Therapy of Chronic Viral Hepatitis: The Light at the End of the Tunnel?
Abstract
:1. Therapy of Chronic Hepatitis B
1.1. Epidemiology
1.2. Virology and Pathogenesis
1.3. Virological Categories
1.4. Current Scenario
1.5. Ongoing and Future Perspectives
2. Therapy of Chronic Hepatitis D
2.1. Nucleic Acid Polymers
2.2. The Farnesyl-Transferase Inhibitor Lonafarnib
2.3. Bulevertide
3. Therapy of Chronic Hepatitis C
3.1. Liver Outcome
3.1.1. Compensated Cirrhosis
3.1.2. Decompensated Cirrhosis
3.1.3. Liver Transplant Setting
3.1.4. Extrahepatic Manifestations Outcome
3.1.5. Mixed Cryoglobulinemia
3.1.6. B-Cell Non Hodgkin’s Lymphoma
3.1.7. Neurologic Manifestations
3.1.8. Chronic Kidney Disease
3.1.9. Cardiovascular Diseases
3.1.10. Diabetes Mellitus
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsukuda, S.; Watashi, K. Hepatitis B virus biology and life cycle. Antivir. Res. 2020, 182, 104925. [Google Scholar] [CrossRef] [PubMed]
- EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [CrossRef] [PubMed] [Green Version]
- Bonacci, M.; Forns, X.; Lens, S. The HBeAg-Negative “Gray Zone” Phase: A Frequent Condition With Different Outcomes in Western and Asian Patients? Clin. Gastroenterol. Hepatol. 2020, 18, 263–264. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, G.; Locarnini, S.; Pollicino, T.; Levrero, M.; Zoulim, F.; Lok, A.S. Taormina Workshop on Occult HBV Infection Faculty Members. Update of the statements on biology and clinical impact of occult hepatitis B virus infection. J. Hepatol. 2019, 71, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Loomba, R.; Liang, T.J. Hepatitis B Reactivation Associated With Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology 2017, 152, 1297–1309. [Google Scholar] [CrossRef] [Green Version]
- Burra, P.; Germani, G.; Adam, R.; Karam, V.; Marzano, A.; Lampertico, P.; Salizzoni, M.; Filipponi, F.; Klempnauer, J.L.; Castaing, D.; et al. Liver transplantation for HBV-related cirrhosis in Europe: An ELTR study on evolution and outcomes. J. Hepatol. 2012, 58, 287–296. [Google Scholar] [CrossRef]
- Lampertico, P.; Invernizzi, F.; Viganò, M.; Loglio, A.; Mangia, G.; Facchetti, F.; Primignani, M.; Jovani, M.; Iavarone, M.; Fraquelli, M.; et al. The long-term benefits of nucleos(t)ide analogs in compensated HBV cirrhotic patients with no or small esophageal varices: A 12-year prospective cohort study. J. Hepatol. 2015, 63, 1118–1125. [Google Scholar] [CrossRef]
- Marengo, A.; Bitetto, D.; D’Avolio, A.; Ciancio, A.; Fabris, C.; Marietti, M.; Toniutto, P.; Di Perri, G.; Rizzetto, M.; Marzano, A. Clinical and virological response to entecavir in HBV-related chronic hepatitis or cirrhosis: Data from the clinical practice in a single-centre cohort. Antivir. Ther. 2013, 18, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.M.; Choi, J.; Lim, Y.S. Effects of Tenofovir vs Entecavir on Risk o Hepatocellular Carcinoma in Patients With Chronic HBV Infection: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 19, 246–258. [Google Scholar] [CrossRef]
- Papatheodoridis, G.V.; Dalekos, G.N.; Idilman, R.; Sypsa, V.; Van Boemmel, F.; Buti, M.; Calleja, J.L.; Goulis, J.; Manolakopoulos, S.; Loglio, A.; et al. Similar risk of hepatocellular carcinoma during long-term entecavir or tenofovir therapy in Caucasian patients with chronic hepatitis B. J. Hepatol. 2020, 73, 1037–1045. [Google Scholar] [CrossRef]
- Cornberg, M.; Lok, A.S.; Terrault, N.A.; Zoulim, F. 2019 EASL-AASLD HBV Treatment Endpoints Conference Faculty. Guidance for design and endpoints of clinical trials in chronic hepatitis B—Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference. J. Hepatol. 2020, 72, 539–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naggie, S.; Lok, A.S. New Therapeutics for Hepatitis B: The Road to Cure. Annu. Rev. Med. 2021, 72, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, M.; Pântea, V.; Placinta, G.; Moscalu, I.