Epigenetic Drugs and Their Immune Modulating Potential in Cancers
Abstract
:1. Introduction
2. Epigenetic Modifications in Cancer
2.1. DNA Methylation
2.2. Histone Modifications
3. The Cancer Epigenome Contributes to Antitumor Immunity
4. Targeting Cancer Epigenetics
4.1. Epigenetics: A Versatile Therapeutic Target
4.2. Epigenetic Agents
5. Transposable Elements
6. Epigenetic Targeting Meets Immune Check Point Inhibition: Does the Union Empower?
6.1. Tumor-Infiltrating Immune Cells in Gliomas
6.2. Combination of Epigenetic Drugs with Immune Checkpoint Inhibitors
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanwal, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet. 2011, 81, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Issa, J.-P. Introduction: Cancer as an epigenetic disease. Cancer J. 2017, 23, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.; Ho, A.S.; Turcan, S. Epigenetic therapy: Use of agents targeting deacetylation and methylation in cancer management. Oncol. Targets Ther. 2013, 6, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Baylin, S.B. The cancer epigenome: Its origins, contributions to tumorigenesis, and translational implications. Proc. Am. Thorac. Soc. 2012, 9, 64–65. [Google Scholar] [CrossRef]
- Easwaran, H.; Tsai, H.-C.; Baylin, S.B. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 2014, 54, 716–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baylin, S.B. DNA Methylation and Gene Silencing in Cancer. Chem. Inform. 2006, 2, S4–S11. [Google Scholar] [CrossRef]
- Rebollo, R.; Romanish, M.T.; Mager, D.L. Transposable Elements: An Abundant and Natural Source of Regulatory Sequences for Host Genes. Annu. Rev. Genet. 2012, 46, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 2009, 1, 239–259. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, M. DNA methylation in cancer: Too much, but also too little. Oncogene 2002, 21, 5400–5413. [Google Scholar] [CrossRef] [Green Version]
- Hegi, M.E.; Diserens, A.-C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [Green Version]
- Romani, M.; Pistillo, M.P.; Banelli, B. Epigenetic Targeting of Glioblastoma. Front. Oncol. 2018, 8, 448. [Google Scholar] [CrossRef] [Green Version]
- Simpkins, S.B.; Bocker, T.; Swisher, E.M.; Mutch, D.G.; Gersell, D.J.; Kovatich, A.J.; Palazzo, J.P.; Fishel, R.; Goodfellow, P.J. MLH1 Promoter Methylation and Gene Silencing is the Primary Cause of Microsatellite Instability in Sporadic Endometrial Cancers. Hum. Mol. Genet. 1999, 8, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Seedhouse, C.H.; Das-Gupta, E.; Russell, N. Methylation of the hMLH1 promoter and its association with microsatellite instability in acute myeloid leukemia. Leukemia 2003, 17, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Hitchins, M.P.; Ap Lin, V.; Buckle, A.; Cheong, K.; Halani, N.; Ku, S.; Kwok, C.-T.; Packham, D.; Suter, C.M.; Meagher, A.; et al. Epigenetic Inactivation of a Cluster of Genes Flanking MLH1 in Microsatellite-Unstable Colorectal Cancer. Cancer Res. 2007, 67, 9107–9116. [Google Scholar] [CrossRef] [Green Version]
- Belinsky, S.A.; Nikula, K.J.; Palmisano, W.A.; Michels, R.; Saccomanno, G.; Gabrielson, E.; Baylin, S.B.; Herman, J.G. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA 1998, 95, 11891–11896. [Google Scholar] [CrossRef] [Green Version]
- Lay, F.D.; Liang, G. Rethinking demethylating agents in epigenetic cancer therapy. J. Mol. Pharm. Org. Process Res. 2016, 4, 133. [Google Scholar]
- Jones, P.A. Functions of DNA methylation:islands, start sites, gene bodies and beyond. Nature 2012, 13, 484–492. [Google Scholar] [CrossRef]
- Maunakea, A.K.; Nagarajan, R.P.; Bilenky, M.; Ballinger, T.J.; D’Souza, C.; Fouse, S.D.; Johnson, B.E.; Hong, C.; Nielsen, C.; Zhao, Y.; et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466, 253–257. [Google Scholar] [CrossRef]
- Nguyen, C.; Liang, G.; Jones, P.A. Susceptibility of nonpromoter CpG islands to De Novo methylation in normal and neoplastic cells. J. Natl. Cancer Inst. 2001, 93, 1465–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, W.; Kagiampakis, I.; Pan, L.; Zhang, Y.W.; Murphy, L.; Tao, Y.; Kong, X.; Kang, B.; Xia, L.; Carvalho, F.L.; et al. DNA Methylation Patterns Separate Senescence from Transformation Potential and Indicate Cancer Risk. Cancer Cell 2018, 33, 309–321.e5. [Google Scholar] [CrossRef] [Green Version]
