Role of Matrix Metalloproteinases and Their Inhibitors in Locally Invasive Papillary Thyroid Cancer
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants
2.2. Hematoxylin-Eosin Staining
2.3. Immunohistochemistry
Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef]
- Itoh, Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol. 2015, 40–46, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Visse, R.; Nagase, H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Clark, I.M.; Swingler, T.E.; Sampieri, C.L.; Edwards, D.R. The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell Biol. 2008, 40, 1362–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, G. Tissue inhibitors of metalloproteinases. Genome Biol. 2011, 12, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta 2010, 1803, 55–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamenkovic, I. Extracellular matrix remodelling: The role of matrix metalloproteinases. J. Pathol. 2003, 200, 448–463. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Liu, F.; Tang, L.; Tang, R.; Li, W. Apoptotic effect of mtrix metalloproteinases 9 in the development of diabetic retinopathy. Int. J. Clin. Exp. Pathol. 2015, 8, 10452–10459. [Google Scholar]
- Khamis, Z.I.; Iczkowski, K.A.; Man, Y.G.; Bou-Dargham, M.J.; Sang, Q.X. Evidence for a Proapoptotic Role of Matrix Metalloproteinase-26 in Human Prostate Cancer Cells and Tissues. J. Cancer 2016, 7, 80–87. [Google Scholar] [CrossRef]
- Quintero, F.S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Diao, H.; Zhao, Y.; Xu, H.; Pei, S.; Gao, J.; Wang, J.; Hussain, T.; Zhao, D.; Zhou, X.; et al. Overexpression of matrix metalloproteinase-9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling. Cell Prolif. 2019, 52, e12633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Qiu, Z.; Li, F.; Wang, C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol. Lett. 2017, 14, 5865–5870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, P.; Low, E.; Harper, E.; Stack, M.S. Metalloproteinases in Ovarian Cancer. Int. J. Mol. Sci. 2021, 22, 3403. [Google Scholar] [CrossRef]
- Pezeshkian, Z.; Nobili, S.; Peyravian, N.; Shojaee, B.; Nazari, H.; Soleimani, H.; Asadzadeh-Aghdaei, H.; Ashrafian Bonab, M.; Nazemalhosseini-Mojarad, E.; Mini, E. Insights into the Role of Matrix Metalloproteinases in Precancerous Conditions and in Colorectal Cancer. Cancers 2021, 13, 6226. [Google Scholar] [CrossRef]
- Knapinska, A.M.; Estrada, C.A.; Fields, G.B. The Roles of Matrix Metalloproteinases in Pancreatic Cancer. Prog. Mol. Biol. Transl. Sci. 2017, 148, 339–354. [Google Scholar] [CrossRef]
- Cai, M.; Zheng, Z.; Bai, Z.; Ouyang, K.; Wu, Q.; Xu, S.; Huang, L.; Jiang, Y.; Wanf, L.; Gao, J.; et al. Overexpression of angiogenic factors and matrix metalloproteinases in the saliva of oral squamous cell carcinoma patients: Potential non-invasive diagnostic and therapeutic biomarkers. BMC Cancer 2022, 22, 530. [Google Scholar] [CrossRef]
