Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice
Abstract
:1. Introduction
2. Experimental Section
2.1. Animals
2.2. Treatment
2.3. Physiological Experiments
2.4. Western Blot Analyses
2.5. Histochemical Analysis
2.6. Immunohistochemistry
2.7. Statistical Analysis
3. Results
3.1. Body Mass
3.2. Muscle Morphology
3.3. The Effect of Treatment on Muscle Mass across Hind-Limb Muscles and Effect on Fiber-Type Composition
3.4. Physiological Studies
3.5. Expression of Markers of Cell Division and Myogenic Signaling Proteins
3.6. Histochemical Analysis of General Histology, Fibrosis, and Satellite-Cell Activation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gatheridge, M.A.; Kwon, J.M.; Mendell, J.M.; Scheuerbrandt, G.; Moat, S.J.; Eyskens, F.; Rockman-Greenberg, C.; Drousiotou, A.; Griggs, R.C. Identifying Non-Duchenne Muscular Dystrophy-Positive and False Negative Results in Prior Duchenne Muscular Dystrophy Newborn Screening Programs: A Review. JAMA Neurol. 2016, 73, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Krag, T.O.B.; Gyrd-Hansen, M.; Khurana, T.S. Harnessing the Potential of Dystrophin-Related Proteins for Ameliorating Duchenne’s Muscular Dystrophy. Acta Physiol. Scand. 2001, 171, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Emery, A.E. The Muscular Dystrophies. Lancet 2002, 359, 687–695. [Google Scholar] [CrossRef]
- Stedman, H.H.; Sweeney, H.L.; Shrager, J.B.; Maguire, H.C.; Panettieri, R.A.; Petrof, B.; Narusawa, M.; Leferovich, J.M.; Sladky, J.T.; Kelly, A.M. The Mdx Mouse Diaphragm Reproduces the Degenerative Changes of Duchenne Muscular Dystrophy. Nature 1991, 352, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Hauerslev, S.; Vissing, J.; Krag, T.O. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model. PLoS ONE 2014, 9, e100594. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.J.; Thaloor, D.; Matteson, S.; Pavlath, G.K. Hepatocyte Growth Factor Affects Satellite Cell Activation and Differentiation in Regenerating Skeletal Muscle. Am. J. Physiol. Cell Physiol. 2000, 278, C174–C181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, S.M.; Allen, R.E. Skeletal Muscle Satellite Cell Proliferation in Response to Members of the Fibroblast Growth Factor Family and Hepatocyte Growth Factor. J. Cell. Physiol. 1999, 181, 499–506. [Google Scholar] [CrossRef]
- Gill, R.; Hitchins, L.; Fletcher, F.; Dhoot, G.K. Sulf1A and HGF Regulate Satellite-Cell Growth. J. Cell Sci. 2010, 123, 1873–1883. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.; Davies, M.; Grounds, M.D. Leukaemia Inhibitory Factor Increases Myoblast Replication and Survival and Affects Extracellular Matrix Production: Combined in Vivo and in Vitro Studies in Post-Natal Skeletal Muscle. Cell Tissue Res. 2001, 306, 129–141. [Google Scholar] [CrossRef]
- Barnard, W.; Bower, J.; Brown, M.A.; Murphy, M.; Austin, L. Leukemia Inhibitory Factor (LIF) Infusion Stimulates Skeletal Muscle Regeneration after Injury: Injured Muscle Expresses Lif MRNA. J. Neurol. Sci. 1994, 123, 108–113. [Google Scholar] [CrossRef]
- Austin, L.; Bower, J.J.; Bennett, T.M.; Lynch, G.S.; Kapsa, R.; White, J.D.; Barnard, W.; Gregorevic, P.; Byrne, E. Leukemia Inhibitory Factor Ameliorates Muscle Fiber Degeneration in the Mdx Mouse. Muscle Nerve 2000, 23, 1700–1705. [Google Scholar] [CrossRef]
