Somatic NGS Analysis of DNA Damage Response (DDR) Genes ATM, MRE11A, RAD50, NBN, and ATR in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemo-Radiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Histological Evaluation
2.2. DNA Isolation
2.3. NGS Analysis
2.4. Somatic Variants Analysis and Classification
2.5. Single Nucleotide Variant Validation with ddPCR and Sanger Sequencing
2.6. Statistical Analysis
3. Results
3.1. Patients
3.2. Mutational Analysis
3.3. Correlation of Genomic Alterations with TCGA Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 177–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacopetta, B. Are there two sides to colorectal cancer? Int. J. Cancer 2002, 101, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Peeters, K.C.; Marijnen, C.A.; Nagtegaal, I.D.; Kranenbarg, E.K.; Putter, H.; Wiggers, T.; Rutten, H.; Pahlman, L.; Glimelius, B.; Leer, J.W.; et al. The TME trial after a median follow-up of 6 years: Increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann. Surg. 2007, 246, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Sebag-Montefiore, D.; Stephens, R.J.; Steele, R.; Monson, J.; Grieve, R.; Khanna, S.; Quirke, P.; Couture, J.; de Metz, C.; Myint, A.S.; et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): A multicentre, randomised trial. Lancet 2009, 373, 811–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.L.; Ternent, C.A.; Thorson, A.G.; Christensen, M.A.; Blatchford, G.J.; Shashidharan, M.; Haynatzki, G.R. Response to preoperative chemoradiation in stage II and III rectal cancer. Dis. Colon. Rectum 2003, 46, 1189–1193. [Google Scholar] [CrossRef]
- Martin, S.T.; Heneghan, H.M.; Winter, D.C. Systematic review and meta-analysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer. Br. J. Surg. 2012, 99, 918–928. [Google Scholar] [CrossRef]
- de Campos-Lobato, L.F.; Stocchi, L.; da Luz Moreira, A.; Geisler, D.; Dietz, D.W.; Lavery, I.C.; Fazio, V.W.; Kalady, M.F. Pathologic complete response after neoadjuvant treatment for rectal cancer decreases distant recurrence and could eradicate local recurrence. Ann. Surg. Oncol. 2011, 18, 1590–1598. [Google Scholar] [CrossRef]
- Ryan, J.E.; Warrier, S.K.; Lynch, A.C.; Ramsay, R.G.; Phillips, W.A.; Heriot, A.G. Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A systematic review. Colorectal Dis. 2016, 18, 234–246. [Google Scholar] [CrossRef]
- Maréchal, A.; Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold. Spring Harb. Perspect. Biol. 2013, 5, a012716. [Google Scholar] [CrossRef]
- Riballo, E.; Kühne, M.; Rief, N.; Doherty, A.; Smith, G.C.; Recio, M.J.; Reis, C.; Dahm, K.; Fricke, A.; Krempler, A.; et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol. Cell 2004, 16, 715–724. [Google Scholar] [CrossRef]
- Hasbaoui, B.E.; Elyajouri, A.; Abilkassem, R.; Agadr, A. Nijmegen breakage syndrome: Case report and review of literature. Pan. Afr. Med. J. 2020, 35, 85. [Google Scholar] [CrossRef] [PubMed]
- Pitter, K.L.; Casey, D.L.; Lu, Y.C.; Hannum, M.; Zhang, Z.; Song, X.; Pecorari, I.; McMillan, B.; Ma, J.; Samstein, R.M.; et al. Pathogenic ATM Mutations in Cancer and a Genetic Basis for Radiotherapeutic Efficacy. J. Natl. Cancer Inst. 2021, 113, 266–273. [Google Scholar] [CrossRef]
- Ho, V.; Chung, L.; Singh, A.; Lea, V.; Abubakar, A.; Lim, S.H.; Ng, W.; Lee, M.; de Souza, P.; Shin, J.S.; et al. Overexpression of the MRE11-RAD50-NBS1 (MRN) complex in rectal cancer correlates with poor response to neoadjuvant radiotherapy and prognosis. BMC Cancer 2018, 18, 869. [Google Scholar] [CrossRef] [PubMed]