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Iarovoi, L.; Smesnoi, V.; Musteata, T.; et al. Safety and Efficacy of 48 Weeks REP 2139 or REP 2165, Tenofovir Disoproxil, and Pegylated Interferon Alfa-2a in Patients With Chronic HBV Infection Naïve to Nucleos(t)ide Therapy. Gastroenterology 2020, 158, 2180–2194. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, M.; Pântea, V.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Anderson, M.; Gersch, J.; Holzmayer, V.; Elsner, C.; Krawczyk, A.; et al. Persistent Control of Hepatitis B Virus and Hepatitis Delta Virus Infection Following REP 2139-Ca and Pegylated Interferon Therapy in Chronic Hepatitis B Virus/Hepatitis Delta Virus Coinfection. Hepatol. Commun. 2020, 5, 189–202. [Google Scholar] [CrossRef]
- Niro, G.A.; Rosina, F.; Rizzetto, M. Treatment of hepatitis D. J. Viral. Hepat. 2005, 12, 2–9. [Google Scholar] [CrossRef]
- Taylor, J.M. Virology of hepatitis D virus. Semin. Liver Dis. 2012, 32, 195–200. [Google Scholar] [CrossRef]
- Lai, M.M. RNA replication without RNA-dependent RNA polymerase: Surprises from hepatitis delta virus. J. Virol. 2005, 79, 7951–7958. [Google Scholar] [CrossRef] [Green Version]
- Rizzetto, M. Targeting Hepatitis D. Semin Liver Dis. 2018, 38, 66–72. [Google Scholar] [CrossRef]
- Ponzetto, A.; Hoyer, B.H.; Popper, H.; Engle, R.; Purcell, R.H.; Gerin, J.L. Titration of the infectivity of hepatitis D virus in chimpanzees. J. Infect. Dis. 1987, 155, 72–78. [Google Scholar] [CrossRef]
- Farci, P.; Roskams, T.; Chessa, L.; Peddis, G.; Mazzoleni, A.P.; Scioscia, R.; Serra, G.; Lai, M.E.; Loy, M.; Caruso, L. Long-term benefit of interferon a therapy of chronic hepatitis D: Regression of advanced hepatic fibrosis. Gastroenterology 2004, 126, 1740–1749. [Google Scholar] [CrossRef] [Green Version]
- Yurdaydin, C.; Abbas, Z.; Buti, M.; Cornberg, M.; Esteban, R.; Etzion, O.; Gane, E.J.; Gish, R.G.; Glenn, J.S.; Hamid, S.; et al. Treating chronic hepatitis delta: The need for surrogate markers of treatment efficacy. J. Hepatol. 2019, 70, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lok, A.; Negro, F.; Asselah, T.; Farci, P.; Rizzetto, M. Endpoints and New Options for Treatment of Chronic Hepatitis D. Hepatology 2021, 74, 3479–3485. [Google Scholar] [CrossRef] [PubMed]
- Urban, S.; Bartenschlager, R.; Kubitz, R.; Zoulim, F. Strategies to Inhibit Entry of HBV and HDV Into Hepatocytes. Gastroenterology 2014, 147, 48–64. [Google Scholar] [CrossRef]
- Bordier, B.B.; Marion, P.L.; Ohashi, K.; Kay, M.A.; Greenberg, H.B.; Casey, J.L.; Glenn, J.S. A prenylation inhibitor prevents production of infectious hepatitis delta virus particles. J. Virol. 2002, 76, 10465–10472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, C.; Canini, L.; Dahari, H.; Zhao, X.; Uprichard, S.L.; Haynes-Williams, V.; A Winters, M.; Subramanya, G.; Cooper, S.L.; Pinto, P.; et al. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: A proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect. Dis. 2015, 15, 1167–1174. [Google Scholar] [CrossRef] [Green Version]
- Vaillant, A. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antivir. Res. 2016, 133, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Bazinet, M.; Pantea, V.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Albrecht, J. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): A non-randomised, open- label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 877–889. [Google Scholar] [CrossRef]
- Yurdaydin, C.; Idilman, R.; Keskin, O.; Kakan, ç.; Karakaya, F.M.; Çaliskan, A. A phase 2 dose-optimization study of lonafarnib with ritonavir for the treatment of chronic delta hepatitis—Analysis from the LOWR HDV-2 study using the Robogene real-time qPCR HDV RNA assay. J. Viral Hepat. 2018, 25, 10. [Google Scholar]
- Koh, C.; Hercun, J.; Rahman, F.; Huang, A.; Da, B.; Surana, P. A Phase 2 Study of Peginterferon Lambda, Lonafarnib and Ritonavir for 24 Weeks: End-of-Treatment Results from the LIFT HDV Study; Oral late breaker L08. 30 October 2020. Available online: https://assets.website-files.com/5f3d77cd56d46907a50fb8d9/5f9d9c2057efc43f55b78db7_2020%20TLMdX%20Late-breaking%20Abstracts-%20Oct%2030.pdf (accessed on 31 October 2021).
