Minocycline Inhibits Microglial Activation and Improves Visual Function in a Chronic Model of Age-Related Retinal Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Design and Minocycline Administration
2.3. Electroretinography (ERG)
2.4. Fundus Photography and Micron IV Examination
2.5. Spectral Domain Optical Coherence Tomography (SD-OCT)
2.6. Reverse Transcription and Real-Time aRT-PCR
2.7. Retinal and RPE/Choroidal Flat Mount Preparation
2.8. Immunohistochemistry
2.9. Retinal Cell Quantification, Morphometric Analysis
2.10. Statistical Analysis
3. Results
3.1. The Effect of Minocycline on Visual Function
3.2. The Effect of Minocycline on Retinal Gross Morphology and Thickness
3.3. The Effect of Minocycline on Retina Microglial Activation
3.4. The Effect of Minocycline on Retinal Neuronal Degeneration in DKO Mice
3.5. The Protective Effect of Minocycline on RPE Damage in DKO Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pennington, K.L.; DeAngelis, M.M. Epidemiology of Age-Related Macular Degeneration (AMD): Associations with Cardiovascular Disease Phenotypes and Lipid Factors. Eye Vis. 2016, 3, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [Green Version]
- Keeffe, J.E.; Casson, R.J.; Pesudovs, K.; Taylor, H.R.; Cicinelli, M.V.; Das, A.; Flaxman, S.R.; Jonas, J.B.; Kempen, J.H.; Leasher, J.; et al. Prevalence and Causes of Vision Loss in South-East Asia and Oceania in 2015: Magnitude, Temporal Trends and Projections. Br. J. Ophthalmol. 2019, 103, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Ming, C.; Cheung, G. Updates on the Epidemiology of Age-Related Macular Degeneration. Asia Pac. J. Ophthalmol. 2017, 6, 493–497. [Google Scholar] [CrossRef]
- Colijn, J.M.; Buitendijk, G.H.S.; Prokofyeva, E.; Alves, D.; Cachulo, M.L.; Khawaja, A.P.; Cougnard-Gregoire, A.; Merle, B.M.J.; Korb, C.; Erke, M.G.; et al. Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future. Ophthalmology 2017, 124, 1753–1763. [Google Scholar] [CrossRef] [Green Version]
- Bourne, R.R.A.; Jonas, J.B.; Bron, A.M.; Cicinelli, M.V.; Das, A.; Flaxman, S.R.; Friedman, D.S.; Keeffe, J.E.; Kempen, J.H.; Leasher, J.; et al. Prevalence and Causes of Vision Loss in High-Income Countries and in Eastern and Central Europe in 2015: Magnitude, Temporal Trends and Projections. Br. J. Ophthalmol. 2018, 102, 575–585. [Google Scholar] [CrossRef]
- Camelo, S. Potential Sources and Roles of Adaptive Immunity in Age-Related Macular Degeneration: Shall We Rename AMD into Autoimmune Macular Disease? Autoimmune Dis. 2014, 2014, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Ambati, J.; Atkinson, J.P.; Gelfand, B.D. Immunology of Age-Related Macular Degeneration. Nat. Rev. Immunol. 2013, 13, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Hollyfield, J.G.; Bonilha, V.L.; Rayborn, M.E.; Yang, X.; Shadrach, K.G.; Lu, L.; Ufret, R.L.; Salomon, R.G.; Perez, V.L. Oxidative Damage-Induced Inflammation Initiates Age-Related Macular Degeneration. Nat. Med. 2008, 14, 194–198. [Google Scholar] [CrossRef]
- Chen, M.; Xu, H. Parainflammation, Chronic Inflammation, and Age-Related Macular Degeneration. J. Leukoc. Biol. 2015, 98, 713–725. [Google Scholar] [CrossRef]
- Xu, H.; Chen, M. Immune Response in Retinal Degenerative Diseases—Time to Rethink? Prog. Neurobiol. 2022, 219, 102350. [Google Scholar] [CrossRef] [PubMed]