- Forker, L.J.; Choudhury, A.; Kiltie, A.E. Biomarkers of Tumour Radiosensitivity and Predicting Benefit from Radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2015, 27, 561–569. [Google Scholar] [CrossRef] [PubMed]
- do Canto, L.M.; Larsen, S.J.; Catin Kupper, B.E.; Begnami, M.D.F.S.; Scapulatempo-Neto, C.; Petersen, A.H.; Aagaard, M.M.; Baumbach, J.; Aguiar, S.; Rogatto, S.R. Increased Levels of Genomic Instability and Mutations in Homologous Recombination Genes in Locally Advanced Rectal Carcinomas. Front. Oncol. 2019, 9, 395. [Google Scholar] [CrossRef] [Green Version]
- Plimack, E.R.; Dunbrack, R.L.; Brennan, T.A.; Andrake, M.D.; Zhou, Y.; Serebriiskii, I.G.; Slifker, M.; Alpaugh, K.; Dulaimi, E.; Palma, N.; et al. Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer. Eur. Urol. 2015, 68, 959–967. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Choi, B.S. Structural and functional characterization of the N-terminal domain of human Rad51D. Int. J. Biochem. Cell Biol. 2011, 43, 416–422. [Google Scholar] [CrossRef]
- Ma, J.; Setton, J.; Morris, L.; Albornoz, P.B.; Barker, C.; Lok, B.H.; Sherman, E.; Katabi, N.; Beal, K.; Ganly, I.; et al. Genomic analysis of exceptional responders to radiotherapy reveals somatic mutations in ATM. Oncotarget 2017, 8, 10312–10323. [Google Scholar] [CrossRef] [Green Version]
- Washington, M.K.; Berlin, J.; Branton, P.; Burgart, L.J.; Carter, D.K.; Fitzgibbons, P.L.; Halling, K.; Frankel, W.; Jessup, J.; Kakar, S.; et al. Protocol for the examination of specimens from patients with primary carcinoma of the colon and rectum. Arch. Pathol. Lab. Med. 2009, 133, 1539–1551. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toomey, S.; Gunther, J.; Carr, A.; Weksberg, D.C.; Thomas, V.; Salvucci, M.; Bacon, O.; Sherif, E.M.; Fay, J.; Kay, E.W.; et al. Genomic and Transcriptomic Characterisation of Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Cancers 2020, 12, 1808. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.K.; Callahan, R.E.; Hothem, Z.A.; Cousineau, C.S.; Kawak, S.; Thibodeau, B.J.; Bergeron, S.; Li, W.; Peeples, C.E.; Wasvary, H.J. Genomic variation as a marker of response to neoadjuvant therapy in locally advanced rectal cancer. Mol. Cell Oncol. 2020, 7, 1716618. [Google Scholar] [CrossRef] [PubMed]
- Waltes, R.; Kalb, R.; Gatei, M.; Kijas, A.W.; Stumm, M.; Sobeck, A.; Wieland, B.; Varon, R.; Lerenthal, Y.; Lavin, M.F.; et al. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am. J. Hum. Genet. 2009, 84, 605–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Wang, Y.; Mei, J.F.; Li, S.S.; Xu, H.X.; Xiong, H.P.; Wang, X.H.; He, X. Targeting RAD50 increases sensitivity to radiotherapy in colorectal cancer cells. Neoplasma 2018, 65, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhao, Z.; Zhang, Y.; Bao, C.; Cui, L.; Cai, S.; Bai, Y.; Shen, L.; Zhang, X. Pathogenic Germline Mutations in Chinese Patients with Gastric Cancer Identified by Next-Generation Sequencing. Oncology 2020, 98, 583–588. [Google Scholar] [CrossRef]
- Zhou, P.; Wu, X.; Chen, H.; Hu, Y.; Zhang, H.; Wu, L.; Yang, Y.; Mao, B.; Wang, H. The mutational pattern of homologous recombination-related (HRR) genes in Chinese colon cancer and its relevance to immunotherapy responses. Aging 2020, 13, 2365–2378. [Google Scholar] [CrossRef]
- Biddlestone-Thorpe, L.; Sajjad, M.; Rosenberg, E.; Beckta, J.M.; Valerie, N.C.; Tokarz, M.; Adams, B.R.; Wagner, A.F.; Khalil, A.; Gilfor, D.; et al. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin. Cancer Res. 2013, 19, 3189–3200. [Google Scholar] [CrossRef] [Green Version]