- Blank, A.; Markert, C.; Hohmann, N. First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B. J. Hepatol. 2016, 65, 483–489. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/hepcludex (accessed on 15 April 2021).
- Wedemeyer, H.; Bogomolov, P.; Blank, A.; Allweiss, L.; Dandri-Petersen, M.; Bremer, B.; Voronkova, N.; Schöneweis, K.; Pathil, A.; Burhenne, J.; et al. Final results of a multicenter, open-label phase 2b clinical trial to assess safety and efficacy of Myrcludex B in combination with tenofovir in patients with chronic HBV/HDV co-infection. J. Hepatol. 2018, 68, S3. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Schoeneweis, K.; Bogomolov, P.O.; Voronka, V.; Chulanov, V.; Stepanova, T. Final results of a multicenter, open-label phase 2 clinical trial (MYR203) to assess safety and efficacy of myrcludex B in combination with PEG-interferon Alpha 2a in patients with chronic HBV/HDV co-infection. J. Hepatol. 2019, 70, E81. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Schöneweis, K.; Pavel, O.; Bogomolov, P.O.; Chulanov, V.; Stepanova, T. 48 weeks of high dose (10 mg) bulevirtide as mono-therapy or with peginterferon alfa-2a in patients with chronic HBV/HDV coinfection. J. Hepatol. 2020, 73, S52. [Google Scholar] [CrossRef]
- Asselah, T. Safety and efficacy of bulevirtide monotherapy and in combination with peginterferon alfa-2a in patients with chronic hepatitis delta: 24 weeks interim data of MYR204 phase 2b study. In Proceedings of the International Liver Congress, Online, 23–26 June 2021; Volume 75. [Google Scholar]
- Wedemeyer, H. Bulevirtide monotherapy at low and high dose in patients with chronic hepatitis delta: 24 weeks interim data of the phase 3 MYR301 study. In Proceedings of the International Liver Congress, Online, 23–26 June 2021; Volume 75. [Google Scholar]
- De Ledinghen, V. Safety and efficacy of 2mg bulevertide in patients with chronic HBV/HDV infection, First real world results. In Proceedings of the International Liver Congress, Online, 23–26 June 2021; Volume 74. [Google Scholar]
- Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015, a modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, regional and national burden of cardiovascular diseases for 10 causes. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Heffernan, A.; Cooke, G.S.; Nayagam, S.; Thursz, M.; Hallett, T.B. Scaling up prevention and treatment towards the elimination of hepatitis C: A global mathematical model. Lancet 2019, 393, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C. J. Hepatol. 2018, 69, 461–511. [Google Scholar] [CrossRef] [Green Version]
- Carrat, F.; Fontaine, H.; Dorival, C.; Simony, M.; Diallo, A.; Hezode, C.; De Ledinghen, V.; Larrey, D.; Haour, G.; Bronowicki, J.-P.; et al. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: A prospective cohort study. Lancet 2019, 393, 1453–1464. [Google Scholar] [CrossRef]
- Backus, L.I.; Belperio, P.S.; Shahoumian, T.A.; Mole, L.A. Direct-acting antiviral sustained virologic response: Impact on mortality in patients without advanced liver disease. Hepatology 2018, 68, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.; Di Marco, V.; Iavarone, M.; Roffi, L.; Crosignani, A.; Calvaruso, V.; Aghemo, A.; Cabibbo, G.; Viganò, M.; Boccaccio, V.; et al. Survival of patients with HCV cirrhosis, and sustained virologic response is similar to the general population. J. Hepatol. 2016, 64, 1217–1223. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. Easl recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Stepanova, M.; Sulkowski, M.; Foster, G.R.; Reau, N.; Mangia, A.; Patel, K.; Bräu, N.; Roberts, S.K.; Afdhal, N.; et al. Ribavirin-Free Regimen With Sofosbuvir and Velpatasvir Is Associated with High Efficacy and Improvement of Patient-Reported Outcomes in Patients With Genotypes 2 and 3 Chronic Hepatitis C: Results From Astral-2 and -3 Clinical Trials. Clin. Infect. Dis. 2016, 63, 1042–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, D.R.; Cooper, J.N.; Lalezari, J.P.; Lawitz, E.; Pockros, P.J.; Gitlin, N.; Freilich, B.F.; Younes, Z.H.; Harlan, W.; Ghalib, R.; et al. ALLY-3 Study Team. All-oral 12-week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY-3 phase III study. Hepatology 2015, 61, 1127–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ambrosio, R.; Aghemo, A.; Rumi, M.G.; Ronchi, G.; Donato, M.F.; Paradis, V.; Colombo, M.; Bedossa, P. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology 2012, 56, 532–543. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL clinical practice guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef] [PubMed]
- Calvaruso, V.; Cabibbo, G.; Cacciola, I.; Petta, S.; Madonia, S.; Bellia, A.; Tinè, F.; Distefano, M.; Licata, A.; Giannitrapani, L.; et al. Incidence of hepatocellular carcinoma in patients with HCV-associated cirrhosis treated with direct-acting antiviral agents. Gastroenterology 2018, 155, 411–421.e4. [Google Scholar] [CrossRef] [Green Version]
- Cheung, M.C.; Walker, A.J.; Hudson, B.E.; Verma, S.; McLauchlan, J.; Mutimer, D.J.; Brown, A.; Gelson, W.T.; MacDonald, D.C.; Agarwal, K.; et al. Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. J. Hepatol. 2016, 65, 741–747. [Google Scholar] [CrossRef] [Green Version]
- McDonald, S.A.; Pollock, K.G.; Barclay, S.T.; Goldberg, D.J.; Bathgate, A.; Bramley, P. Real-world impact following initiation of interferon-free hepatitis C regimens on liver-related outcomes and all-cause mortality among patients with compensated cirrhosis. J. Viral Hepat. 2020, 27, 270–280. [Google Scholar] [CrossRef]
- Nahon, P.; Layese, R.; Bourcier, V.; Cagnot, C.; Marcellin, P.; Guyader, D. Incidence of hepatocellular carcinoma after direct antiviral therapy for HCV in patients with cirrhosis included in surveillance programs. Gastroenterology 2018, 155, 1436–1450. [Google Scholar] [CrossRef] [Green Version]
- Janjua, N.Z.; Wong, S.; Darvishian, M.; Butt, Z.A.; Yu, A.; Binka, M. The impact of SVR from direct-acting antiviral- and interferon-based treatments for HCV on hepatocellular carcinoma risk. J. Viral Hepat. 2020, 27, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Lleo, M.H.; Aglitti, A.; Aghemo, A.; Maisonneuve, P.; Bruno, S.; Persico, M. Predictors of hepatocellular carcinoma in HCV cirrhotic patients treated with direct acting antivirals. Dig. Liver Dis. 2019, 51, 310–317. [Google Scholar] [CrossRef]
- Reig, M.; Marino, Z.; Perellò, C.; Inarrairaegui, M.; Ribeiro, A.; Lens, S. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J. Hepatol. 2016, 65, 719–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waziri, R.; Hajarizadeh, B.; Grebely, J.; Amin, J.; Law, M.; Danta, M. Hepatocellular carcinoma risk following direct-acting antiviral HCV therapy: A systematic review, meta-analysis and meta-regression. J. Hepatol. 2017, 67, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Saraiya, N.; Yopp, A.C.; Rich, N.E.; Odewole, M.; Parikh, N.D.; Singal, A.G. Systematic review with meta-analysis: Recurrence of hepatocellular carcinoma following direct-acting antiviral therapy. Aliment. Pharmacol. Ther. 2018, 48, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Moon, A.M.; Green, P.K.; Rockey, D.C.; Berry, K.; Ioannou, G.N. Hepatitis C eradication with direct-acting anti-virals reduces the risk of variceal bleeding. Aliment. Pharmacol. Ther. 2020, 51, 364–373. [Google Scholar] [CrossRef]
- Afdhal, N.; Everson, G.T.; Calleja, J.L.; McCaughan, G.W.; Bosch, J.; Brainard, D.M. Effect of viral suppression on hepatic venous pressure gradient in hepatitis C with cirrhosis and portal hypertension. J. Viral Hepat. 2017, 24, 823–831. [Google Scholar] [CrossRef]
