Impact of Maternal Obesity on Liver Disease in the Offspring: A Comprehensive Transcriptomic Analysis and Confirmation of Results in a Murine Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Search
2.2. Qualtitative Literature Search to Identify Pathways and Genes Relevant for the Progression of Liver Disease
2.3. Gene Expression Analysis
2.4. Pathway Analysis
2.5. Webpage Design
2.6. Animal Experimentation
2.7. Oral Glucose Tolerance Test
2.8. Plasma Analysis
2.9. Histology
2.9.1. Assessment and Quantification of Steatosis
2.9.2. Assessment and Quantification of Fibrosis
2.10. Gene Expression Analysis
2.11. Statistical Analysis
3. Results
3.1. Characteristics of the Included Datasets
3.2. Pathway Analysis in the Offspring of Obese Mothers
3.3. Analysis of Top Dysregulated Genes in the Offspring of Obese Mothers
3.4. Validation of Previously Identified Molecular Targets
3.5. Companion Webpage
3.6. Maternal Obesity Causes Liver Disease
3.7. Maternal Obesity Dysregulates Genes of the Peroxisome Proliferator Activated Receptor and Caspase Pathways in Offspring
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaborators, G.B.D.O.; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Ward, Z.J.; Bleich, S.N.; Cradock, A.L.; Barrett, J.L.; Giles, C.M.; Flax, C.; Long, M.W.; Gortmaker, S.L. Projected, U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N. Engl. J. Med. 2019, 381, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Field, A.E.; Coakley, E.H.; Must, A.; Spadano, J.L.; Laird, N.; Dietz, W.H.; Rimm, E.; Colditz, G.A. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch. Intern. Med. 2001, 161, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, A.K.; Gregory, E.C.W. Increases in Prepregnancy Obesity: United States, 2016–2019. NCHS Data Brief 2020, 392, 1–8. [Google Scholar]
- Wang, M.C.; Freaney, P.M.; Perak, A.M.; Greenland, P.; Lloyd-Jones, D.M.; Grobman, W.A.; Khan, S.S. Trends in Prepregnancy Obesity and Association With Adverse Pregnancy Outcomes in the United States, 2013 to 2018. J. Am. Heart Assoc. 2021, 10, e020717. [Google Scholar] [CrossRef]
- Feresu, S.A.; Wang, Y.; Dickinson, S. Relationship between maternal obesity and prenatal, metabolic syndrome, obstetrical and perinatal complications of pregnancy in Indiana, 2008–2010. BMC Pregnancy Childbirth 2015, 15, 266. [Google Scholar] [CrossRef] [Green Version]
- Kuhle, S.; Muir, A.; Woolcott, C.G.; Brown, M.M.; McDonald, S.D.; Abdolell, M.; Dodds, L. Maternal pre-pregnancy obesity and health care utilization and costs in the offspring. Int. J. Obes. 2019, 43, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Adane, A.A.; Mishra, G.D.; Tooth, L.R. Maternal pre-pregnancy obesity and childhood physical and cognitive development of children: A systematic review. Int. J. Obes. 2016, 40, 1608–1618. [Google Scholar] [CrossRef]
- Hirschler, V.; Roque, M.I.; Calcagno, M.L.; Gonzalez, C.; Aranda, C. Maternal waist circumference and the prediction of children’s metabolic syndrome. Arch. Pediatr. Adolesc. Med. 2007, 161, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Stacy, S.L.; Buchanich, J.M.; Ma, Z.Q.; Mair, C.; Robertson, L.; Sharma, R.K.; Talbott, E.O.; Yuan, J.M. Maternal Obesity, Birth Size, and Risk of Childhood Cancer Development. Am. J. Epidemiol. 2019, 188, 1503–1511. [Google Scholar] [CrossRef]