- Gkouveris, I.; Nikitakis, N.G.; Aseervatham, J.; Rao, N.; Ogbureke, K.U.E. Matrix metalloproteinases in head and neck cancer: Current perspectives. Met. Med. 2017, 4, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Xu, M.; Tan, J.; Zhou, L.; Dong, F.; Huang, T. MMP1 acts as a potential regulator of tumor progression and dedifferentiation in papillary thyroid cancer. Front. Oncol. 2022, 12, 1030590. [Google Scholar] [CrossRef]
- Bumber, B.; Marjanovic Kavanagh, M.; Jakovcevic, A.; Sincic, N.; Prstacic, R.; Prgomet, D. Role of matrix metalloproteinases and their inhibitors in the development of cervical metastases in papillary thyroid cancer. Clin. Otolaryngol. 2020, 45, 55–62. [Google Scholar] [CrossRef]
- Kameyma, K. Expression of MMP-1 in the capsule of thyroid cancer. Relationship with invasiveness. Pathol. Res. Pract. 1996, 192, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Ueno, H.; Yamashita, K.; Shimada, T.; Yamamoto, E.; Noguchi, M.; Fujimoto, N.; Sato, H.; Seiki, M.; Okada, Y. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res. 1999, 59, 467–473. [Google Scholar] [PubMed]
- Liang, H.; Zhong, Y.; Luo, Z.; Huang, Y.; Lin, H.; Luo, M.; Zhan, S.; Xie, K.; Ma, Y.; Li, Q.Q. Assessment of biomarkers for clinical diagnosis of papillary thyroid carcinoma with distant metastasis. Int. J. Biol. Markers 2010, 25, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Ye, K.; Wang, Z.; Tang, H. Clinicopathologic evaluation of 25. immunohistochemical CD147 and MMP-2 expression in differentiated thyroid carcinoma. Jpn. J. Clin. Oncol. 2008, 38, 528–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalheiro, B.G.; Junqueira, C.R.; Brandao, L.G. Expression of 26. matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in medullary thyroid carcinoma: Prognostic implications. Thyroid 2008, 18, 865–887. [Google Scholar] [CrossRef]
- Shi, Y.; Su, C.; Hu, H.; Yan, H.; Li, W.; Chen, G.; Xu, D.; Du, X.; Zhang, P. Serum MMP-2 as a potential predictive marker for papillary thyroid carcinoma. PLoS ONE 2018, 13, e0198896. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Yuan, T.; Ding, Q. Clinical value of matrix metalloproteinase-2 and -9 in ultrasound-guided radiofrequency ablation treatment for papillary thyroid carcinoma. J. Int. Med. Res. 2020, 48, 300060520917581. [Google Scholar] [CrossRef]
- Zhang, W.J.; Song, B.; Yang, T. MMP-2, MMP-9, TIMP-1, and TIMP-2 in the Peripheral Blood of Patients with Differentiated Thyroid Carcinoma. Cancer Manag. Res. 2019, 23, 10675–10681. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.Z.; Li, Z.P.; Li, S.G.; Wu, C.M. Correlations of serous levels of matrix metalloproteinases (MMP-2 and MMP-9) to invasion and metastasis of papillary thyroid carcinoma. Ai Zheng 2005, 24, 740–742. [Google Scholar]