- Rainey, M.D.; Charlton, M.E.; Stanton, R.V.; Kastan, M.B. Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res. 2008, 68, 7466–7474. [Google Scholar] [CrossRef] [Green Version]
- Thorstenson, Y.R.; Roxas, A.; Kroiss, R.; Jenkins, M.A.; Yu, K.M.; Bachrich, T.; Muhr, D.; Wayne, T.L.; Chu, G.; Davis, R.W.; et al. Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res. 2003, 63, 3325–3333. [Google Scholar]
- Haiman, C.A.; Han, Y.; Feng, Y.; Xia, L.; Hsu, C.; Sheng, X.; Pooler, L.C.; Patel, Y.; Kolonel, L.N.; Carter, E.; et al. Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population. PLoS Genet. 2013, 9, e1003419. [Google Scholar] [CrossRef] [PubMed]
- Yurgelun, M.B.; Allen, B.; Kaldate, R.R.; Bowles, K.R.; Judkins, T.; Kaushik, P.; Roa, B.B.; Wenstrup, R.J.; Hartman, A.R.; Syngal, S. Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients With Suspected Lynch Syndrome. Gastroenterology 2015, 149, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Paulo, P.; Maia, S.; Pinto, C.; Pinto, P.; Monteiro, A.; Peixoto, A.; Teixeira, M.R. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet. 2018, 14, e1007355. [Google Scholar] [CrossRef] [Green Version]
- Snow, A.; Ricker, C.; In, G.K. Two synchronous malignancies: Nodular melanoma and renal cell carcinoma in a patient with an underlying germline. BMJ Case Rep. 2019, 12, e227625. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, F.; Eon-Marchais, S.; Bonnet-Boissinot, S.; Beauvallet, J.; Dondon, M.G.; Golmard, L.; Rouleau, E.; Garrec, C.; Martinez, M.; Toulas, C.; et al. TUMOSPEC: A Nation-Wide Study of Hereditary Breast and Ovarian Cancer Families with a Predicted Pathogenic Variant Identified through Multigene Panel Testing. Cancers 2021, 13, 3659. [Google Scholar] [CrossRef] [PubMed]
- Decker, B.; Allen, J.; Luccarini, C.; Pooley, K.A.; Shah, M.; Bolla, M.K.; Wang, Q.; Ahmed, S.; Baynes, C.; Conroy, D.M.; et al. Rare, protein-truncating variants in. J. Med. Genet. 2017, 54, 732–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueno, S.; Sudo, T.; Hirasawa, A. ATM: Functions of ATM Kinase and Its Relevance to Hereditary Tumors. Int. J. Mol. Sci. 2022, 23, 523. [Google Scholar] [CrossRef]
- Ho, V.; Chung, L.; Revoltar, M.; Lim, S.H.; Tut, T.G.; Abubakar, A.; Henderson, C.J.; Chua, W.; Ng, W.; Lee, M.; et al. MRE11 and ATM Expression Levels Predict Rectal Cancer Survival and Their Association with Radiotherapy Response. PLoS ONE 2016, 11, e0167675. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.M.; Laudanna, C.; Migliozzi, S.; Zoppoli, P.; Santamaria, G.; Grillone, K.; Elia, L.; Mignogna, C.; Biamonte, F.; Sacco, R.; et al. Identification of different mutational profiles in cancers arising in specific colon segments by next generation sequencing. Oncotarget 2018, 9, 23960–23974. [Google Scholar] [CrossRef]
Characteristics | Total pts (N = 26) | pCR (N = 13) | pPR (N = 13) | p Value | |
---|---|---|---|---|---|
Age at diagnosis | 65.7 ± 10.9 | 67.1 ± 2.4 | 64.5 ± 3.6 | 0.2773 | |
Gender | Male | 17 | 8 | 9 | 0.6802 |
Female | 9 | 5 | 4 | ||
cT at diagnosis | cT2 | 5 | 4 | 1 | 0.2167 |
cT3 | 20 | 8 | 12 | ||
cT4 | 1 | 1 | 0 | ||
cN at diagnosis | cN0 | 11 | 4 | 7 | |
cN1 | 13 | 7 | 6 | 0.2351 | |
cN2 | 2 | 2 | 0 | ||
Surgery | LAR | 21 | 11 | 10 | 0.5104 |
APR | 5 | 2 | 3 | ||
ypT | 0 | 13 | 13 | 0 | 0.5385 |
1 | 1 | 0 | 1 | ||
2 | 4 | 0 | 4 | ||
3 | 8 | 0 | 8 | ||
ypN | 0 | 22 | 13 | 9 | |
1 | 2 | 0 | 2 | 0.0941 | |
2 | 2 | 0 | 2 | ||