- Oben, J.A.; Mouralidarane, A.; Samuelsson, A.M.; Matthews, P.J.; Morgan, M.L.; McKee, C.; Soeda, J.; Fernandez-Twinn, D.S.; Martin-Gronert, M.S.; Ozanne, S.E.; et al. Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J. Hepatol. 2010, 52, 913–920. [Google Scholar] [CrossRef]
- Mouralidarane, A.; Soeda, J.; Visconti-Pugmire, C.; Samuelsson, A.M.; Pombo, J.; Maragkoudaki, X.; Butt, A.; Saraswati, R.; Novelli, M.; Fusai, G.; et al. Maternal obesity programs offspring nonalcoholic fatty liver disease by innate immune dysfunction in mice. Hepatology 2013, 58, 128–138. [Google Scholar] [CrossRef]
- Hagstrom, H.; Simon, T.G.; Roelstraete, B.; Stephansson, O.; Soderling, J.; Ludvigsson, J.F. Maternal obesity increases the risk and severity of NAFLD in offspring. J. Hepatol. 2021, 75, 1042–1048. [Google Scholar] [CrossRef]
- Lomas-Soria, C.; Reyes-Castro, L.A.; Rodriguez-Gonzalez, G.L.; Ibanez, C.A.; Bautista, C.J.; Cox, L.A.; Nathanielsz, P.W.; Zambrano, E. Maternal obesity has sex-dependent effects on insulin, glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. J. Physiol. 2018, 596, 4611–4628. [Google Scholar] [CrossRef] [Green Version]
- Wankhade, U.D.; Zhong, Y.; Kang, P.; Alfaro, M.; Chintapalli, S.V.; Thakali, K.M.; Shankar, K. Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. PLoS ONE 2017, 12, e0175675. [Google Scholar] [CrossRef] [Green Version]
- Cannon, M.V.; Buchner, D.A.; Hester, J.; Miller, H.; Sehayek, E.; Nadeau, J.H.; Serre, D. Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring. PLoS ONE 2014, 9, e90335. [Google Scholar] [CrossRef]
- Rouschop, S.H.; Karl, T.; Risch, A.; Van Ewijk, P.A.; Schrauwen-Hinderling, V.B.; Opperhuizen, A.; Van Schooten, F.J.; Godschalk, R.W. Gene expression and DNA methylation as mechanisms of disturbed metabolism in offspring after exposure to a prenatal HF diet. J. Lipid. Res. 2019, 60, 1250–1259. [Google Scholar] [CrossRef] [Green Version]
- Mischke, M.; Pruis, M.G.; Boekschoten, M.V.; Groen, A.K.; Fitri, A.R.; Van de Heijning, B.J.; Verkade, H.J.; Muller, M.; Plösch, T.; Steegenga, W.T. Maternal Western-style high fat diet induces sex-specific physiological and molecular changes in two-week-old mouse offspring. PLoS ONE 2013, 8, e78623. [Google Scholar] [CrossRef] [Green Version]
- Pruis, M.G.; Lendvai, A.; Bloks, V.W.; Zwier, M.V.; Baller, J.F.; De Bruin, A.; Groen, A.K.; Plösch, T. Maternal western diet primes non-alcoholic fatty liver disease in adult mouse offspring. Acta Physiol. 2014, 210, 215–227. [Google Scholar] [CrossRef]
- Steegenga, W.T.; Mischke, M.; Lute, C.; Boekschoten, M.V.; Lendvai, A.; Pruis, M.G.; Verkade, H.J.; Van de Heijning, B.J.; Boekhorst, J.; Timmerman, H.M.; et al. Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups. Mol. Nutr. Food Res. 2017, 61, 1600141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puppala, S.; Li, C.; Glenn, J.P.; Saxena, R.; Gawrieh, S.; Quinn, A.; Palarczyk, J.; Dick, E.J., Jr.; Nathanielsz, P.W.; Cox, L.A. Primate fetal hepatic responses to maternal obesity: Epigenetic signalling pathways and lipid accumulation. J. Physiol. 2018, 596, 5823–5837. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic. Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeo, K.; Ishi-i, J.; Tamura, T.; Gojobori, T.; Tateno, Y. CIBEX: Center for information biology gene expression database. C R Biol. 2003, 326, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Athar, A.; Fullgrabe, A.; George, N.; Iqbal, H.; Huerta, L.; Ali, A.; Snow, C.; Fonseca, N.A.; Petryszak, R.; Papatheodorou, I.; et al. ArrayExpress update—From bulk to single-cell expression data. Nucleic. Acids Res. 2019, 47, D711–D715. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinform. 2017, 18, 142. [Google Scholar] [CrossRef] [Green Version]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef]
- Chang, W.; Cheng, J.; Allaire, J.; Sievert, C.; Schloerke, B.; Xie, Y.; Allen, J.; McPherson, J.; Dipert, A.; Borges, B. Shiny: Web Application Framework for R, R Package version 1.6.0.; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Bedossa, P.; Poitou, C.; Veyrie, N.; Bouillot, J.L.; Basdevant, A.; Paradis, V.; Tordjman, J.; Clement, K. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 2012, 56, 1751–1759. [Google Scholar] [CrossRef]
- Van der Walt, S.; Schonberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Baik, B.; Park, T.; Nam, D. Powerful p-value combination methods to detect incomplete association. Sci. Rep. 2021, 11, 6980. [Google Scholar] [CrossRef]
- Kim, K.M.; Roh, J.H.; Lee, S.; Yoon, J.H. Clinical implications of renin-angiotensin system inhibitors for development and progression of non-alcoholic fatty liver disease. Sci. Rep. 2021, 11, 2884. [Google Scholar] [CrossRef]
- Flo, T.H.; Smith, K.D.; Sato, S.; Rodriguez, D.J.; Holmes, M.A.; Strong, R.K.; Akira, S.; Aderem, A. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004, 432, 917–921. [Google Scholar] [CrossRef]
- Wan, J.J.; Wang, P.Y.; Zhang, Y.; Qin, Z.; Sun, Y.; Hu, B.H.; Su, D.F.; Xu, D.P.; Liu, X. Role of acute-phase protein ORM in a mice model of ischemic stroke. J. Cell Physiol. 2019, 234, 20533–20545. [Google Scholar] [CrossRef]
- Volanakis, J.E.; Barnum, S.R.; Giddens, M.; Galla, J.H. Renal filtration and catabolism of complement protein D. N. Engl. J. Med. 1985, 312, 395–399. [Google Scholar] [CrossRef]
- Zhang, H.; Berezov, A.; Wang, Q.; Zhang, G.; Drebin, J.; Murali, R.; Greene, M.I. ErbB receptors: From oncogenes to targeted cancer therapies. J. Clin. Invest. 2007, 117, 2051–2058. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Vernia, S.; Cavanagh-Kyros, J.; Garcia-Haro, L.; Sabio, G.; Barrett, T.; Jung, D.Y.; Kim, J.K.; Xu, J.; Shulha, H.P.; Garber, M.; et al. The PPARalpha-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab. 2014, 20, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Browne, G.; Melino, G.; Cohen, G.M. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 2009, 16, 1053–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nies, V.J.; Sancar, G.; Liu, W.; Van Zutphen, T.; Struik, D.; Yu, R.T.; Atkins, A.R.; Evans, R.M.; Jonker, J.W.; Downes, M.R. Fibroblast Growth Factor Signaling in Metabolic Regulation. Front. Endocrinol. 2015, 6, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutchak, P.A.; Katafuchi, T.; Bookout, A.L.; Choi, J.H.; Yu, R.T.; Mangelsdorf, D.J.; Kliewer, S.A. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 2012, 148, 556–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagner, A.; Polizzi, A.; Fouche, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Regnier, M.; Lukowicz, C.; Benhamed, F.; et al. Liver PPARalpha is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 2016, 65, 1202–1214. [Google Scholar] [CrossRef] [Green Version]
