The Possible Effect of Clinical Recovery on Regional Cerebral Blood Flow Deficits in Fibromyalgia: A Prospective Study with Semiquantitative SPECT. South. Med. J. 2004, 97, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Kwiatek, R.; Barnden, L.; Tedman, R.; Jarrett, R.; Chew, J.; Rowe, C.; Pile, K. Regional cerebral blood flow in fibromyalgia: Single-photon-emission computed tomography evidence of reduction in the pontine tegmentum and thalami. Arthritis Rheum. 2000, 43, 2823–2833. [Google Scholar] [CrossRef] [PubMed]
- Shokouhi, M.; Davis, K.D.; Moulin, D.E.; Morley-Forster, P.; Nielson, W.R.; Bureau, Y.; Lawrence, K.S. Basal Ganglia Perfusion in Fibromyalgia is Related to Pain Disability and Disease Impact. Clin. J. Pain 2016, 32, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Wik, G.; Fischer, H.; Bragée, B.; Kristianson, M.; Fredrikson, M. Retrosplenial cortical activation in the fibromyalgia syndrome. NeuroReport 2003, 14, 619–621. [Google Scholar] [CrossRef]
- Yunus, M.B.; Young, C.S.; Saeed, S.A.; Mountz, J.M.; Aldag, J.C. Positron emission tomography in patients with fi-bromyalgia syndrome and healthy controls. Arthritis Care Res. 2004, 51, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Walitt, B.; Roebuck-Spencer, T.; Esposito, G.; Atkins, F.; Bleiberg, J.; Foster, G.; Weinstein, A. The effects of multidisciplinary therapy on positron emission tomography of the brain in fibromyalgia: A pilot study. Rheumatol. Int. 2007, 27, 1019–1024. [Google Scholar] [CrossRef]
- Harris, R.E.; Clauw, D.J.; Scott, D.J.; McLean, S.A.; Gracely, R.H.; Zubieta, J.K. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 2007, 27, 10000–10006. [Google Scholar] [CrossRef] [Green Version]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002, 46, 1333–1343. [Google Scholar] [CrossRef]
- Cook, D.B.; Lange, G.; Ciccone, D.S.; Liu, W.-C.; Steffener, J.; Natelson, B.H. Functional imaging of pain in patients with primary fibromyalgia. J. Rheumatol. 2004, 31, 364–378. [Google Scholar]
- Glass, J.M.; Williams, D.A.; Fernandez-Sanchez, M.-L.; Kairys, A.; Barjola, P.; Heitzeg, M.M.; Clauw, D.J.; Schmidt-Wilcke, T. Executive Function in Chronic Pain Patients and Healthy Controls: Different Cortical Activation During Response Inhibition in Fibromyalgia. J. Pain 2011, 12, 1219–1229. [Google Scholar] [CrossRef] [Green Version]
- Foerster, B.R.; Petrou, M.; Harris, R.E.; Barker, P.B.; Hoeffner, E.G.; Clauw, D.J.; Sundgren, P.C. Cerebral blood flow alterations in pain-processing regions of patients with fi-bromyalgia using perfusion MR imaging. Am. J. Neuroradiol. 2011, 32, 1873–1878. [Google Scholar] [CrossRef] [Green Version]
- Finsterer, J.; Scorza, F.A. Small fiber neuropathy. Acta Neurol. Scand. 2022, 145, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Farhad, K. Current Diagnosis and Treatment of Painful Small Fiber Neuropathy. Curr. Neurol. Neurosci. Rep. 2019, 19, 103. [Google Scholar] [CrossRef] [PubMed]
- Oaklander, A.L.; Herzog, Z.D.; Downs, H.M.; Klein, M.M. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia. Pain 2013, 154, 2310–2316. [Google Scholar] [CrossRef] [Green Version]
- Caro, X.J.; Winter, E.F. Evidence of Abnormal Epidermal Nerve Fiber Density in Fibromyalgia: Clinical and Immunologic Implications. Arthritis Rheumatol. 2014, 66, 1945–1954. [Google Scholar] [CrossRef]
- Üçeyler, N.; Zeller, D.; Kahn, A.-K.; Kewenig, S.; Kittel-Schneider, S.; Schmid, A.; Casanova-Molla, J.; Reiners, K.; Sommer, C. Small fibre pathology in patients with fibromyalgia syndrome. Brain 2013, 136, 1857–1867. [Google Scholar] [CrossRef] [Green Version]
- Grayston, R.; Czanner, G.; Elhadd, K.; Goebel, A.; Frank, B.; Üçeyler, N.; Malik, R.A.; Alam, U. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: Implications for a new paradigm in fibromyalgia etiopathogenesis. Semin. Arthritis Rheum. 2019, 48, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Meydan, C.; Üçeyler, N.; Soreq, H. Non-coding RNA regulators of diabetic polyneuropathy. Neurosci. Lett. 2020, 731, 135058. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Hudson, J.I.; Hess, E.V.; Ware, A.E.; Fritz, D.A.; Auchenbach, M.B.; Starck, L.O.; Keck, P.E. Family study of fibromyalgia. Arthritis Rheum. 2004, 50, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Sullivan, P.F.; Evengård, B.; Pedersen, N.L. Importance of genetic influences on chronic widespread pain. Arthritis Care Res. 2006, 54, 1682–1686. [Google Scholar] [CrossRef]