- Schwabl, P.; Mandorfer, M.; Steiner, S.; Scheiner, B.; Chromy, D.; Herac, M. Interferon-free regimens improve portal hypertension and histological necroinflammation in HIV/HCV patients with advanced liver disease. Aliment. Pharmacol. Ther. 2017, 45, 139–149. [Google Scholar] [CrossRef]
- Mandorfer, M.; Kozbial, K.; Schwabl, P.; Chromy, D.; Semmler, G.; Stattermayer, A.F. Changes in HVPG predict hepatic decompensation in patients who achieved SVR to IFN-free therapy. Hepatology 2020, 71, 1023–1036. [Google Scholar] [CrossRef] [Green Version]
- Lens, S.; Baiges, A.; Alvarado-Tapias, A.; Llop, E.; Martinez, J.; Fortea, J.I. Clinical outcome and hemodynamic changes following HCV eradication with oral antiviral therapy in patients with clinically significant portal hypertension. J. Hepatol. 2020, 73, 1415–1424. [Google Scholar] [CrossRef]
- Diez, C.; Berenguer, J.; Ibanez-Samaniego, L.; Llop Perez-Latorre, L.; Catalina, M.V. Persistence of clinically significant portal hypertension after eradication of hepatitis C virus in patients with advanced cirrhosis. Clin. Infect. Dis. 2020, 71, 2726–2729. [Google Scholar] [CrossRef]
- Vuille-Lessard, E.; Rodrigues, S.G.; Berzigotti, A. Noninvasive detection of clinically significant portal hypertension in compensated advanced chronic liver disease. Clin. Liver Dis. 2021, 25, 253–289. [Google Scholar] [CrossRef]
- Negro, F. Residual risk of liver disease after hepatitis C eradication. J. Hepatol. 2021, 74, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Curry, M.P.; O’Leary, J.G.; Bzowej, N. Sofosbuvir and velpatasvir for HCV in patients with decompensated cirrhosis. N. Engl. J. Med. 2015, 373, 2618–2628. [Google Scholar] [CrossRef] [PubMed]
- Saxena, V.; Nyberg, L.; Pauly, M. Safety and efficacy of simeprevir/sofosbuvir in hepatitis C-infected patients with compensated and decompensated cirrhosis. Hepatology 2015, 62, 715–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlton, M.; Everson, G.T.; Flamm, S.L. Ledipasvir and sofosbivir plus ribavirin for treatment of HCV infection in patients with advanced liver disease. Gastroenterology 2015, 149, 649–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manns, M.; Samuel, D.; Gane, E.J. Ledipasvir and sofosbuvir plus ribavirin in patients with genotype 1 or 4 hepatitis C virus infection and advanced liver disease: A multicentre, open-label, randomised, phase 2 trial. Lancet Infect. Dis. 2016, 16, 685–697. [Google Scholar] [CrossRef]
- Poordad, F.; Schiff, E.R.; Vierling, J.M. Daclatasvir plus sofosbuvir and ribavirin for hepatitis C virus infection and advanced cirrhosis or post-liver transplantation recurrence. Hepatology 2016, 63, 1493–1505. [Google Scholar] [CrossRef]
- Jacobson, I.M.; Poordad, F.; Firpi-Morell, R. Elbasvir/grazoprevir in people with hepatitis C genotype 1 infection and Child Pugh class B cirrhosis: The C-SALT study. Clin. Transl. Gastroenterol. 2019, 10, e00007. [Google Scholar] [CrossRef]
- Terrault, N.A.; Zeuzem, S.; DiBisceglie, A.M.; Lim, J.K.; Pockros, P.J.; Frazier, L.M. Effectiveness of ledipasvir-sofosbuvir in combination in patients with hepatitis C virus infection and factors associated with sustained virologic response. Gastroenterology 2016, 151, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.R.; Irving, W.L.; Cheung, M.C.M.; Walker, A.J.; Hudson, B.E.; Verma, S. Impact of direct acting antiviral therapy in patients with chronic hepatitis C and decompensated cirrhosis. J. Hepatol. 2016, 64, 1224–1231. [Google Scholar] [CrossRef]
- Tahata, Y.; Hikita, H.; Mochida, S.; Kawada, N.; Enomoto, N.; Ido, A. Sofosbuvir plus velpatasvir treatment for hepatitis C virus patients with decompensated cirrhosis: A Japanese real-world multicentre study. J. Gastroenterol. 2021, 56, 67–77. [Google Scholar] [CrossRef]