- Anaganti, N.; Rajan, S.; Hussain, M.M. An improved assay to measure the phospholipid transfer activity of microsomal triglyceride transport protein. J. Lipid Res. 2021, 62. [Google Scholar] [CrossRef]
- Underberg, J.A.; Cannon, C.P.; Larrey, D.; Makris, L.; Blom, D.; Phillips, H. Long-term safety and efficacy of lomitapide in patients with homozygous familial hypercholesterolemia: Five-year data from the Lomitapide Observational Worldwide Evaluation Registry (LOWER). J. Clin. Lipidol. 2020, 14, 807–817. [Google Scholar] [CrossRef]
- Leon-Aguilar, L.F.; Croyal, M.; Ferchaud-Roucher, V.; Huang, F.; Marchat, L.A.; Barraza-Villarreal, A.; Romieu, I.; Ramakrishnan, U.; Krempf, M.; Ouguerram, K.; et al. Maternal obesity leads to long-term altered levels of plasma ceramides in the offspring as revealed by a longitudinal lipidomic study in children. Int. J. Obes. 2019, 43, 1231–1243. [Google Scholar] [CrossRef]
- Borem, L.M.A.; Neto, J.F.R.; Brandi, I.V.; Lelis, D.F.; Santos, S.H.S. The role of the angiotensin II type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: A brief review. Hypertens. Res. 2018, 41, 394–405. [Google Scholar] [CrossRef]
- Debernardi-Venon, W.; Martini, S.; Biasi, F.; Vizio, B.; Termine, A.; Poli, G.; Brunello, F.; Alessandria, C.; Bonardi, R.; Saracco, G.; et al. AT1 receptor antagonist Candesartan in selected cirrhotic patients: Effect on portal pressure and liver fibrosis markers. J. Hepatol. 2007, 46, 1026–1033. [Google Scholar] [CrossRef]
- Hirose, A.; Ono, M.; Saibara, T.; Nozaki, Y.; Masuda, K.; Yoshioka, A.; Takahashi, M.; Akisawa, N.; Iwasaki, S.; Oben, J.A.; et al. Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis. Hepatology 2007, 45, 1375–1381. [Google Scholar] [CrossRef]
- Rajapaksha, I.G.; Gunarathne, L.S.; Angus, P.W.; Herath, C.B. Update on New Aspects of the Renin-Angiotensin System in Hepatic Fibrosis and Portal Hypertension: Implications for Novel Therapeutic Options. J. Clin. Med. 2021, 10, 702. [Google Scholar] [CrossRef]
- Granzow, M.; Schierwagen, R.; Klein, S.; Kowallick, B.; Huss, S.; Linhart, M.; Mazar, I.G.; Gortzen, J.; Vogt, A.; Schildberg, F.A.; et al. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 2014, 60, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Shi, Y.; Lv, Y.; Yuan, S.; Ramirez, C.F.A.; Lieftink, C.; Wang, L.; Wang, S.; Wang, C.; Dias, M.H.; et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature 2021, 595, 730–734. [Google Scholar] [CrossRef]
- Zucman-Rossi, J.; Villanueva, A.; Nault, J.C.; Llovet, J.M. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015, 149, 1226–1239.e1224. [Google Scholar] [CrossRef] [Green Version]
- Vilchez, V.; Turcios, L.; Marti, F.; Gedaly, R. Targeting Wnt/beta-catenin pathway in hepatocellular carcinoma treatment. World J. Gastroenterol. 2016, 22, 823–832. [Google Scholar] [CrossRef]