- Arnold, L.M.; Fan, J.; Russell, I.J.; Yunus, M.B.; Khan, M.A.; Kushner, I.; Olson, J.M.; Iyengar, S.K. The Fibromyalgia Family Study: A Genome-Wide Linkage Scan Study. Arthritis Care Res. 2013, 65, 1122–1128. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.B.; Maixner, D.W.; Fillingim, R.B.; Slade, G.; Gracely, R.H.; Ambrose, K.; Zaykin, D.V.; Hyde, C.; John, S.; Tan, K.; et al. Large candidate gene association study reveals genetic risk factors and therapeutic targets for fibromyalgia. Arthritis Care Res. 2012, 64, 584–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buskila, D.; Sarzi-Puttini, P.; Ablin, J.N. The genetics of fibromyalgia syndrome. Pharmacogenomics 2007, 8, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S. Pain genetics: Past, present and future. Trends Genet. 2012, 28, 258–266. [Google Scholar] [CrossRef]
- Oertel, B.; Lötsch, J. Genetic mutations that prevent pain: Implications for future pain medication. Pharmacogenomics 2008, 9, 179–194. [Google Scholar] [CrossRef]
- Ugarte, S.; Homanics, G.; Firestone, L.; Hammond, D. Sensory thresholds and the antinociceptive effects of GABA receptor agonists in mice lacking the β3 subunit of the GABAA receptor. Neuroscience 2000, 95, 795–806. [Google Scholar] [CrossRef]
- Lindemann, L.; Meyer, C.A.; Jeanneau, K.; Bradaia, A.; Ozmen, L.; Bluethmann, H.; Bettler, B.; Wettstein, J.G.; Borroni, E.; Moreau, J.-L.; et al. Trace Amine-Associated Receptor 1 Modulates Dopaminergic Activity. J. Pharmacol. Exp. Ther. 2008, 324, 948–956. [Google Scholar] [CrossRef] [Green Version]
- de Buhr, M.F.; Mähler, M.; Geffers, R.; Hansen, W.; Westendorf, A.M.; Lauber, J.; Buer, J.; Schlegelberger, B.; Hedrich, H.J.; Bleich, A. Cd14, Gbp1, and Pla2g2a: Three major candidate genes for experimental IBD identified by combining QTL and microarray analyses. Physiol. Genom. 2006, 25, 426–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Alarcón, G.; Fragoso, J.-M.; Cruz-Robles, D.; Vargas, A.; Vargas, A.; Lao-Villadóniga, J.-I.; García-Fructuoso, F.; Ramos-Kuri, M.; Hernández, F.; Springall, R.; et al. Catechol-O-methyltransferase gene haplotypes in Mexican and Spanish patients with fibromyalgia. Arthritis Res. Ther. 2007, 9, R110. [Google Scholar] [CrossRef] [Green Version]
- Al-Allaf, A.W.; Dunbar, K.L.; Hallum, N.S.; Nosratzadeh, B.; Templeton, K.D.; Pullar, T. A case-control study examining the role of physical trauma in the onset of fibromyalgia syndrome. Rheumatology 2002, 41, 450–453. [Google Scholar] [CrossRef] [Green Version]
- Siracusa, R.; Paola, R.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int. J. Mol. Sci. 2021, 22, 3891. [Google Scholar] [CrossRef]
- Low, L.; Schweinhardt, P. Early Life Adversity as a Risk Factor for Fibromyalgia in Later Life. Pain Res. Treat. 2012, 2012, 140832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Kim, J.; Loggia, M.L.; Cahalan, C.; Garcia, R.G.; Vangel, M.G.; Wasan, A.D.; Edwards, R.R.; Napadow, V. Fibromyalgia is characterized by altered frontal and cerebellar structural covariance brain networks. NeuroImage Clin. 2015, 7, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Loggia, M.L.; Mogil, J.S.; Bushnell, M.C. Experimentally Induced Mood Changes Preferentially Affect Pain Unpleasantness. J. Pain 2008, 9, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Jesus, C.A.S.; Feder, D.; Peres, M.F.P. The Role of Vitamin D in Pathophysiology and Treatment of Fibromyalgia. Curr. Pain Headache Rep. 2013, 17, 355. [Google Scholar] [CrossRef] [PubMed]
- Roizenblatt, S.; Moldofsky, H.; Benedito-Silva, A.A.; Tufik, S. Alpha sleep characteristics in fibromyalgia. Arthritis Care Res. 2001, 44, 222–230. [Google Scholar] [CrossRef]
- Estévez-López, F.; Maestre-Cascales, C.; Russell, D.; Álvarez-Gallardo, I.C.; Rodriguez-Ayllon, M.; Hughes, C.M.; Davison, G.W.; Sañudo, B.; McVeigh, J.G. Effectiveness of Exercise on Fatigue and Sleep Quality in Fibromyalgia: A Systematic Review and Meta-analysis of Randomized Trials. Arch. Phys. Med. Rehabil. 2021, 102, 752–761. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyorfi, M.; Rupp, A.; Abd-Elsayed, A. Fibromyalgia Pathophysiology. Biomedicines 2022, 10, 3070. https://doi.org/10.3390/biomedicines10123070
Gyorfi M, Rupp A, Abd-Elsayed A. Fibromyalgia Pathophysiology. Biomedicines. 2022; 10(12):3070. https://doi.org/10.3390/biomedicines10123070
Chicago/Turabian StyleGyorfi, Michael, Adam Rupp, and Alaa Abd-Elsayed. 2022. "Fibromyalgia Pathophysiology" Biomedicines 10, no. 12: 3070. https://doi.org/10.3390/biomedicines10123070
APA StyleGyorfi, M., Rupp, A., & Abd-Elsayed, A. (2022). Fibromyalgia Pathophysiology. Biomedicines, 10(12), 3070. https://doi.org/10.3390/biomedicines10123070