- Minnella, A.M.; Picardi, S.M.; Maceroni, M.; Albanesi, F.; De Siena, E.; Placidi, G.; Caputo, C.G.; De Vico, U.; Rizzo, S.; Falsini, B. Retinal Morpho-Functional Changes Following 0.19 Mg Fluocinolone Acetonide Intravitreal Implant for Chronic Diabetic Macular Edema. Adv. Ther. 2021, 38, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Balal, S.; Than, J.; Tekriwal, S.; Lobo, A. Dexamethasone Intravitreal Implant Therapy for Retinal Vein Occlusion Macular Oedema and Conversion to Ranibizumab in Clinical Practice. Ophthalmologica 2018, 239, 36–44. [Google Scholar] [CrossRef]
- Inada, M.; Taguchi, M.; Harimoto, K.; Karasawa, Y.; Takeuchi, M.; Ito, M. Protective Effects of Dexamethasone on Hypoxia-Induced Retinal Edema in a Mouse Model. Exp. Eye Res. 2019, 178, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Yrjänheikki, J.; Keinänen, R.; Pellikka, M.; Hökfelt, T.; Koistinaho, J. Tetracyclines Inhibit Microglial Activation and Are Neuroprotective in Global Brain Ischemia. Proc. Natl. Acad. Sci. USA 1998, 95, 15769–15774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yrjanheikki, J.; Tikka, T.; Keinanen, R.; Goldsteins, G.; Chan, P.H.; Koistinaho, J. A Tetracycline Derivative, Minocycline, Reduces Inflammation and Protects against Focal Cerebral Ischemia with a Wide Therapeutic Window. Proc. Natl. Acad. Sci. USA 1999, 96, 13496–13500. [Google Scholar] [CrossRef] [Green Version]
- Tikka, T.; Fiebich, B.L.; Goldsteins, G.; Keinanen, R.; Koistinaho, J. Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia. J. Neurosci. 2001, 21, 2580–2588. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Li, X.X.; He, X.J.; Zhang, Q.; Tao, Y. Neuroprotective Effect of Minocycline in a Rat Model of Branch Retinal Vein Occlusion. Exp. Eye Res. 2013, 113, 105–116. [Google Scholar] [CrossRef]
- Krady, J.K.; Basu, A.; Allen, C.M.; Xu, Y.; Lanoue, K.F.; Gardner, T.W.; Levison, S.W. Minocycline Reduces Proinflammatory Cytokine Expression, Microglial Activation and Caspase 3 Activation in a Rodent Model of Diabetic Retinopathy. Diabetes 2005, 54, 1559–1565. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Wang, L.L.; Abdelmaksoud, S.; Aboelgheit, A.; Saeed, S.; Zhang, C.L. Minocycline Modulates Microglia Polarization in Ischemia-Reperfusion Model of Retinal Degeneration and Induces Neuroprotection. Sci. Rep. 2017, 7, 14065. [Google Scholar] [CrossRef]
- Huang, R.; Liang, S.; Fang, L.; Wu, M.; Cheng, H.; Mi, X.; Ding, Y. Low-Dose Minocycline Mediated Neuroprotection on Retinal Ischemia-Reperfusion Injury of Mice. Mol. Vis. 2018, 24, 367–378. [Google Scholar] [PubMed]
- Dannhausen, K.; Möhle, C.; Langmann, T. Immunomodulation with Minocycline Rescues Retinal Degeneration in Juvenile Neuronal Ceroid Lipofuscinosis Mice Highly Susceptible to Light Damage. DMM Dis. Model. Mech. 2018, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pierdomenico, J.; Scholz, R.; Valiente-Soriano, F.J.; Sánchez-Migallón, M.C.; Vidal-Sanz, M.; Langmann, T.; Agudo-Barriuso, M.; García-Ayuso, D.; Villegas-Pérez, M.P. Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration. Investig. Opthalmol. Vis. Sci. 2018, 59, 4392. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Penalva, R.; Little, K.; Kissenpfennig, A.; Chen, M.; Xu, H. Deletion of Socs3 in LysM+ Cells and Cx3cr1 Resulted in Age-Dependent Development of Retinal Microgliopathy. Mol. Neurodegener. 2021, 16, 9. [Google Scholar] [CrossRef]