- Murphy, C.C.; Cirillo, P.M.; Krigbaum, N.Y.; Singal, A.G.; Lee, M.; Zaki, T.; Burstein, E.; Cohn, B.A. Maternal obesity, pregnancy weight gain, and birth weight and risk of colorectal cancer. Gut 2021. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Zhang, Y.; Geng, M.; Wei, Y.; Liu, Y.; Liu, S.; Petersen, R.B.; Yue, J.; Huang, K.; et al. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p. J. Hepatol. 2020, 73, 603–615. [Google Scholar] [CrossRef]
- Li, H.; Fang, Q.; Gao, F.; Fan, J.; Zhou, J.; Wang, X.; Zhang, H.; Pan, X.; Bao, Y.; Xiang, K.; et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J. Hepatol. 2010, 53, 934–940. [Google Scholar] [CrossRef]
- Geng, L.; Lam, K.S.L.; Xu, A. The therapeutic potential of FGF21 in metabolic diseases: From bench to clinic. Nat. Rev. Endocrinol 2020, 16, 654–667. [Google Scholar] [CrossRef]
- Sanyal, A.; Charles, E.D.; Neuschwander-Tetri, B.A.; Loomba, R.; Harrison, S.A.; Abdelmalek, M.F.; Lawitz, E.J.; Halegoua-DeMarzio, D.; Kundu, S.; Noviello, S.; et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: A randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 2018, 392, 2705–2717. [Google Scholar] [CrossRef]
- Moyers, J.S.; Shiyanova, T.L.; Mehrbod, F.; Dunbar, J.D.; Noblitt, T.W.; Otto, K.A.; Reifel-Miller, A.; Kharitonenkov, A. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J. Cell Physiol. 2007, 210, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wankhade, U.D.; Zhong, Y.; Kang, P.; Alfaro, M.; Chintapalli, S.V.; Piccolo, B.D.; Mercer, K.E.; Andres, A.; Thakali, K.M.; Shankar, K. Maternal High-Fat Diet Programs Offspring Liver Steatosis in a Sexually Dimorphic Manner in Association with Changes in Gut Microbial Ecology in Mice. Sci. Rep. 2018, 8, 16502. [Google Scholar] [CrossRef] [PubMed]
- De Marinis, E.; Martini, C.; Trentalance, A.; Pallottini, V. Sex differences in hepatic regulation of cholesterol homeostasis. J. Endocrinol 2008, 198, 635–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, M.D. Developmental Programming of NAFLD by Parental Obesity. Hepatol. Commun. 2020, 4, 1392–1403. [Google Scholar] [CrossRef]
- Goossens, N.; Nakagawa, S.; Hoshida, Y. Molecular prognostic prediction in liver cirrhosis. World J. Gastroenterol. 2015, 21, 10262–10273. [Google Scholar] [CrossRef]
- Trepo, E.; Goossens, N.; Fujiwara, N.; Song, W.M.; Colaprico, A.; Marot, A.; Spahr, L.; Demetter, P.; Sempoux, C.; Im, G.Y.; et al. Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients with Severe Alcoholic Hepatitis. Gastroenterology 2018, 154, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Ryaboshapkina, M.; Hammar, M. Human hepatic gene expression signature of non-alcoholic fatty liver disease progression, a meta-analysis. Sci. Rep. 2017, 7, 12361. [Google Scholar] [CrossRef]
- Yuan, X.; Tsujimoto, K.; Hashimoto, K.; Kawahori, K.; Hanzawa, N.; Hamaguchi, M.; Seki, T.; Nawa, M.; Ehara, T.; Kitamura, Y.; et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat. Commun. 2018, 9, 636. [Google Scholar] [CrossRef]
- Geraghty, A.A.; Lindsay, K.L.; Alberdi, G.; McAuliffe, F.M.; Gibney, E.R. Nutrition During Pregnancy Impacts Offspring’s Epigenetic Status-Evidence from Human and Animal Studies. Nutr. Metab. Insights 2015, 8, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Dapito, D.H.; Mencin, A.; Gwak, G.Y.; Pradere, J.P.; Jang, M.K.; Mederacke, I.; Caviglia, J.M.; Khiabanian, H.; Adeyemi, A.; Bataller, R.; et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012, 21, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Orci, L.A.; Lacotte, S.; Delaune, V.; Slits, F.; Oldani, G.; Lazarevic, V.; Rossetti, C.; Rubbia-Brandt, L.; Morel, P.; Toso, C. Effects of the gut-liver axis on ischaemia-mediated hepatocellular carcinoma recurrence in the mouse liver. J. Hepatol. 2018, 68, 978–985. [Google Scholar] [CrossRef]