- Smet, D.; Loriot, A. DNA hypomethylation in cancer: Epigenetic scars of a neoplastic journey. Epigenetics 2010, 5, 206–213. [Google Scholar] [CrossRef]
- Esteller, M. Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum. Mol. Genet. 2007, 16, R50–R59. [Google Scholar] [CrossRef]
- Sheaffer, K.L.; Elliott, E.N.; Kaestner, K.H. DNA Hypomethylation Contributes to Genomic Instability and Intestinal Cancer Initiation. Cancer Prev. Res. 2016, 9, 534–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, N.; Nishimura, T.; Nakai, T.; Chishina, H.; Arizumi, T.; Takita, M.; Kitai, S.; Yada, N.; Hagiwara, S.; Inoue, T.; et al. Genome-Wide Profiling of DNA Methylation and Tumor Progression in Human Hepatocellular Carcinoma. Dig. Dis. 2014, 32, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Arechederra, M.; Daian, F.; Yim, A.; Bazai, S.K.; Richelme, S.; Dono, R.; Saurin, A.J.; Habermann, B.H.; Maina, F. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat. Commun. 2018, 9, 3164. [Google Scholar] [CrossRef]
- Bilgrami, S.M.; A Qureshi, S.; Pervez, S.; Abbas, F. Promoter hypermethylation of tumor suppressor genes correlates with tumor grade and invasiveness in patients with urothelial bladder cancer. Springerplus 2014, 3, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagarajan, R.P.; Zhang, B.; Bell, R.J.; Johnson, B.E.; Olshen, A.B.; Sundaram, V.; Li, D.; Graham, A.E.; Diaz, A.; Fouse, S.D.; et al. Recurrent epimutations activate gene body promoters in primary glioblastoma. Genome Res. 2014, 24, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; et al. IDH1 and IDH2 Mutations in Gliomas. N. Engl. J. Med. 2009, 360, 765–773. [Google Scholar] [CrossRef]
- Dang, L.; Yen, K.; Attar, E.C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 2016, 27, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Turcan, S.; Rohle, D.; Goenka, A.; Walsh, L.; Fang, F.; Yilmaz, E.; Campos, C.; Fabius, A.W.M.; Lu, C.; Ward, P.; et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012, 483, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.; Wang, Z.; Montironi, R.; Jiang, Z.; Cheng, M.; Santoni, M.; Huang, K.; Massari, F.; Lu, X.; Cimadamore, A.; et al. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann. Oncol. 2020, 31, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Flemington, E.K.; Deng, H.-W.; Zhang, K. Epigenetically Silenced Candidate Tumor Suppressor Genes in Prostate Cancer: Identified by Modeling Methylation Stratification and Applied to Progression Prediction. Cancer Epidemiol. Biomark. Prev. 2018, 28, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson, R.; Renkawitz, R.; Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 2001, 17, 520–527. [Google Scholar] [CrossRef]
- Holwerda, S.J.B.; de Laat, W. CTCF: The protein, the binding partners, the binding sites and their chromation loops. Philos. Trans. R. Soc. B 2013, 368, 20120369. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Kavak, E.; Gregory, M.; Imashimizu, M.; Shutinoski, B.; Kashlev, M.; Oberdoerffer, P.; Sandberg, R.; Oberdoerffer, S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479, 74–79. [Google Scholar] [CrossRef]
- Fang, C.; Wang, Z.; Zang, C. Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation. Genome Biol. 2020, 21, 247. [Google Scholar] [CrossRef] [PubMed]
- Damaschke, N.A.; Gawdzik, J.; Avilla, M.; Yang, B.; Svaren, J.; Roopra, A.; Luo, J.-H.; Yu, Y.P.; Keles, S.; Jarrard, D.F. CTCF loss mediates unique DNA hypermethylation landscapes in human cancers. Clin. Epigenetics 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Fatemi, M.; Wade, P. MBD family proteins: Reading the epigenetic code. J. Cell Sci. 2006, 119, 3033–3037. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Serra, L.; Ballestar, E.; Fraga, M.F.; Alaminos, M.; Setién, F.; Esteller, M. A Profile of Methyl-CpG Binding Domain Protein Occupancy of Hypermethylated Promoter CpG Islands of Tumor Suppressor Genes in Human Cancer. Cancer Res. 2006, 66, 8342–8346. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, B.C.; Kosel, B.; Summerer, D. Complete Profiling of Methyl-CpG-Binding Domains for Combinations of Cytosine Modifications at CpG Dinucleotides Reveals Differential Read-out in Normal and Rett-Associated States. Sci. Rep. 2020, 10, 4053. [Google Scholar] [CrossRef] [PubMed]