- Luhmann, U.F.O.; Robbie, S.; Munro, P.M.G.; Barker, S.E.; Duran, Y.; Luong, V.; Fitzke, F.W.; Bainbridge, J.W.B.; Ali, R.R.; Maclaren, R.E. The Drusenlike Phenotype in Aging Ccl2-Knockout Mice Is Caused by an Accelerated Accumulation of Swollen Autofluorescent Subretinal Macrophages. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5934–5943. [Google Scholar] [CrossRef] [Green Version]
- Jiao, H.; Rutar, M.; Fernando, N.; Yednock, T.; Sankaranarayanan, S.; Aggio-Bruce, R.; Provis, J.; Natoli, R. Subretinal Macrophages Produce Classical Complement Activator C1q Leading to the Progression of Focal Retinal Degeneration. Mol. Neurodegener. 2018, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lückoff, A.; Scholz, R.; Sennlaub, F.; Xu, H.; Langmann, T. Comprehensive analysis of mouse retinal mononuclear phagocytes. Nat. Protoc. 2017, 12, 1136–1150. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Lechner, J.; Zhao, J.; Toth, L.; Hogg, R.; Silvestri, G.; Kissenpfennig, A.; Chakravarthy, U.; Xu, H. STAT3 Activation in Circulating Monocytes Contributes to Neovascular Age-Related Macular Degeneration. Curr. Mol. Med. 2016, 16, 412–423. [Google Scholar] [CrossRef]
- Leung, D.W.; Lindlief, L.A.; Laabich, A.; Vissvesvaran, G.P.; Kamat, M.; Lieu, K.L.; Fawzi, A.; Kubota, R. Minocycline Protects Photoreceptors from Light and Oxidative Stress in Primary Bovine Retinal Cell Culture. Investig. Ophthalmol. Vis. Sci. 2007, 48, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Scholz, R.; Sobotka, M.; Caramoy, A.; Stempfl, T.; Moehle, C.; Langmann, T. Minocycline Counter-Regulates pro-Inflammatory Microglia Responses in the Retina and Protects from Degeneration. J. Neuroinflamm. 2015, 12, 1–14. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. Men and Mice: Relating Their Ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an Antibiotic. Br. J. Pharmacol. 2013, 169, 337–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardino, A.L.F.; Kaushal, D.; Philipp, M.T. The Antibiotics Doxycycline and Minocycline Inhibit the Inflammatory Responses to the Lyme Disease Spirochete Borrelia Burgdorferi. J. Infect. Dis. 2009, 199, 1379–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, G.; Zetterberg, H.; Jolly, A.; Cole, J.H.; De Simoni, S.; Jenkins, P.O.; Feeney, C.; Owen, D.R.; Lingford-Hughes, A.; Howes, O.; et al. Minocycline Reduces Chronic Microglial Activation after Brain Trauma but Increases Neurodegeneration. Brain 2018, 141, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Xiao, J.; Wang, K.; So, K.-F.; Tipoe, G.L.; Lin, B. Suppression of Microglial Activation Is Neuroprotective in a Mouse Model of Human Retinitis Pigmentosa. J. Neurosci. 2014, 34, 8139–8150. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, E.; Delaney, C.; Campbell, M.; Doyle, S.L. Minocycline Suppresses Disease-Associated Microglia (DAM) in a Model of Photoreceptor Cell Degeneration. Exp. Eye Res. 2022, 217, 108953. [Google Scholar] [CrossRef]
- Harrison, J.K.; Jiang, Y.; Chen, S.; Xia, Y.; Maciejewski, D.; Mcnamara, R.K.; Streit, W.J.; Salafranca, M.N.; Adhikari, S.; Thompson, D.A.; et al. Role for Neuronally Derived Fractalkine in Mediating Interactions between Neurons and CX3CR1-Expressing Microglia. Proc. Natl. Acad. Sci. USA 1998, 95, 10896–10901. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Lee, Y.; Song, J.; Lee, J.; Chang, S.-Y. Tissue-Specific Role of CX 3 CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw. 2018, 18, 1–19. [Google Scholar] [CrossRef]