- Zwartjes, M.S.Z.; Gerdes, V.E.A.; Nieuwdorp, M. The Role of Gut Microbiota and Its Produced Metabolites in Obesity, Dyslipidemia, Adipocyte Dysfunction, and Its Interventions. Metabolites 2021, 11, 531. [Google Scholar] [CrossRef]
Comparison ID | GEO Accession Number | Publication | Year | Group | Samples/Group | Sex | Age | Technique |
---|---|---|---|---|---|---|---|---|
GSE123009_12w | GSE123009 | Rouschop et al., J Lipid Res, 2019 [18] | 2019 | CO vs. OO | 7 | M | 12 w | MicroArray |
GSE123009_28w | GSE123009 | Rouschop et al., J Lipid Res, 2019 [18] | 2019 | CO vs. OO | 9 | M | 28 w | MicroArray |
GSE134976_COvsOO | GSE134976 | Pantaleao et al., unpublished | 2019 | CO vs. OO | 3 | N/A | 12 w | RNA-seq |
GSE134976_CCvsOC | GSE134976 | Pantaleao et al., unpublished | 2019 | CO vs. OO | 3 | N/A | 12 w | RNA-seq |
GSE40903_COvsOO | GSE40903 | Cannon et al., PLoS One, 2014 [17] | 2014 | CO vs. OO | 9 | M | 9 w | MicroArray |
GSE40903_CCvsOC | GSE40903 | Cannon et al., PLoS One, 2014 [17] | 2014 | CC vs. OC | 9 | M | 9 w | MicroArray |
GSE44901_CCvsOC | GSE44901 | Pruis et al., Acta Physiol, 2014 [20] | 2014 | CO vs. OO | 5 | M | 29 w | MicroArray |
GSE44901_OCvsOO | GSE44901 | Pruis et al., Acta Physiol, 2014 [20] | 2014 | CC vs. OC | 5 | M | 29 w | MicroArray |
GSE46359_F | GSE46359 | Mischke et al., PLoS One, 2013 [19] | 2013 | CC vs. OC | 6 | F | 2 w | MicroArray |
GSE46359_M | GSE46359 | Mischke et al., PLoS One, 2013 [19] | 2013 | CC vs. OC | 6 | M | 2 w | MicroArray |
Gene | Gene Name | Function | Main Associated Pathways | Nb Comparison Up | Nb Comparison Down | Median logFC | Fisher’s p-Value |
---|---|---|---|---|---|---|---|
Egfr | Epidermal growth factor receptor | Receptor tyrosine kinase with a multitude of downstream functions. Implicated in a wide variety of cancers. | ERRB signaling; MAPK-Erk; PI3K/AKT | 4 | 2 | 0.418 | 2.1 × 10−8 |
Pparg | Peroxisome proliferator-activated receptor gamma | Nuclear receptor involved in critical metabolism regulations of various cell types, notably adipocyte differentiation. | MAPK-Erk | 0 | 3 | 0.268 | 1.8 × 10−3 |
Vegfb | Vascular endothelial growth factor B | Encodes VEGF-B protein, which has anti-apoptotic effects, including neuroprotection. Promotes blood vessel survival. | MAPK-Erk; PI3K/AKT | 3 | 0 | 0.263 | 3.0 × 10−9 |
Wnt2 | Wingless-type family, member 2 | Encodes proteins involved in Wnt signaling pathway, oncogenesis, embryonic patterning, and cell fate commitment. | Wnt signaling pathway | 3 | 0 | 0.249 | 2.7 × 10−3 |
Nrp1 | Neuropilin 1 | Tyrosine kinase coreceptor for VEGFs and semaphorins. Participates in angiogenesis and several developmental pathways. | VEGF signaling pathway | 3 | 0 | 0.219 | 8.7 × 10−5 |
Vim | Vimentin | Protein encoding gene for mesenchymal class-III intermediate filaments. | Apoptosis | 0 | 3 | 0.146 | 7.1 × 10−3 |