- Orouji, E.; Utikal, J. Tackling malignant melanoma epigenetically: Histone lysine methylation. Clin. Epigenetics 2018, 10, 145. [Google Scholar] [CrossRef]
- Jørgensen, S.; Schotta, G.; Sørensen, C.S. Histone H4 Lysine 20 methylation: Key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 2013, 41, 2797–2806. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.-R.; Hsu, M.-C.; Chen, L.-T.; Hung, W.-C. Orchestration of H3K27 methylation: Mechanisms and therapeutic implication. Cell. Mol. Life Sci. 2017, 75, 209–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estève, P.-O.; Chin, H.G.; Smallwood, A.; Feehery, G.R.; Gangisetty, O.; Karpf, A.R.; Carey, M.F.; Pradhan, S. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 2006, 20, 3089–3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binda, O.; LeRoy, G.; Richard, S. Trimethylation of histone H3 lysine 4 impairs methylation of histone H3 lysine 9. Epigenetics 2010, 5, 767–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audia, J.E.; Campbell, R.M. Histone Modifications and Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019521. [Google Scholar] [CrossRef]
- Zingg, D.; Debbache, J.; Sommer, L. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumor suppressors. Nat. Commun. 2014, 6, 6051. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Yang, Q.; Cai, J.; Yang, P. EZH2/H3K27Me3 and phosphorylated EZH2 predict chemotherapy response and prognosis in ovarian cancer. Peer J. 2020, 8, e9052. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Y.; Zhou, F.; Xie, D. High expression of H3K27me3 ss an independent predictor of worse outcome in patients with urothelial carcinoma of bladder treated with radical cystectomy. Bio. Med. Res. Int. 2013, 2013, 390482. [Google Scholar] [CrossRef]
- Ngollo, M.; Lebert, A.; Daures, M.; Judes, G.; Rifai, K.; Dubois, L.; Kemeny, J.-L.; Penault-Llorca, F.; Bignon, Y.-J.; Guy, L.; et al. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer 2017, 17, 261. [Google Scholar] [CrossRef]
- Deblois, G.; Tonekaboni, S.A.M.; Lupien, M. Epigenetic switch–induced viral mimicry evasion in chemotherapy-resistant breast cancer. Cancer Discov. 2020, 10, 1312–1329. [Google Scholar] [CrossRef]
- van Dijk, A.D.; Hoff, F.; Kornblau, S. Loss of H3K27 methylation identifies poor outcomes in adult onset acute leukemia. Clin. Epigenetics 2021, 13, 21. [Google Scholar] [CrossRef]
- Behling, F.; Fodi, C.; Gepfner-Tuma, I.; Kaltenbach, K.; Renovanz, M.; Paulsen, F.; Skardelly, M.; Honegger, J.; Tatagiba, M.; Schittenhelm, J.; et al. H3K27me3 loss indicates an increased risk of recurrence in the Tübingen meningioma cohort. Neuro.-Oncol. 2020, 23, 1273–1281. [Google Scholar] [CrossRef]
- Hayashi, A.; Yamauchi, N.; Fukayama, M. Concurrent activation of acetylation and tri-methylation of H3K27 in a subset of hepatocellular carcinoma with aggressive behavior. PLoS ONE 2014, 9, e91330. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.S.; Salhat, H.E.; Elkord, E. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin. Epigenetics 2018, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Krug, B.; de Jay, N.; Mack, S. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell 2019, 35, 782–797. [Google Scholar] [CrossRef]
- Tomasi, T.B.; Magner, W.J.; Khan, A.N.H. Epigenetic regulation of immune escape genes in cancer. Cancer Immunol. Immunol. Ther. 2006, 55, 1159–1184. [Google Scholar] [CrossRef] [PubMed]
- Tough, D.F.; Tak, P.P.; Tarakhovsky, A.; Prinjha, R.K. Epigenetic drug discovery: Breaking through the immune barrier. Nat. Rev. Drug Discov. 2016, 15, 835–853. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, H. Epigenetics and T-cell immunity. Autoimmunity 2008, 41, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaMere, S.A.; Thompson, R.C.; Meng, X.; Komori, H.K.; Mark, A.; Salomon, D.R. H3K27 Methylation Dynamics during CD4 T Cell Activation: Regulation of JAK/STAT and IL12RB2 Expression by JMJD3. J. Immunol. 2017, 199, 3158–3175. [Google Scholar] [CrossRef] [Green Version]