- Chan, J.; Kim, J.J.; Barrett, B.K.; Hamadeh, A.; Feld, J.J.; Wong, W.W.L. Effectiveness analysis of sofosbuvir and velpatasvir in chronic hepatitis C patients with decompensated cirrhosis. J. Viral Hepat. 2021, 28, 260–267. [Google Scholar] [CrossRef]
- Berkan-Kawinska, A.; Piekarska, A.; Janczewska, E.; Lorenc, B.; Tudrujek-Zdunek, M.; Tomasiewicz, K. Real-world effectiveness and safety of direct-acting antivirals in patients with cirrhosis and history of hepatic decompensation: Epi-Ter2 study. Liver Int. 2021, 41, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Velosa, J. Why is viral eradication so important in patients with HCV-related cirrhosis ? Antivir. Ther. 2017, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.; Sims, O.T.; Richman, J. Resolution of ascites and hepatic encephalopathy and absence of variceal bleeding in decompensated hepatitis C virus cirrhosis patients. JGH Open 2018, 2, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Gentile, I.; Scotto, R.; Coppola, C. Treatment with direct-acting antivirals improves the clinical outcome in patients with HCV-related decompensated cirrhosis: Results from an Italian real-life cohort (Liver Network Activity-LINA cohort). Hepatol. Int. 2019, 13, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Verna, E.C.; Morelli, G.; Terrault, N.A.; Lok, A.S.; Lim, J.K.; DiBisceglie, A.M. DAA therapy and long-term hepatic function in advanced/decompensated cirrhosis: Real-world experience from HCV-TARGET cohort. J. Hepatol. 2020, 73, 540–548. [Google Scholar] [CrossRef]
- El-Sherif, O.; Jiang, Z.G.; Tapper, E.B.; Huang, K.C.; Zhong, A.; Osinusi, A. Baseline factors associated with improvements in decompensated cirrhosis after direct-acting antiviral therapy for hepatitis C virus infection. Gastroenterology 2018, 154, 2111–2121. [Google Scholar] [CrossRef] [Green Version]
- Terrault, N.A.; McCaughan, G.W.; Curry, M.P.; Gane, E.; Fagiuoli, S.; Fung, J.Y.V. International liver transplantation society consensus statement on hepatitis C management in liver transplant candidates. Transplantation 2017, 101, 945–955. [Google Scholar] [CrossRef]
- Debnath, P.; Chandnani, S.; Rathi, P.; Nair, S.; Junare, P.; Udgirkar, S. A new model to predict response to direct-acting antiviral therapy in decompensated cirrhotics due to hepatitis C virus. Clin. Exp. Hepatol. 2020, 6, 253–262. [Google Scholar] [CrossRef]
- Martini, S.; Sacco, M.; Strona, S.; Arese, D.; Tandoi, F.; Dell Olio, D. Impact of viral eradication with sofosbuvir-based therapy on the outcome of post-transplant hepatitis C with severe fibrosis. Liver Int. 2017, 37, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Briceño, J.; Ciria, R.; de la Mata, M.; Rufián, S.; López-Cillero, P. Prediction of graft dysfunction based on extended criteria donors in the model for end-stage liver disease era. Transplantation 2010, 90, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Wadei, H.M.; Lee, D.D.; Croome, K.P.; Mai, M.L.; Golan, E.; Brotman, R. Early allograft dysfunction after liver transplantation is associated with short- and long-term kidney function impairment. Am. J. Transpl. 2016, 16, 850–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, S.; Tandoi, F.; Terzi di Bergamo, L.; Strona, S.; Lavezzo, B.; Sacco, M. Negativization of viremia prior to liver transplant reduces early allograft dysfunction in hepatitis c-positive recipients. Liver Transpl. 2017, 23, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, M.; Palau, A.; Aguilera, V.; Rayon, J.M.; Juan, F.S.; Prieto, M. Clinical benefits of antiviral therapy in patients with recurrent hepatitis C following liver transplantation. Am. J. Transpl. 2008, 8, 679–687. [Google Scholar] [CrossRef]
