The Blood DNA Methylation Clock GrimAge Is a Robust Surrogate for Airway Epithelia Aging
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khakban, A.; Sin, D.D.; FitzGerald, J.M.; McManus, B.M.; Ng, R.; Hollander, Z.; Sadatsafavi, M. The Projected Epidemic of Chronic Obstructive Pulmonary Disease Hospitalizations over the Next 15 Years. A Population-based Perspective. Am. J. Respir. Crit. Care Med. 2017, 195, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Cordero, A.I.; Yang, C.X.; Milne, S.; Li, X.; Hollander, Z.; Chen, V.; Ng, R.; Tebbutt, S.J.; Leung, J.M.; Sin, D.D. Epigenetic Blood Biomarkers of Ageing and Mortality in COPD. Eur. Respir. J. 2021, 58, 2101890. [Google Scholar] [CrossRef] [PubMed]
- Hernández Cordero, A.I.; Yang, C.X.; Yang, J.; Horvath, S.; Shaipanich, T.; MacIsaac, J.; Lin, D.T.S.; Kobor, M.S.; Guillemi, S.; Harris, M.; et al. Airway Aging and Methylation Disruptions in HIV-Associated Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2022, 206, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Cordero, A.I.; Yang, C.X.; Obeidat, M.; Yang, J.; MacIsaac, J.; McEwen, L.; Lin, D.; Kobor, M.; Novak, R.; Hudson, F.; et al. DNA Methylation Is Associated with Airflow Obstruction in Patients Living with HIV. Thorax 2021, 76, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA Methylation Age of Human Tissues and Cell Types. Genome. Biol. 2013, 14, R115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al. Genome-Wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, S.; Oshima, J.; Martin, G.M.; Lu, A.T.; Quach, A.; Cohen, H.; Felton, S.; Matsuyama, M.; Lowe, D.; Kabacik, S.; et al. Epigenetic Clock for Skin and Blood Cells Applied to Hutchinson Gilford Progeria Syndrome and Ex Vivo Studies. Aging (Albany NY) 2018, 10, 1758–1775. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An Epigenetic Biomarker of Aging for Lifespan and Healthspan. Aging (Albany NY) 2018, 10, 573–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA Methylation GrimAge Strongly Predicts Lifespan and Healthspan. Aging (Albany NY) 2019, 11, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.T.; Seeboth, A.; Tsai, P.-C.; Sun, D.; Quach, A.; Reiner, A.P.; Kooperberg, C.; Ferrucci, L.; Hou, L.; Baccarelli, A.A.; et al. DNA Methylation-Based Estimator of Telomere Length. Aging (Albany NY) 2019, 11, 5895–5923. [Google Scholar] [CrossRef] [PubMed]
- Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA Methylation Arrays as Surrogate Measures of Cell Mixture Distribution. BMC Bioinform. 2012, 13, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández Cordero, A.I.; Yang, C.X.; Yang, J.; Li, X.; Horvath, S.; Shaipanich, T.; MacIsaac, J.; Lin, D.; McEwen, L.; Kobor, M.S.; et al. The Relationship between the Epigenetic Aging Biomarker “Grimage” and Lung Function in Both the Airway and Blood of People Living with HIV: An Observational Cohort Study. EBioMedicine 2022, 83, 104206. [Google Scholar] [CrossRef] [PubMed]
DNA Methylation Clock | Group | R between Epigenetic Age and Chronological Age (p-Value) | R between Blood and Airway Epigenetic Age (p-Value) | COPD Test * (Estimate ± and p-Value) | ||