- Maeta, H.; Ohgi, S.; Terada, T. Protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in papillary thyroid carcinomas. Virchows Arch. 2001, 438, 121–128. [Google Scholar] [CrossRef]
- Marecko, I.; Cvejic, D.; Selemetjev, S.; Paskas, S.; Tatic, S.; Paunovic, I.; Savin, S. Enhanced activation of matrix metalloproteinase-9 correlates with the degree of papillary thyroid carcinoma infiltration. Croat. Med. J. 2014, 55, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Su, C.; Xu, J.; Zhou, D.; Yan, H.; Li, W.; Chen, G.; Zhang, N.; Dahai, Y.; Hu, H. Immunohistochemical analysis of matrix metalloproteinase-9 predicts papillary thyroid carcinoma prognosis. Oncol. Lett. 2019, 17, 2308–2316. [Google Scholar] [CrossRef] [PubMed]
- Khokha, R.; Waterhouse, P.; Yagel, S.; Lala, P.K.; Overall, C.M.; Norton, G.; Denhardt, D.T. Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science 1989, 243, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Nakai, N.; Hara, M.; Takahashi, H.; Shiga, K.; Hirokawa, T.; Maeda, Y.; Yanagita, T.; Ando, N.; Takasu, K.; Suzuki, T.; et al. Cancer cell-induced tissue inhibitor of metalloproteinase-1 secretion by cancer-associated fibroblasts promotes cancer cell migration. Oncol. Rep. 2022, 47, 112. [Google Scholar] [CrossRef]
- Shou, Y.; Liu, Y.; Xu, J.; Liu, J.; Xu, T.; Tong, J.; Liu, L.; Houu, Y.; Liu, D.; Yang, J.H.; et al. TIMP1 Indicates Poor Prognosis of Renal Cell Carcinoma and Accelerates Tumorigenesis via EMT Signaling Pathway. Front. Genet. 2022, 13, 648134. [Google Scholar] [CrossRef]
- Shi, Y.; Parhar, R.S.; Zou, M.; Hammami, M.M.; Akhtar, M.; Lum, Z.P.; Farid, N.R.; Al-Sedairy, S.T.; Paterson, M.C. Tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA is elevated in advanced stages of thyroid carcinoma. Br. J. Cancer 1999, 79, 1234–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldini, E.; Toller, M.; Graziano, F.M.; Russo, F.P.; Pepe, M.; Biordi, L.; Marchioni, E.; Curcio, F.; Ulisse, S.; Ambesi-Impiombato, F.S.; et al. Expression of matrix metalloproteinases and their specific inhibitors in normal and different human thyroid tumor cell lines. Thyroid 2004, 14, 881–888. [Google Scholar] [CrossRef]
- Wang, W.; Li, D.; Xiang, L.; Lv, M.; Tao, L.; Ni, T.; Deng, J.; Gu, X.; Masatara, S.; Liu, Y.; et al. TIMP-2 inhibits metastasis and predicts prognosis of colorectal cancer via regulating MMP-9. Cell Adhes. Migr. 2019, 13, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Peeney, D.; Jensen, S.M.; Castro, N.P.; Kumar, S.; Noonan, S.; Handler, C.; Kuznetsov, A.; Shih, J.; Tran, A.D.; Salomon, D.S.; et al. TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinogenesis 2020, 41, 313–325. [Google Scholar] [CrossRef]
- Prgomet, D.; Bilić, M.; Kovac, L.; Hutinec, Z.; Topić, I. Lokalno invazivni papilarni karcinom stitnjace--nasa iskustva [Locally invasive papillary thyroid cancer–Our experience]. Liječ. Vjesn. 2012, 134, 266–270. [Google Scholar]