- Picciotto, F.P.; Tritto, G.; Lanza, A.G.; Addario, L.; De Luca, M.; Di Costanzo, G.G. Sustained virological response to antiviral therapy reduces mortality in HCV reinfection after liver transplantation. J. Hepatol. 2007, 46, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, P.A.; Belli, L.S.; Facchetti, R.; Mazzarelli, C.; Perricone, G.; De Nicola, S. The optimal timing of hepatitis C therapy in liver transplant-eligible patients: Cost-effectiveness analysis of new opportunities. J. Viral Hepat. 2018, 25, 791–801. [Google Scholar] [CrossRef]
- Chhatwal, J.; Samur, S.; Kues, B.; Ayer, T.; Roberts, M.S.; Kanwal, F. Optimal timing of hepatitis C treatment for patients on the liver transplant waiting list. Hepatology 2017, 65, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Cacoub, P.; Saadoun, D. Extrahepatic manifestations of chronic HCV infection. N. Engl. J. Med. 2021, 384, 1038–1052. [Google Scholar] [CrossRef]
- AASLD-IDSA HCV Guidance panel. Hepatitis C guidance 2018 update: AASLD-IDSA recommendations for testing, managing, and treating hepatitis C virus infection. Clin. Infect. Dis. 2018, 67, 1477–1492. [Google Scholar] [CrossRef] [Green Version]
- Cacoub, P.; Comarmond, C.; Domont, F.; Savey, L.; Saadoun, D. Cryoglobulinemia vasculitis. Am. J. Med. 2015, 128, 950–955. [Google Scholar] [CrossRef] [Green Version]
- Zignego, A.L.; Marri, S.; Gragnani, L. Impact of direct acting antivirals on hepatitis C virus-related cryoglobulinemic syndrome. Minerva Gastroenterol. 2021, 67, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Zignego, A.L.; Gragnani, L.; Giannini, C.; Laffi, G. The hepatitis C virus infection as a systemic disease. Intern. Emerg. Med. 2012, 7, S201–S208. [Google Scholar] [CrossRef] [PubMed]
- Cacoub, P.; Gragnani, L.; Comarmond, C.; Zignego, A.L. Extrahepatic manifestations of chronic hepatitis C virus infection. Dig. Liver Dis. 2014, 46, S165–S173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zignego, A.L.; Gragnani, L.; Piluso, A.; Sebastiani, M.; Giuggioli, D.; Fallahi, P. Virus-driven autoimmunity and lymphoproliferation: The example of HCV infection. Expert. Rev. Clin. Immunol. 2015, 11, 15–31. [Google Scholar] [CrossRef]
- Zignego, A.L.; Ramos-Casals, M.; Ferri, C.; Saadoun, D.; Arcaini, L.; Roccatello, D.; Antonelli, A.; Desbois, A.C.; Comarmond, C.; Gragnani, L.; et al. International therapeutic guidelines for patients with HCV-related extrahepatic disorders. A multidisciplinary expert statement. Autoimmun. Rev. 2017, 16, 523–541. [Google Scholar] [CrossRef]
- Peveling-Oberhag, J.; Arcaini, L.; Bankov, K.; Zeuzem, S.; Herrmann, E. The anti-lymphoma activity of antiviral therapy in HCV-associated B-cell non-Hodgkin lymphomas: A meta-analysis. J. Viral Hepat. 2016, 23, 536–544. [Google Scholar] [CrossRef]
- Terrier, B.; Semoun, O.; Saadoun, D.; Sene, D.; Resche-Rigon, M.; Cacoub, P. Prognostic factors in patients with hepatitis C virus infection and systemic vasculitis. Arthritis Rheum. 2011, 63, 1748–1757. [Google Scholar] [CrossRef]
- Saadoun, D.; Thibault, V.; Si Ahmed, S.N. Sofosbuvir plus ribavirin for hepatitis C virus-associated cryoglobulinemia vasculitis: VASCUVALDIC study. Ann. Rheum. Dis. 2016, 75, 1777–1782. [Google Scholar] [CrossRef]
- Sise, M.E.; Bloom, A.K.; Wisocky, J.; Lin, M.V.; Gustafson, J.L.; Lundquist, A.L. Treatment of hepatitis C-associated mixed cryoglobulinemia with direct-acting antiviral agents. Hepatology 2016, 63, 408–417. [Google Scholar] [CrossRef]