- Héninger, E.; Krueger, T.E.; Lang, J.M. Augmenting antitumor immune responses with epigenetic modifying agents. Front. Immunol. 2015, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Samorodnitsky, E.; Ghosh, E.; Mazumder, S.; Sarkar, S. Methylation by DNMT1 is more efficient in chronic lymphocytic leukemia cells than in normal cells. J. Proteom Bioinform Sci. 2014, 10, 2. [Google Scholar]
- Yasmin, R.; Siraj, S.; Hassan, A.; Khan, A.R.; Abbasi, R.; Ahmad, N. Epigenetic Regulation of Inflammatory Cytokines and Associated Genes in Human Malignancies. Mediat. Inflamm. 2015, 2015, 201703. [Google Scholar] [CrossRef]
- Peng, D.; Kryczek, I.; Nagarsheth, N.; Zhao, L.; Wei, S.; Wang, W.; Sun, Y.; Zhao, E.; Vatan, L.; Szeliga, W.; et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 2015, 527, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Pietro, D.; Good-Jacobson, K.L. Disrupting the code: Epigenetic dysregulation of lymphocyte function during infectious disease and lymphoma development. J. Immunol. 2018, 201, 1109–1118. [Google Scholar] [CrossRef]
- Yang, T.; Ramocki, M.B.; Corry, D.B. Overexpression of methyl-CpG binding protein 2 impairs TH1 responses. Sci. Transl. Med. 2012, 4, 163ra158. [Google Scholar] [CrossRef] [Green Version]
- Bunse, L.; Pusch, S.; Bunse, T.; Sahm, F.; Sanghvi, K.; Friedrich, M.; Alansary, D.; Sonner, J.K.; Green, E.; Deumelandt, K.; et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 2018, 24, 1192–1203. [Google Scholar] [CrossRef]
- Ghoneim, H.E.; Fan, Y.; Moustaki, A.; Abdelsamed, H.A.; Dash, P.; Dogra, P.; Carter, R.; Awad, W.; Neale, G.; Thomas, P.G.; et al. De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation. Cell 2017, 170, 142–157.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elashi, A.A.; Nair, V.S.; Taha, R.Z.; Shaath, H.; Elkord, E. DNA methylation of immune checkpoints in the peripheral blood of breast and colorectal cancer patients. Oncol. Immunol. 2018, 8, e1542918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topper, M.J.; Vaz, M.; Marrone, K.A.; Brahmer, J.R.; Baylin, S.B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 2019, 17, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Ward, P.S.; Kapoor, G.S.; Rohle, D.; Turcan, S.; Abdel-Wahab, O.; Edwards, C.R.; Khanin, R.; Figueroa, M.E.; Melnick, A.; et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012, 483, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Turcan, S.; Fabius, A.W.M.; Borodovsky, A.; Pedraza, A.; Brennan, C.; Huse, J.; Viale, A.; Riggins, G.J.; Chan, T.A. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncol. Target 2013, 4, 1729–1736. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Tsai, H.-C.; Yen, R.-W.C.; Zhang, Y.W.; Kong, X.; Wang, W.; Xia, L.; Baylin, S.B. Critical threshold levels of DNA methyltransferase 1 are required to maintain DNA methylation across the genome in human cancer cells. Genome Res. 2017, 27, 533–544. [Google Scholar] [CrossRef]
- Schumacher, T.; Bunse, L.; Pusch, S.; Sahm, F.; Wiestler, B.; Quandt, J.; Menn, O.; Osswald, M.; Oezen, I.; Ott, M.; et al. Theresa Schumacher, A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014, 512, 324–327. [Google Scholar] [CrossRef]
- Borodovsky, A.; Salmasi, V.; Turcan, S.; Fabius, A.W.M.; Baia, G.S.; Eberhart, C.G.; Weingart, J.D.; Gallia, G.L.; Baylin, S.B.; Chan, T.A.; et al. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncol. Target 2013, 4, 1737–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pangeni, R.P.; Yang, L.; Zhang, K.; Wang, J.; Li, W.; Guo, C.; Yun, X.; Sun, T.; Wang, J.; Raz, D.J. G9a regulates tumorigenicity and stemness through genome-wide DNA methylation reprogramming in non-small cell lung cancer. Clin. Epigenetics 2020, 12, 88. [Google Scholar] [CrossRef]
- Monaghan, L.; Massett, M.E.; Bunschoten, R.P.; Hoose, A.; Pirvan, P.-A.; Liskamp, R.M.J.; Jørgensen, H.G.; Huang, X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front. Oncol. 2019, 9, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, H.; Li, H.; Su, Y.; Feng, D.; Wang, X.; Zhang, C.; Ma, H.; Hu, Q. Histone methyltransferase G9a and H3K9 dimethylation inhibit the self-renewal of glioma cancer stem cells. Mol. Cell. Biochem. 2014, 394, 23–30. [Google Scholar] [CrossRef]