- Williams, J.; Munro, K.; Palmer, T. Role of Ubiquitylation in Controlling Suppressor of Cytokine Signalling 3 (SOCS3) Function and Expression. Cells 2014, 3, 546–562. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, E.; Mauborgne, A.; Mallet, J.; Desclaux, M.; Pohl, M. SOCS3-Mediated Blockade of JAK/STAT3 Signaling Pathway Reveals Its Major Contribution to Spinal Cord Neuroinflammation and Mechanical Allodynia after Peripheral Nerve Injury. J. Neurosci. 2010, 30, 5754–5766. [Google Scholar] [CrossRef]
- Thomas, M.L.W. Minocycline: Neuroprotective Mechanisms in Parkinson’s Disease. Curr. Pharm. Des. 2004, 10, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Kim-Tenser, M.; Emanuel, B.A.; Jones, G.M.; Chapple, K.; Alikhani, A.; Sanossian, N.; Mack, W.J.; Tsivgoulis, G.; Alexandrov, A.V.; et al. Minocycline and Matrix Metalloproteinase Inhibition in Acute Intracerebral Hemorrhage: A Pilot Study. Eur. J. Neurol. 2017, 24, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Hollborn, M.; Wiedemann, P.; Bringmann, A.; Kohen, L. Chemotactic and Cytotoxic Effects of Minocycline on Human Retinal Pigment Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2721–2729. [Google Scholar] [CrossRef] [PubMed]
Genes | Forward | Reverse |
---|---|---|
Actb | GGCACCACACCTTCTACAATG | GGGGTGTTGAAGGTCTCAAAC |
Tnfa | TCTCATGCACCACCATCAAGGACT | ACCACTCTCCCTTTGCAGAACTCA |
Nos2 | TCTTTGACGCTCGGAACTGTAGCA | ACCTGATGTTGCCATTGTTGGTGG |
Icam1 | CACGTGCTGTATGGTCCTCG | TAGGAGATGGGTTCCCCCAG |
Il1b | AAGGGCTGCTTCCAAACCTTTGAC | ATACTGCCTGCCTGAAGCTCTTGT |
Il4 | ACGGAGATGGATGTGCCAAAC | AGCACCTTGGAAGCCCTACAGA |
Il6 | ATCCAGTTGCCTTCTTGGGACTGA | TAAGCCTCCGACTTGTGAAGTGGT |
Il10 | GGCAGAGAACCATGGCCCAGAA | AATCGATGACAGCGCCTCAGCC |
Cd68 | TTGCTAGGACCGCTTATAG | AAGGATGGCAGGAGAGTA |
Cd86 | TCTCCACGGAAACAGCATCT | CTTACGGAAGCACCCATGAT |
Ccl2 | GCATCCACGTGTTGGCTCA | CTCCAGCCTACTCATTGGGATCA |
Antigen | Dilution | Company | Host |
---|---|---|---|
IBA-1 | 1:200 | Wako Chemicals, Osaka, Japan | Rabbit |
Cone arrestin | 1:1000 | Millipore, Temecula, CA, USA | Rabbit |
PKCα | 1:500 | Santa Cruz, Santa Cruz, CA | Rabbit |
Secretagogin | 1:500 | Biovendor R&D, Brno, Czech Republic | Sheep |
NeuN | 1:100 | ThermoFisher, Waltham, MA, USA | Rabbit |
Marker | |||
Alexa Fluor™ 594 Phalloidin | 1:100 | ThermoFisher, USA | F-actin probe |
Secondary Antibody | |||
Alexa Fluor 594 | 1:400 | Invitrogen, San Diego, CA, USA | Donkey anti-rabbit |
Alexa Fluor 594 | 1:400 | Invitrogen, USA | Donkey anti-sheep |
Alexa Fluor 488 | 1:400 | Invitrogen, USA | Donkey anti-rabbit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Byrne, E.M.; Chen, M.; Xu, H. Minocycline Inhibits Microglial Activation and Improves Visual Function in a Chronic Model of Age-Related Retinal Degeneration. Biomedicines 2022, 10, 3222. https://doi.org/10.3390/biomedicines10123222
Du X, Byrne EM, Chen M, Xu H. Minocycline Inhibits Microglial Activation and Improves Visual Function in a Chronic Model of Age-Related Retinal Degeneration. Biomedicines. 2022; 10(12):3222. https://doi.org/10.3390/biomedicines10123222
Chicago/Turabian StyleDu, Xuan, Eimear M. Byrne, Mei Chen, and Heping Xu. 2022. "Minocycline Inhibits Microglial Activation and Improves Visual Function in a Chronic Model of Age-Related Retinal Degeneration" Biomedicines 10, no. 12: 3222. https://doi.org/10.3390/biomedicines10123222
APA StyleDu, X., Byrne, E. M., Chen, M., & Xu, H. (2022). Minocycline Inhibits Microglial Activation and Improves Visual Function in a Chronic Model of Age-Related Retinal Degeneration. Biomedicines, 10(12), 3222. https://doi.org/10.3390/biomedicines10123222