Tle1 | Transducin-like enhancer of split 1 | Transcriptional repressor protein essential in embryogenesis, hematopoiesis, and epithelial differentiation. Expressed in certain tumors. | Wnt signaling pathway; NF-kappa-B | 3 | 0 | 0.128 | 1.2 × 10−2 |
Casp7 | Caspase-7 | Apoptosis-related cysteinyl aspartate proteinase. Protein coding gene for cell death execution via activation cascades. | Apoptosis | 0 | 3 | 0.113 | 9.5 × 10−7 |
Wnt5b | Wingless-type family, member 5b | Encodes secreted signaling protein that play a role in developmental signaling, proliferation, migration, and tumorigenesis. | Wnt signaling pathway; PCP/CE pathway | 0 | 3 | 0.109 | 4.2 × 10−9 |
Daam1 | Dishevelled-associated activator of morphogenesis 1 | Intracellular protein involved in actin cytoskeleton functions. | Wnt signaling pathway; Rho GTPases signaling | 0 | 3 | 0.101 | 2.3 × 10−4 |
Gene | Gene Name | Function | Main Associated Pathways | Nb Comparison Up | Nb Comparison Down | Median logFC | Fisher’s p-Value |
---|---|---|---|---|---|---|---|
Pparg | Peroxisome proliferator-activated receptor gamma | Nuclear receptor involved in critical metabolism regulations of various cell types, notably adipocyte differentiation. | MAPK-Erk | 0 | 3 | 0.268 | 1.8 × 10−3 |
Tlr2 | Toll-like receptor 2 | Membrane surface receptor essential for pathogen recognition and innate immune response activation. | NF-kappa-B; MAPK-Erk | 0 | 2 | 0.135 | 3.3 × 10−2 |
Fgf21 | Fibroblast growth factor 21 | Hepatokine involved in mitogenic activities. Major regulator of energy homeostasis. | MAPK-Erk; Insulin signaling | 2 | 0 | 0.131 | 0.079 |
Fgfr1 | Fibroblast growth factor receptor 1 | Receptor tyrosine kinase that plays a fundamental role in embryogenesis and cell development. | MAPK-Erk; PI3K/AKT | 0 | 1 | 0.064 | 0.092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moeckli, B.; Delaune, V.; Prados, J.; Tihy, M.; Peloso, A.; Oldani, G.; Delmi, T.; Slits, F.; Gex, Q.; Rubbia-Brandt, L.; et al. Impact of Maternal Obesity on Liver Disease in the Offspring: A Comprehensive Transcriptomic Analysis and Confirmation of Results in a Murine Model. Biomedicines 2022, 10, 294. https://doi.org/10.3390/biomedicines10020294
Moeckli B, Delaune V, Prados J, Tihy M, Peloso A, Oldani G, Delmi T, Slits F, Gex Q, Rubbia-Brandt L, et al. Impact of Maternal Obesity on Liver Disease in the Offspring: A Comprehensive Transcriptomic Analysis and Confirmation of Results in a Murine Model. Biomedicines. 2022; 10(2):294. https://doi.org/10.3390/biomedicines10020294
Chicago/Turabian StyleMoeckli, Beat, Vaihere Delaune, Julien Prados, Matthieu Tihy, Andrea Peloso, Graziano Oldani, Thomas Delmi, Florence Slits, Quentin Gex, Laura Rubbia-Brandt, and et al. 2022. "Impact of Maternal Obesity on Liver Disease in the Offspring: A Comprehensive Transcriptomic Analysis and Confirmation of Results in a Murine Model" Biomedicines 10, no. 2: 294. https://doi.org/10.3390/biomedicines10020294
APA StyleMoeckli, B., Delaune, V., Prados, J., Tihy, M., Peloso, A., Oldani, G., Delmi, T., Slits, F., Gex, Q., Rubbia-Brandt, L., Goossens, N., Lacotte, S., & Toso, C. (2022). Impact of Maternal Obesity on Liver Disease in the Offspring: A Comprehensive Transcriptomic Analysis and Confirmation of Results in a Murine Model. Biomedicines, 10(2), 294. https://doi.org/10.3390/biomedicines10020294