- Kato, H.; Tateishi, K.; Fujiwara, H.; Ijichi, H.; Yamamoto, K.; Nakatsuka, T.; Kakiuchi, M.; Sano, M.; Kudo, Y.; Hayakawa, Y.; et al. Deletion of Histone Methyltransferase G9a Suppresses Mutant Kras-driven Pancreatic Carcinogenesis. Cancer Genom.-Proteom. 2020, 17, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.B.; Shiah, Y.-J.; Lourenco, C.; Mullen, P.J.; Dingar, D.; Redel, C.; Tamachi, A.; Alawi, W.B.; Aman, A.; Al-Awar, R.; et al. MYC Interacts with the G9a Histone Methyltransferase to Drive Transcriptional Repression and Tumorigenesis. Cancer Cell 2018, 34, 579–595.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- José-Enériz, E.S.; Agirre, X.; Rabal, O.; Vilas-Zornoza, A.; Sanchez-Arias, J.A.; Miranda, E.; Ugarte, A.; Roa, S.; Paiva, B.; De Mendoza, A.E.-H.; et al. Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nat. Commun. 2017, 8, 15424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bárcena-Varela, M.; Caruso, S.; Llerena, S.; Álvarez-Sola, G.; Uriarte, I.; Latasa, M.U.; Urtasun, R.; Rebouissou, S.; Alvarez, L.; Jimenez, M.; et al. Dual Targeting of Histone Methyltransferase G9a and DNA-Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology 2019, 69, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Segovia, C.; José-Enériz, E.S.; Munera-Maravilla, E.; Martínez-Fernández, M.; Garate, L.; Miranda, E.; Vilas-Zornoza, A.; Lodewijk, I.; Rubio, C.; Segrelles, C.; et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat. Med. 2019, 25, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Karahoca, M.; Momparler, R.L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2’-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin. Epigenetics 2013, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Stresemann, C.; Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine. Int. J. Cancer 2008, 123, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Matei, D.; Fang, F.; Shen, C.; Schilder, J.; Arnold, A.; Zeng, Y.; Berry, W.A.; Huang, T.; Nephew, K.P. Epigenetic Resensitization to Platinum in Ovarian Cancer. Cancer Res. 2012, 72, 2197–2205. [Google Scholar] [CrossRef] [Green Version]
- Ververis, K.; Hiong, A.; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): Multitargeted anticancer agents. Biologics 2013, 7, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Mishra, P.; Yadav, D. Histone Deacetylase Inhibitors: A Prospect in Drug Discovery. Turk. J. Pharm. Sci. 2019, 16, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Zwergel, C.; Stazi, G.; Mai, A. Histone deacetylase inhibitors: Updated studies in various epigenetic-related diseases. J Clin. Epigenet. 2016, 2, 7. [Google Scholar]
- Lee, J.; Huang, S.R. Cancer epigenetics: Mechanisms and crosstalk of a HDAC inhibitor, Vorinostat. Chemotherapy 2013, 2, 14934. [Google Scholar] [PubMed]
- Wu, L.-P.; Wang, X.; Li, L.; Zhao, Y.; Lu, S.; Yu, Y.; Zhou, W.; Liu, X.; Yang, J.; Zheng, Z.; et al. Histone Deacetylase Inhibitor Depsipeptide Activates Silenced Genes through Decreasing both CpG and H3K9 Methylation on the Promoter. Mol. Cell. Biol. 2008, 28, 3219–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, T.P.; Magiorkinis, G. Activation of the innate immune response by endogenous retroviruses. J. Gen. Virol. 2015, 96, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Carnell, N.; Goodman, J.I. The long (LINEs) and the short (SINEs) of it: Altered methylation as a precursor to toxicity. Toxicol. Sci. 2003, 75, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Chow, K.T.; Gale, M.; Loo, Y.-M. RIG-I and Other RNA Sensors in Antiviral Immunity. Annu. Rev. Immunol. 2018, 36, 667–694. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Sen, G.C. dsRNA-activation of TLR3 and RLR signaling: Gene induction-dependent and independent effects. J. Interferon Cytokine Res. 2014, 34, 427–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdipour, P.; Marhon, S.A.; Ettayebi, I.; Chakravarthy, A.; Hosseini, A.; Wang, Y.; De Castro, F.A.; Yau, H.L.; Ishak, C.; Abelson, S.; et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 2020, 588, 169–173. [Google Scholar] [CrossRef]
- Roulois, D.; Loo Yau, H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015, 162, 961–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Zhong, J.; Chisari, F.V. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc. Natl. Acad. Sci. USA 2007, 104, 9035–9040. [Google Scholar] [CrossRef] [Green Version]