- Wein, R.O. Management of the locally aggressive thyroid carcinoma. Am. J. Otolaryngol. 2005, 26, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006, 295, 2164–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Pantanowitz, L.; Hornick, J.L. A worldwide journey of thyroid cancer incidence centred on tumour histology. Lancet Diabetes Endocrinol. 2021, 9, 193–194. [Google Scholar] [CrossRef]
- Margherita, P.; Mengmeng, L.; Jerome, V.; Mathieu, L.; Deependra, S.; Carlo, L.V.; Salvatore, V. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef]
Tumor Type | p | |||||
---|---|---|---|---|---|---|
Non-Invasive N = 30 | Invasive N = 50 | |||||
N | % | N | % | |||
Histology variant | Classic | 24 | 80.0% | 38 | 76.0% | 0.741 |
Follicular | 4 | 13.3% | 5 | 10.0% | ||
Tall-cell | 1 | 3.3% | 1 | 2.0% | ||
Solid | 0 | 0.0% | 1 | 2.0% | ||
Oncocyte | 1 | 3.3% | 0 | 0.0% | ||
Warthin-like | 0 | 0.0% | 1 | 2.0% | ||
Clear cell | 0 | 0.0% | 1 | 2.0% | ||
Diffuse sclerosing | 0 | 0.0% | 3 | 6.0% | ||
T grade | 1a | 7 | 23.3% | 7 | 14.0% | 0.588 |
1b | 3 | 10.0% | 7 | 14.0% | ||
2 | 2 | 6.7% | 1 | 2.0% | ||
3 | 18 | 60.0% | 34 | 68.0% | ||
4a | 0 | 0.0% | 1 | 2.0% | ||
Gender | Male | 3 | 10.0% | 15 | 30.0% | 0.053 |
Female | 27 | 90.0% | 35 | 70.0% |
Tumor Type | Min | Max | Percentiles | Mann–Whitney U | Z | p | |||
---|---|---|---|---|---|---|---|---|---|
25th | Median | 75th | |||||||
Age (years) | Non-invasive | 15.0 | 79.0 | 41.8 | 54.0 | 62.3 | 527.0 | −2.2 | 0.027 |
Invasive | 11.0 | 73.0 | 30.8 | 45.0 | 54.3 | ||||
Tumor size (cm) | Non-invasive | 0.2 | 5.0 | 0.6 | 1.0 | 1.5 | 514.0 | −2.4 | 0.018 |
Invasive | 0.4 | 7.6 | 1.0 | 1.2 | 2.0 | ||||
MMP-1 tumor | Non-invasive | 0.0 | 90.0 | 45.0 | 70.0 | 85.0 | 554.0 | −2.0 | 0.049 |
Invasive | 10.0 | 95.0 | 67.5 | 80.0 | 90.0 | ||||
MMP-2 tumor | Non-invasive | 0.0 | 95.0 | 0.9 | 15.0 | 68.8 | 721.0 | −0.3 | 0.772 |
Invasive | 0.0 | 90.0 | 5.0 | 20.0 | 32.5 | ||||
MMP-9 tumor | Non-invasive | 0.0 | 90.0 | 30.0 | 70.0 | 90.0 | 569.0 | −1.8 | 0.069 |
Invasive | 0.0 | 95.0 | 50.0 | 80.0 | 90.0 | ||||
TIMP-1 tumor | Non-invasive | 0.0 | 95.0 | 50.0 | 82.5 | 90.0 | 411.0 | −3.5 | <0.001 |
Invasive | 0.0 | 95.0 | 85.0 | 95.0 | 95.0 | ||||
TIMP-2 tumor | Non-invasive | 0.0 | 95.0 | 5.0 | 10.0 | 26.3 | 5678.0 | −1.7 | 0.086 |
Invasive | 0.0 | 95.0 | 5.0 | 30.0 | 56.3 | ||||
MMP-1 adjacent tissue | Non-invasive | 15.0 | 85.0 | 37.5 | 50.0 | 65.0 | 532.0 | −2.2 | 0.029 |
Invasive | 10.0 | 90.0 | 50.0 | 60.0 | 80.0 | ||||
MMP-2 adjacent tissue | Non-invasive | 0.0 | 75.0 | 10.0 | 30.0 | 70.0 | 736.0 | −0.1 | 0.893 |
Invasive | 5.0 | 85.0 | 17.5 | 30.0 | 56.3 | ||||
MMP-9 adjacent tissue | Non-invasive | 20.0 | 90.0 | 50.0 | 70.0 | 90.0 | 514.0 | −2.4 | 0.017 |
Invasive | 20.0 | 95.0 | 67.5 | 82.5 | 90.0 | ||||
TIMP-1 adjacent tissue | Non-invasive | 0.0 | 95.0 | 23.8 | 50.0 | 70.0 | 352.0 | −4.0 | <0.001 |
Invasive | 20.0 | 95.0 | 67.5 | 80.0 | 90.0 | ||||