- Chaubourt, E.; Fossier, P.; Baux, G.; Leprince, C.; Israël, M.; De La Porte, S. Nitric Oxide and L-Arginine Cause an Accumulation of Utrophin at the Sarcolemma: A Possible Compensation for Dystrophin Loss in Duchenne Muscular Dystrophy. Neurobiol. Dis. 1999, 6, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, E.R.; Morris, L.; Kawana, M.; Bish, L.T.; Toursel, T. Systemic Administration of L-Arginine Benefits Mdx Skeletal Muscle Function. Muscle Nerve 2005, 32, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Khurana, T.S.; Watkins, S.C.; Chafey, P.; Chelly, J.; Tomé, F.M.S.; Fardeau, M.; Kaplan, J.-C.; Kunkel, L.M. Immunolocalization and Developmental Expression of Dystrophin Related Protein in Skeletal Muscle. Neuromuscul. Disord. 1991, 1, 185–194. [Google Scholar] [CrossRef]
- Tinsley, J.; Deconinck, N.; Fisher, R.; Kahn, D.; Phelps, S.; Gillis, J.M.; Davies, K. Expression of Full-Length Utrophin Prevents Muscular Dystrophy in Mdx Mice. Nat. Med. 1998, 4, 1441–1444. [Google Scholar] [CrossRef] [PubMed]
- Bogdanovich, S.; Krag, T.O.B.; Barton, E.R.; Morris, L.D.; Whittemore, L.-A.; Ahima, R.S.; Khurana, T.S. Functional Improvement of Dystrophic Muscle by Myostatin Blockade. Nature 2002, 420, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Bogdanovich, S.; Perkins, K.J.; Krag, T.O.B.; Whittemore, L.-A.; Khurana, T.S. Myostatin Propeptide-Mediated Amelioration of Dystrophic Pathophysiology. FASEB J. 2005, 19, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Pistilli, E.E.; Bogdanovich, S.; Goncalves, M.D.; Ahima, R.S.; Lachey, J.; Seehra, J.; Khurana, T. Targeting the Activin Type IIB Receptor to Improve Muscle Mass and Function in the Mdx Mouse Model of Duchenne Muscular Dystrophy. Am. J. Pathol. 2011, 178, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Dellorusso, C.; Crawford, R.W.; Chamberlain, J.S.; Brooks, S.V. Tibialis Anterior Muscles in Mdx Mice Are Highly Susceptible to Contraction-Induced Injury. J. Muscle Res. Cell Motil. 2001, 22, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Bogdanovich, S.; McNally, E.M.; Khurana, T.S. Myostatin Blockade Improves Function but Not Histopathology in a Murine Model of Limb-Girdle Muscular Dystrophy 2C. Muscle Nerve 2008, 37, 308–316. [Google Scholar] [CrossRef]
- Emde, B.; Heinen, A.; Gödecke, A.; Bottermann, K. Wheat Germ Agglutinin Staining as a Suitable Method for Detection and Quantification of Fibrosis in Cardiac Tissue after Myocardial Infarction. Eur. J. Histochem. EJH 2014, 58, 2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacco, P.; Jones, D.A.; Dick, J.R.T.; Vrbová, G. Contractile Properties and Susceptibility to Exercise-Induced Damage of Normal and Mdx Mouse Tibialis Anterior Muscle. Clin. Sci. 1992, 82, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Pastoret, C.; Sebille, A. Mdx Mice Show Progressive Weakness and Muscle Deterioration with Age. J. Neurol. Sci. 1995, 129, 97–105. [Google Scholar] [CrossRef]
- Bloemberg, D.; Quadrilatero, J. Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis. PLoS ONE 2012, 7, e35273. [Google Scholar] [CrossRef] [PubMed]
- Cornelison, D.D.W.; Wold, B.J. Single-Cell Analysis of Regulatory Gene Expression in Quiescent and Activated Mouse Skeletal Muscle Satellite Cells. Dev. Biol. 1997, 191, 270–283. [Google Scholar] [CrossRef] [Green Version]
- Carnwath, J.W.; Shotton, D.M. Muscular Dystrophy in the Mdx Mouse: Histopathology of the Soleus and Extensor Digitorum Longus Muscles. J. Neurol. Sci. 1987, 80, 39–54. [Google Scholar] [CrossRef]
- Kerr, B.J.; Patterson, P.H. Potent Pro-Inflammatory Actions of Leukemia Inhibitory Factor in the Spinal Cord of the Adult Mouse. Exp. Neurol. 2004, 188, 391–407. [Google Scholar] [CrossRef]
- McKenzie, R.C.; Paglia, D.; Kondo, S.; Sauder, D.N. A Novel Endogenous Mediator of Cutaneous Inflammation: Leukemia Inhibitory Factor. Acta Derm. Venereol. 1996, 76, 111–114. [Google Scholar] [CrossRef]