- Strick, R.; Strissel, P.L.; Baylin, S.B.; Chiappinelli, K.B. Unraveling the molecular pathways of DNA-methylation inhibitors: Human endogenous retroviruses induce the innate immune response in tumors. Oncol. Immunol. 2015, 5, e1122160. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xu, L.; Pan, Q. Transcriptional regulation of antiviral interferon-stimulated genes. Trends Microbiol. 2017, 25, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.C.; Beckermann, K.E.; Bortone, D.S.; De Cubas, A.A.; Bixby, L.M.; Lee, S.J.; Panda, A.; Ganesan, S.; Bhanot, G.; Wallen, E.M.; et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Investig. 2018, 128, 4804–4820. [Google Scholar] [CrossRef] [Green Version]
- Topham, J.T.; Titmuss, E.; Pleasance, E.D.; Williamson, L.M.; Karasinska, J.M.; Culibrk, L.; Lee, M.K.-C.; Mendis, S.; Denroche, R.E.; Jang, G.-H.; et al. Endogenous Retrovirus Transcript Levels Are Associated with Immunogenic Signatures in Multiple Metastatic Cancer Types. Mol. Cancer Ther. 2020, 19, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.; Reddy, S.K.; Ratliff, T.S.; Hossain, M.Z.; Katseff, A.S.; Zhu, A.S.; Chang, E.; Resnik, S.R.; Page, C.; Kim, D.; et al. dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin Regeneration. Cell Stem. Cell 2015, 17, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Idris, I. Cellular responses to cytosolic double-stranded RNA—The role of the inflammasome. Immunol. Immunogenet. Insights 2014, 6, III-S17839. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Cuimaraes, J.C.; Zavolan, M. Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation. EMBO J. 2020, 39, e103922. [Google Scholar] [CrossRef] [PubMed]
- Fresquet, V.; Garcia-Barchino, M.J.; Larrayoz, M.J.; Celay, J.; Vicente, C.; Fernandez-Galilea, M.; Larrayoz, M.J.; Calasanz, M.J.; Panizo, C.; Junza, A.; et al. Endogenous Retroelement Activation by Epigenetic Therapy Reverses the Warburg Effect and Elicits Mitochondrial-Mediated Cancer Cell Death. Cancer Discov. 2020, 11, 1268–1285. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Xu, J.; Lu, Y.; Ji, X.; Yao, Y.; Chao, H.; Zhang, J.; Zhang, X.; Yao, S.; et al. Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy. Cancer Lett. 2020, 496, 134–143. [Google Scholar] [CrossRef]
- Brown, N.F.; Carter, T.J.; Ottaviani, D.; Mulholland, P. Harnessing the immune system in glioblastoma. Br. J. Cancer 2018, 119, 1171–1181. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Song, Z.; Zhang, T.; He, X.; Huang, K.; Zhang, Q.; Shen, J.; Pan, J. Identification of Immune Cell Infiltration and Immune-Related Genes in the Tumor Microenvironment of Glioblastomas. Front. Immunol. 2020, 11, 585034. [Google Scholar] [CrossRef]
- Orrego, E.; Castaneda, C.A.; Castillo, M.; Bernabe, L.A.; Casavilca, S.; Chakravarti, A.; Meng, W.; Garcia-Corrochano, P.; Villa-Robles, M.R.; Zevallos, R.; et al. Distribution of tumor-infiltrating immune cells in glioblastoma. CNS Oncol. 2018, 7, CNS21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, A.R.P.; Scheyltjens, I.; Duerinck, J.; Neyns, B.; Movahedi, K.; Van Ginderachter, J.A. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. eLife 2020, 9, e52176. [Google Scholar] [CrossRef]
- Du, S.-Z.; Chen, C.; Qin, L.; Tang, X.-L. Bioinformatics analysis of immune infiltration in glioblastoma multiforme based on data using a methylation chip in the GEO database. Trans Cancer Res. 2021, 10, 1484–1491. [Google Scholar] [CrossRef]
- Yang, I.; Tihan, T.; Parsa, A.T. CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J. Clin. Neuro. Sci. 2010, 17, 1381–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.R.; Choi, K.S.; Kim, M.-S.; Kim, K.-M.; Kang, H.; Kim, S.; Chowdhury, T.; Yu, H.J.; Lee, C.E.; Lee, J.H.; et al. Absolute quantification of tumor-infiltrating immune cells in high-grade glioma identifies prognostic and radiomics values. Cancer Immunol. Ther. 2021, 70, 1995–2008. [Google Scholar] [CrossRef]
- Kohanbash, G.; Carrera, D.A.; Shrivastav, S.; Ahn, B.J.; Jahan, N.; Mazor, T.; Chheda, Z.S.; Downey, K.M.; Watchmaker, P.B.; Beppler, C.; et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Investig. 2017, 127, 1425–1437. [Google Scholar] [CrossRef]