TIMP-2 adjacent tissue | Non-invasive | 0.0 | 90.0 | 5.0 | 20.0 | 42.5 | 622.0 | −1.3 | 0.201 |
Invasive | 0.0 | 80.0 | 10.0 | 30.0 | 40.0 |
OR | 95% CI | p | ||
---|---|---|---|---|
Lower | Upper | |||
Age (years) | 0.97 | 0.94 | 1.01 | 0.109 |
Tumor size (cm) | 1.81 | 1.01 | 3.25 | 0.048 |
MMP-1 tumor | 1.20 | 0.53 | 2.74 | 0.664 |
TIMP-1 tumor | 1.36 | 0.70 | 2.63 | 0.359 |
MMP-1 tumor | 1.37 | 0.50 | 3.76 | 0.537 |
MMP-9 adjacent tissue | 0.73 | 0.32 | 1.69 | 0.460 |
TIMP-1 adjacent tissue | 3.97 | 1.42 | 11.13 | 0.009 |
Tumor Type | MMP1 | MMP2 | MMP9 | TIMP1 | TIMP2 | ||
---|---|---|---|---|---|---|---|
Non-invasive N = 30 | MMP-1 | Correlation Coefficient | 1.000 | 0.313 | 0.133 | 0.230 | 0.344 |
p | 0.093 | 0.484 | 0.221 | 0.062 | |||
MMP-2 | Correlation Coefficient | 0.313 | 1.000 | 0.281 | 0.211 | 0.378 | |
p | 0.093 | 0.132 | 0.263 | 0.039 | |||
MMP-9 | Correlation Coefficient | 0.133 | 0.281 | 1.000 | −0.051 | 0.115 | |
p | 0.484 | 0.132 | 0.790 | 0.546 | |||
TIMP-1 | Correlation Coefficient | 0.230 | 0.211 | −0.051 | 1.000 | 0.353 | |
p | 0.221 | 0.263 | 0.790 | 0.056 | |||
TIMP-2 | Correlation Coefficient | 0.344 | 0.378 | 0.115 | 0.353 | 1.000 | |
p | 0.062 | 0.039 | 0.546 | 0.056 | |||
Invasive N = 50 | MMP-1 | Correlation Coefficient | 1.000 | 0.306 | −0.093 | −0.056 | −0.238 |
p | 0.031 | 0.522 | 0.699 | 0.095 | |||
MMP-2 | Correlation Coefficient | 0.306 | 1.000 | −0.019 | −0.127 | −0.081 | |
p | 0.031 | 0.893 | 0.379 | 0.577 | |||
MMP-9 | Correlation Coefficient | −0.093 | −0.019 | 1.000 | 0.145 | 0.464 | |
p | 0.522 | 0.893 | 0.315 | 0.001 | |||
TIMP-1 | Correlation Coefficient | −0.056 | −0.127 | 0.145 | 1.000 | 0.040 | |
p | 0.699 | 0.379 | 0.315 | 0.785 | |||
TIMP-2 | Correlation Coefficient | −0.238 | −0.081 | 0.464 | 0.040 | 1.000 | |
p | 0.095 | 0.577 | 0.001 | 0.785 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivković, I.; Limani, Z.; Jakovčević, A.; Huić, D.; Prgomet, D. Role of Matrix Metalloproteinases and Their Inhibitors in Locally Invasive Papillary Thyroid Cancer. Biomedicines 2022, 10, 3178. https://doi.org/10.3390/biomedicines10123178
Ivković I, Limani Z, Jakovčević A, Huić D, Prgomet D. Role of Matrix Metalloproteinases and Their Inhibitors in Locally Invasive Papillary Thyroid Cancer. Biomedicines. 2022; 10(12):3178. https://doi.org/10.3390/biomedicines10123178
Chicago/Turabian StyleIvković, Irena, Zgjim Limani, Antonia Jakovčević, Dražen Huić, and Drago Prgomet. 2022. "Role of Matrix Metalloproteinases and Their Inhibitors in Locally Invasive Papillary Thyroid Cancer" Biomedicines 10, no. 12: 3178. https://doi.org/10.3390/biomedicines10123178
APA StyleIvković, I., Limani, Z., Jakovčević, A., Huić, D., & Prgomet, D. (2022). Role of Matrix Metalloproteinases and Their Inhibitors in Locally Invasive Papillary Thyroid Cancer. Biomedicines, 10(12), 3178. https://doi.org/10.3390/biomedicines10123178