- Hunt, L.C.; Upadhyay, A.; Jazayeri, J.A.; Tudor, E.M.; White, J.D. An Anti-Inflammatory Role for Leukemia Inhibitory Factor Receptor Signaling in Regenerating Skeletal Muscle. Histochem. Cell Biol. 2013, 139, 13–34. [Google Scholar] [CrossRef]
- Molnarfi, N.; Benkhoucha, M.; Funakoshi, H.; Nakamura, T.; Lalive, P.H. Hepatocyte Growth Factor: A Regulator of Inflammation and Autoimmunity. Autoimmun. Rev. 2015, 14, 293–303. [Google Scholar] [CrossRef]
- Krag, T.O.; Vissing, J. A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I Mutation Mimicking the Mild Phenotype in Humans. J. Neuropathol. Exp. Neurol. 2015, 74, 1137–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennebry, A.; Oldham, J.; Shavlakadze, T.; Grounds, M.D.; Sheard, P.; Fiorotto, M.L.; Falconer, S.; Smith, H.K.; Berry, C.; Jeanplong, F.; et al. IGF1 Stimulates Greater Muscle Hypertrophy in the Absence of Myostatin in Male Mice. J. Endocrinol. 2017, 234, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Barton, E.R.; Lynch, G.; Khurana, T.S. Measuring Isometric Force of Isolated Mouse Muscles in Vitro. Exp. Protoc. DMD Anim. Models Treat-NMD Neuromuscul. Netw. 2008, 1, 14. [Google Scholar]
- Dumonceaux, J.; Marie, S.; Beley, C.; Trollet, C.; Vignaud, A.; Ferry, A.; Butler-Browne, G.; Garcia, L. Combination of Myostatin Pathway Interference and Dystrophin Rescue Enhances Tetanic and Specific Force in Dystrophic Mdx Mice. Mol. Ther. 2010, 18, 881–887. [Google Scholar] [CrossRef]
- Hoogaars, W.M.H.; Mouisel, E.; Pasternack, A.; Hulmi, J.J.; Relizani, K.; Schuelke, M.; Schirwis, E.; Garcia, L.; Ritvos, O.; Ferry, A.; et al. Combined Effect of AAV-U7-Induced Dystrophin Exon Skipping and Soluble Activin Type IIB Receptor in Mdx Mice. Hum. Gene Ther. 2012, 23, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Petrof, B.J.; Shrager, J.B.; Stedman, H.H.; Kelly, A.M.; Sweeney, H.L. Dystrophin Protects the Sarcolemma from Stresses Developed during Muscle Contraction. Proc. Natl. Acad. Sci. USA 1993, 90, 3710–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krag, T.O.B.; Bogdanovich, S.; Jensen, C.J.; Fischer, M.D.; Hansen-Schwartz, J.; Javazon, E.H.; Flake, A.W.; Edvinsson, L.; Khurana, T.S. Heregulin Ameliorates the Dystrophic Phenotype in Mdx Mice. Proc. Natl. Acad. Sci. USA 2004, 101, 13856–13860. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.T.; Ryall, J.G.; Snell, S.M.; Nair, L.; Koopman, R.; Krasney, P.A.; Ibebunjo, C.; Holden, K.S.; Loria, P.M.; Salatto, C.T.; et al. Antibody-Directed Myostatin Inhibition Improves Diaphragm Pathology in Young but Not Adult Dystrophic Mdx Mice. Am. J. Pathol. 2010, 176, 2425–2434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, T.L.; Hornsyld, T.M.; Pinós, T.; Brolin, C.; Vissing, J.; Krag, T.O. Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice. Biomedicines 2022, 10, 304. https://doi.org/10.3390/biomedicines10020304
Nielsen TL, Hornsyld TM, Pinós T, Brolin C, Vissing J, Krag TO. Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice. Biomedicines. 2022; 10(2):304. https://doi.org/10.3390/biomedicines10020304
Chicago/Turabian StyleNielsen, Tue L., Tessa M. Hornsyld, Tomàs Pinós, Camilla Brolin, John Vissing, and Thomas O. Krag. 2022. "Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice" Biomedicines 10, no. 2: 304. https://doi.org/10.3390/biomedicines10020304
APA StyleNielsen, T. L., Hornsyld, T. M., Pinós, T., Brolin, C., Vissing, J., & Krag, T. O. (2022). Growth Factors Do Not Improve Muscle Function in Young or Adult mdx Mice. Biomedicines, 10(2), 304. https://doi.org/10.3390/biomedicines10020304