---|---|---|---|---|---|---|
Blood | Airway | Blood | Airway | |||
DNAmGrimAge | All | 0.83 (1.62 × 10−11) | 0.90 (3.86 × 10−16) | 0.93 (9.86 × 10−19) | 2.86 (2.24 × 10−2) | 2.81 (3.01 × 10−3) |
COPD | 0.85 (5.05 × 10−5) | 0.93 (6.19 × 10−7) | 0.91 (2.87 × 10−6) | |||
Non-COPD | 0.83 (1.04 × 1008) | 0.91 (5.15 × 10−11) | 0.92 (9.80 × 10−12) | |||
DNAmAge | All | 0.86 (3.73 × 10−13) | 0.71 (1.35 × 10−7) | 0.59 (4.46 × 10−05) | 1.05 (0.485) | 2.37 (5.12 × 10−2) |
COPD | 0.85 (5.06 × 10−5) | 0.47 (7.42 × 10−2) | 0.25 (0.360) | |||
Non-COPD | 0.85 (1.45 × 10−8) | 0.79 (9.11 × 10−7) | 0.67 (1.34 × 10−4) | |||
DNAmAgeHannum | All | 0.87 (4.81 × 10−14) | 0.55 (1.56 × 10−4) | 0.63 (8.75 × 10−6) | 1.46 (0.301) | 4.66 (0.011) |
COPD | 0.89 (1.06 × 10−5) | 0.70 (3.86 × 10−3) | 0.58 (2.29 × 10−2) | |||
Non-COPD | 0.88 (1.95 × 10−9) | 0.50 (8.38 × 10−3) | 0.61 (8.08 × 10−4) | |||
DNAmAgeSkinBlood | All | 0.90 (1.06 × 10−15) | 0.64 (4.09 × 10−6) | 0.58 (5.89 × 10−5) | 0.43 (0.767) | 5.03 (2.92 × 10−2) |
COPD | 0.82 (1.74 × 10−4) | 0.47 (7.83 × 10−2) | 0.13 (0.632) | |||
Non-COPD | 0.91 (2.43 × 10−11) | 0.70 (4.82 × 10−5) | 0.69 (7.92 × 10−5) | |||
DNAmPhenoAge + | All | 0.79 (5.74 × 10−10) | 0.46 (1.98 × 10−3) | 0.50 (7.80 × 10−4) | 3.13 (0.107) | 5.22 (3.13 × 10−2) |
COPD | 0.78 (6.54 × 10−4) | 0.44 (9.82 × 10−2) | 0.15 (0.597) | |||
Non-COPD | 0.80 4.74 × 10−7) | 0.44 (2.06 × 10−2) | 0.58 (1.68 × 10−3) | |||
DNAmTL | All | −0.66 (1.62 × 10−6) | −0.23 (0.13) | 0.40 (8.72 × 10−3) | 0.05 (0.256) | −0.23 (4.44 × 10−5) |
COPD | −0.57 (2.78 × 10−2) | 0.34 (0.200) | −0.005 (0.986) | |||
Non-COPD | −0.72 (1.91 × 10−5) | −0.32 (0.110) | 0.61 (6.62 × 10−4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez Cordero, A.I.; Yang, C.X.; Li, X.; Yang, J.; Shaipanich, T.; MacIsaac, J.L.; Lin, D.T.S.; Kobor, M.S.; Horvath, S.; Man, S.F.P.; et al. The Blood DNA Methylation Clock GrimAge Is a Robust Surrogate for Airway Epithelia Aging. Biomedicines 2022, 10, 3094. https://doi.org/10.3390/biomedicines10123094
Hernandez Cordero AI, Yang CX, Li X, Yang J, Shaipanich T, MacIsaac JL, Lin DTS, Kobor MS, Horvath S, Man SFP, et al. The Blood DNA Methylation Clock GrimAge Is a Robust Surrogate for Airway Epithelia Aging. Biomedicines. 2022; 10(12):3094. https://doi.org/10.3390/biomedicines10123094
Chicago/Turabian StyleHernandez Cordero, Ana I., Chen Xi Yang, Xuan Li, Julia Yang, Tawimas Shaipanich, Julie L. MacIsaac, David T. S. Lin, Michael S. Kobor, Steve Horvath, Shu Fan Paul Man, and et al. 2022. "The Blood DNA Methylation Clock GrimAge Is a Robust Surrogate for Airway Epithelia Aging" Biomedicines 10, no. 12: 3094. https://doi.org/10.3390/biomedicines10123094
APA StyleHernandez Cordero, A. I., Yang, C. X., Li, X., Yang, J., Shaipanich, T., MacIsaac, J. L., Lin, D. T. S., Kobor, M. S., Horvath, S., Man, S. F. P., Sin, D. D., & Leung, J. M. (2022). The Blood DNA Methylation Clock GrimAge Is a Robust Surrogate for Airway Epithelia Aging. Biomedicines, 10(12), 3094. https://doi.org/10.3390/biomedicines10123094