- Weenink, B.; Draaisma, K.; Ooi, H.Z.; Kros, J.M.; Smitt, P.A.S.; Debets, R.; French, P.J. Low-grade glioma harbors few CD8 T cells, which is accompanied by decreased expression of chemo-attractants, not immunogenic antigens. Sci. Rep. 2019, 9, 14643. [Google Scholar] [CrossRef] [Green Version]
- Siebenkäs, C.; Chiappinelli, K.B.; Guzzetta, A.A.; Sharma, A.; Jeschke, J.; Vatapalli, R.; Baylin, S.B.; Ahuij, N. Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. PLoS ONE 2017, 12, e0179501. [Google Scholar] [CrossRef] [PubMed]
- Marwitz, S.; Scheufele, S.; Perner, S.; Reck, M.; Ammerpohl, O.; Goldmann, T. Epigenetic modifications of the immune-checkpoint genes CTLA4 and PDCD1 in non-small cell lung cancer results in increased expression. Clin. Epigenetics 2017, 9, 51. [Google Scholar] [CrossRef]
- Konkankit, V.V.; Kim, W.; Koya, R.C.; Eskin, A.; Dam, M.-A.; Nelson, S.; Ribas, A.; Liau, L.M.; Prins, R.M. Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas Ligand pathway. J. Transl. Med. 2011, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Wrangle, J.; Wang, W.; Koch, A.; Easwaran, H.; Mohammad, H.P.; Pan, X.; Vendetti, F.; VanCriekinge, W.; Demeyer, T.; Du, Z.; et al. Alterations of immune response of non-small cell lung cancer with Azacytidine. Oncol. Target 2013, 4, 2067–2079. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, K.; Kumai, T.; Kobayashi, H. Epigenetic modification augments the immunogenicity of human leukocyte antigen G serving as a tumor antigen for T cell-based immunotherapy. Oncoimmunology 2016, 5, e1169356. [Google Scholar] [CrossRef] [Green Version]
- Riccadonna, C.; Maroun, C.Y.; De Silly, R.V.; Boehler, M.; Tardón, M.C.; Jueliger, S.; Taverna, P.; Barba, L.; Marinari, E.; Pellegatta, S.; et al. Decitabine Treatment of Glioma-Initiating Cells Enhances Immune Recognition and Killing. PLoS ONE 2016, 11, e0162105. [Google Scholar] [CrossRef]
- Luo, N.; Nixon, M.J.; Balko, J.M. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte response in breast cancer. Nat. Commun. 2018, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.L.; Chiappinelli, K.B.; Li, H.; Murphy, L.M.; Travers, M.E.; Topper, M.J.; Mathios, D.; Lim, M.; Shih, I.-M.; Wang, T.-L.; et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl. Acad. Sci. USA 2017, 114, E10981–E10990. [Google Scholar] [CrossRef] [Green Version]
- Burke, B.; Eden, C.; Perez, C.; Belshoff, A.; Hart, S.; Plaza-Rojas, L.; Delos Reyes, M.; Prajapati, K.; Voelkel-Johnson, C.; Henry, E.; et al. Inhibition of Histone Deacetylase (HDAC) Enhances Checkpoint Blockade Efficacy by Rendering Bladder Cancer Cells Visible for T Cell-Mediated Destruction. Front. Oncol. 2020, 10, 699. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-D.; Park, S.-M.; Ha, H.C.; Lee, A.R.; Won, H.; Cha, H.; Cho, S.; Cho, J.M. HDAC Inhibitor, CG-745, Enhances the Anti-Cancer Effect of Anti-PD-1 Immune Checkpoint Inhibitor by Modulation of the Immune Microenvironment. J. Cancer 2020, 11, 4059–4072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiappinelli, K.B.; Zahnow, C.A.; Ahuja, N.; Baylin, S.B. Combining Epigenetic and Immunotherapy to Combat Cancer. Cancer Res. 2016, 76, 1683–1689. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.; Rao, S. Epigenetics and immunotherapy: The current state of play. Mol. Immunol. 2017, 87, 227–239. [Google Scholar] [CrossRef]
- Perrier, A.; Didelot, A.; Laurent-Puig, P.; Blons, H.; Garinet, S. Epigenetic Mechanisms of Resistance to Immune Checkpoint Inhibitors. Biomolecules 2020, 10, 1061. [Google Scholar] [CrossRef]
- Villanueva, L.; Álvarez-Errico, D.; Esteller, M. The contribution of epigenetics to cancer immunotherapy. Trends Immunol. 2020, 41, 676–691. [Google Scholar] [CrossRef] [PubMed]
- Saleh, R.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Role of epigenetic modifications in inhibitory immune checkpoints in cancer development and progression. Front. Immunol. 2020, 11, 1469. [Google Scholar] [CrossRef] [PubMed]
Identifier | Malignant Conditions | Therapeutics (Single or Combined) | Start Date | Results |
---|---|---|---|---|
NCT02608268 | Advanced solid tumors | 1. MBG453 (Tim3 antibody) 2. PDR001 (PD-1 antibody) 3. Decitabine | November 2015 | Recruiting |
NCT03066648 | Acute myeloid leukemia or high risk myelodysplastic syndrome | 1. Decitabine/Azacytidine 2. PDR001 3. MBG453 | July 2017 | Recruiting |