Recurrence | No | 17 | 12 | 5 | 0.0112 |
Yes | 9 | 1 | 8 | ||
TRG | 0 | 13 | 0 | 0.9248 | |
1 | 0 | 2 | |||
2 | 0 | 8 | |||
3 | 0 | 3 |
ID Sample | GENE | Genomic coordinate | HGVS cDNA | HGV protein | dbSNP | Type of Variants | S/G | VAF (%) | CLINVAR | VARSOME | SIFT | POLYPHEN | FATHMM | PROVEAN | GnomAD | COSMIC ID | CADD | MUTATION TASTER | CGI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1–0) | (0–1) | (Score) (0–1) | (Cutoff −2.5) | (f) | |||||||||||||||
p9 | ATM | chr11:108310287A>G | c.5890A>G | p.(Lys1964Glu) | rs201963507 | missense | G | 49.78 | Confl. Int. of pathogenecity | VUS | 0.18 | 0.009 | Pathogenic | N (−0.63) | 0.0000996 | 2110551 | 22.2 | DC | P |
pCR | (0.99) | ||||||||||||||||||
p3 | ATR | chr3:142549472C>A | c.3171+7G>T | - | N/A | intronic | G | 38.40 | N/A | VUS | N/A | N/A | N/A | N/A | N/A | N/A | 8.9 | N/A | P |
pCR | RAD50 | chr5:132618176G>T | c.3271G>T | p.(Glu1091*) | N/A | frameshift | S | 7.99 | Pathogenic | Pathogenic | N/A | N/A | Pathogenic | N/A | N/A | N/A | 42.0 | DC | D |
(0.9889) | |||||||||||||||||||
p2 | RAD50 | chr5:132557450G>T | c.126G>T | p.(Lys42Asn) | rs754823399 | missense | S | 20.11 | N/A | VUS | 0 | 1.0 | Pathogenic | DE (−4.647) | N/A | N/A | 28.2 | DC | D |
pCR | (0.7048) | ||||||||||||||||||
RAD50 | chr5:132587587A>G | c.782A>C | p.(Asn261Ser) | N/A | missense | S | 21.96 | N/A | VUS | 0.49 | 0.003 | Pathogenic | N (−0.364) | N/A | N/A | 22.0 | DC | P | |
(0.9557) | |||||||||||||||||||
MRE11 | chr11:94490905C>A | c.81G>T | p.(Glu27Asp) | rs190031653 | missense | S | 22.88 | N/A | VUS | 0.004 | 0.922 | Pathogenic | DE (−2.71) | N/A | N/A | 23.4 | DC | D | |
(0.9386) | |||||||||||||||||||
p16 | NBN | chr8:89978293T>C | c.511A>G | p.(Ile171Val) | rs61754966 | missense | G | 63.30 | Confl. Int. of pathogenecity | VUS | 0.02 | 0.994 | Pathogenic | N (−0.8) | 0.0012 | 9496534 | 23.3 | DC | P |
pPR | (0.9318) | ||||||||||||||||||
p24 | ATM | chr11:108289779T>G | c.4414T>G | p.(Leu1472Val) | rs539676759 | missense | S | 31.10 | Confl. Int. of pathogenecity | VUS | 0 | 0.858 | Pathogenic | N (−2.33) | 0.0000854 | 9494445 | 21.8 | DC | P |
pPR | (0.8111) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montori, A.; Germani, A.; Ferri, M.; Milano, A.; Ranalli, T.V.; Piane, M.; Pilozzi, E. Somatic NGS Analysis of DNA Damage Response (DDR) Genes ATM, MRE11A, RAD50, NBN, and ATR in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemo-Radiotherapy. Biomedicines 2022, 10, 3247. https://doi.org/10.3390/biomedicines10123247
Montori A, Germani A, Ferri M, Milano A, Ranalli TV, Piane M, Pilozzi E. Somatic NGS Analysis of DNA Damage Response (DDR) Genes ATM, MRE11A, RAD50, NBN, and ATR in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemo-Radiotherapy. Biomedicines. 2022; 10(12):3247. https://doi.org/10.3390/biomedicines10123247
Chicago/Turabian StyleMontori, Andrea, Aldo Germani, Mario Ferri, Annalisa Milano, Teresa Valentina Ranalli, Maria Piane, and Emanuela Pilozzi. 2022. "Somatic NGS Analysis of DNA Damage Response (DDR) Genes ATM, MRE11A, RAD50, NBN, and ATR in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemo-Radiotherapy" Biomedicines 10, no. 12: 3247. https://doi.org/10.3390/biomedicines10123247
APA StyleMontori, A., Germani, A., Ferri, M., Milano, A., Ranalli, T. V., Piane, M., & Pilozzi, E. (2022). Somatic NGS Analysis of DNA Damage Response (DDR) Genes ATM, MRE11A, RAD50, NBN, and ATR in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemo-Radiotherapy. Biomedicines, 10(12), 3247. https://doi.org/10.3390/biomedicines10123247