NCT03019003 | Head and neck cancer | 1. ASTX 727 (oral decitabine) 2. Durvalumab (PD-L1 antibody) | March 2017 | Recruiting |
NCT03161223 | Relapsed or refractory peripheral T-cell lymphomas (PTCL) | 1. Durvalumab (PD-L1 inhibitor) 2. Romidepsin 3. 5-azacytidine 4. Pralatrexate | May 2018 | Recruiting |
NCT01928576 | Non-small cell lung cancer (NSCLC) | 1. Azacytidine 2. Entinostat 3. Nivolumab | August 2013 | Recruiting |
NCT04611711 | PD-1 monoclonal antibody-resistant digestive system tumors | 1. Decitabine 2. TQB2450 (PD-1 inhibitor) 3. Anlotinib (VEGFR inhibitor) | November 2020 | Recruiting |
NCT02890329 | Relapsed or refractory myelodysplastic syndrome or acute myeloid leukemia | 1. Decitabine 2. Ipilimumab (CTLA-4 antibody) | September 2016 | Recruiting |
NCT04277442 | Newly diagnosed TP53 mutated acute myeloid leukemia | 1. Decitabine 2. Nivolumab (PD-1 inhibitor) 3. Venetoclax (Bcl-2 inhibitor) | February 2020 | Recruiting |
NCT02397720 | Refractory/relapsed or newly diagnosed acute myeloid leukemia | 1. Azacytidine 2. Ipilimumab 3. Nivolumab | April 2015 | Recruiting |
NCT02816021 | Metastatic melanoma | 1. Azacytidine 2. Pembrolizumab (PD-1 inhibitor) | February 2017 | Recruiting |
NCT03233724 | Inoperable locally advanced or metastatic NSCLC, and esophageal carcinomas, or pleural mesotheliomas | 1. Oral decitabine 2. Tetrahydrouridine (inhibitor of cytidine deaminase) 3. Pembrolizumab (PD-1 inhibitor) | April 2018 | Recruiting |
NCT02959437 | Advanced solid tumors and previously treated stage IIIB or stage IV non-small cell lung cancer and stage IV microsatellite-stable colorectal cancer | 1. Azacytidine 2. Pembrolizumab 3. Epacadostat (indoleamine2,3-dioxygenase inhibitor) 4. INCB057643 (BET inhibitor) 5. INCB059872 (LSD1 inhibitor) | February 2017 | Recruiting |
NCT02546986 | Locally advanced or metastatic non-small cell lung cancer | 1. CC-486 (oral azacytidine) 2. Pembrolizumab | October 2015 | Recruiting |
NCT04250246 | Melanoma and NSCLC resistant to anti-PD1/PDL1 | 1. Ipilimumab + Nivolumab + Guadecitabine 2. Ipilimumab + Nivolumab | March 2020 | Recruiting |
NCT03765229 | Melanoma | 1. Entinostat 2. Pembrolizumab | March 2019 | Recruiting |
NCT02437136 | NSCLC, melanoma and mismatch repair-proficient colorectal cancer | 1. Entinostat 2. Pembrolizumab | July 2015 | Recruiting |
NCT03024437 | Advanced renal cell carcinoma | 1. Atezolizumab (PD-L1 inhibitor) 2. Bevacizumab (VEGF inhibitor) 3. Entinostat | May 2017 | Recruiting |
NCT04708470 | Solid tumors, metastatic checkpoint refractory HPV-associated tumors, microsatellite stable colon cancer | 1. Bintrafusp Alfa (bifunctional fusion protein composed of the extracellular domain of the TGF-β receptor II fused to an IgG1 antibody blocking PD-L1) 2. NHS-IL12 3. Entinostat | August 2021 | Recruiting |
NCT02915523 | Advanced epithelial ovarian cancer | 1. Entinostat 2. Avelumab (PD-L1 inhibitor) | January 2017 | Recruiting |
NCT03250273 | Previously treated unresectable/metastatic cholangiocarcinoma and pancreatic cancer | 1. Entinostat 2. Nivolumab | November 2017 | Recruiting |
NCT03854474 | Locally advanced and metastatic urothelial carcinoma | 1. Pembrolizumab 2. Tazemetostat (EZH2 inhibitor) | May 2019 | Recruiting |
NCT02453620 | Unresectable or locally advanced or metastatic Her2-negative breast cancer | 1. Entinostat 2. Ipilimumab 3. Nivolumab | November 2015 | Recruiting |
NCT02395627 | Hormone receptor expressing advanced breast cancer | 1. Vorinostat 2. Tamoxifen 3. Pembrolizumab | May 2015 | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Turcan, S. Epigenetic Drugs and Their Immune Modulating Potential in Cancers. Biomedicines 2022, 10, 211. https://doi.org/10.3390/biomedicines10020211
Liang Y, Turcan S. Epigenetic Drugs and Their Immune Modulating Potential in Cancers. Biomedicines. 2022; 10(2):211. https://doi.org/10.3390/biomedicines10020211
Chicago/Turabian StyleLiang, Yingying, and Sevin Turcan. 2022. "Epigenetic Drugs and Their Immune Modulating Potential in Cancers" Biomedicines 10, no. 2: 211. https://doi.org/10.3390/biomedicines10020211
APA StyleLiang, Y., & Turcan, S. (2022). Epigenetic Drugs and Their Immune Modulating Potential in Cancers. Biomedicines, 10(2), 211. https://doi.org/10.3390/biomedicines10020211