- Gragnani, L.; Visentini, M.; Fognani, E.; Urraro, T.; De Santis, A.; Petraccia, L. Prospective study of guideline-tailored therapy with direct-acting antivirals for hepatitis C virus-associated mixed cryoglobulinemia. Hepatology 2016, 64, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Cacoub, P.; Vautier, M.; Desbois, A.C.; Lafuma, A.; Saadoun, D. Effectiveness and cost of hepatitis C virus cryoglobulinemia vasculitis treatment: From interferon-based to direct-acting antivirals era. Liver Int. 2017, 37, 1805–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emery, J.S.; Kuczynski, M.; La, D.; Almarzooqi, S.; Kowgier, M.; Shah, H. Efficacy and safety of direct-acting antivirals for the treatment of mixed cryoglobulinemia. Am. J. Gastroenterol. 2017, 112, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Comarmond, C.; Garrido, M.; Pol, S. Direct-acting antiviral therapy restores immune tolerance to patients with hepatitis C virus-induced cryoglobulinemia vasculitis. Gastroenterology 2017, 152, 2052–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadoun, D.; Pol, S.; Ferfar, Y.; Alric, L.; Hezode, C.; Si Ahmed, S.N. Efficacy and safety of sofosbuvir plus daclatasvir for treatment of HCV-associated cryoglobulinemia vasculitis. Gastroenterology 2017, 153, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Lauletta, G.; Russi, S.; Pavone, F.; Vacca, A.; Dammacco, F. Direct-acting antiviral agents in the therapy of hepatitis C virus-related mixed cryoglobulinemia: A single-centre experience. Arthritis Res. Ther. 2017, 19, 74. [Google Scholar] [CrossRef] [Green Version]
- Passerini, M.; Schiavini, M.; Magni, C.F.; Landonio, S.; Niero, F.; Passerini, S. Are direct-acting antivirals safe and effective in hepatitis C virus cryoglobulinemia ? Virological, immunological and clinical data from a real-life experience. Eur. J. Gastroenterol. Hepatol. 2018, 30, 1208–1215. [Google Scholar] [CrossRef]
- Bonacci, M.; Lens, S.; Marino, Z. Long-term outcomes of patients with HCV-associated cryoglobulinemic vasculitis after virologic cure. Gastroenterology 2018, 155, 311–315. [Google Scholar] [CrossRef]
- Cacoub, P.; Ahmed, S.N.S.; Ferfar, Y.; Pol, S.; Thabut, D.; Hezode, C.; Alric, L.; Comarmond, C.; Ragab, G.; Quartuccio, L.; et al. Long-term efficacy of interferon-free antiviral treatment regimens in patients with hepatitis C virus-associated cryoglobulinemia vasculitis. Clin. Gastroenterol. Hepatol. 2019, 17, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Visentini, M.; Del Padre, M.; Colantuono, S.; Yang, B.; Minafò, Y.A.; Antonini, S. Long-lasting persistence of large B-cell clones in hepatitis C virus-cured patients with vomplete response of mixed cryoglobulinemia vasculitis. Liver Int. 2019, 39, 628–632. [Google Scholar] [CrossRef]
- Gragnani, L.; Lorini, S.; Santarlasci, V.; Marri, S.; Basile, U.; Monti, M. Genetic and B-cell clonality markers in HCV-related MC vasculitis persisting after DAA therapy. Hepatology 2019, 70, 79–80. [Google Scholar]
- Pozzato, G.; Mazzaro, C.; Artemova, M.; Abdurakhmanov, D.; Grassi, G.; Crosato, I. Direct-acting antiviral agents for hepatitis C virus-mixed cryoglobulinemia: Dissociated virological and haematological responses. Br. J. Haematol. 2020, 191, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Ciancio, A. Impact of direct antiviral agents (DAAs) on B-cell non-Hodgkin’s lymphoma in patients with chronic hepatitis C. Minerva Gastroenterol. 2021, 67, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.; Feld, J.J.; Bondin, M.; Cacoub, P. Expert opinion on managing chronic HCV in patients with non-Hodgkin lymphoma and other extrahepatic malignancies. Antivir. Ther. 2018, 23, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Peveling-Oberhag, J.; Arcaini, L.; Hansmann, M.L.; Zeuzem, S. Hepatitis C-associated B-cell non Hodgkin lymphomas. Epidemiology, molecular signature and clinical management. J. Hepatol. 2013, 59, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrier, P.; Jaccard, A.; Jacques, J. HCV-associated B-cell non-Hodgkin lymphomas and new direct antiviral agents. Liver Int. 2015, 35, 2222–2227. [Google Scholar] [CrossRef] [PubMed]
- Alric, L.; Besson, C.; Lapidus, N. Antiviral treatment of HCV-infected patients with B-cell non-Hodgkin lymphoma: ANRS HC-13 Lympho-C study. PLoS ONE 2016, 11, e0162965. [Google Scholar] [CrossRef] [Green Version]
- Arcaini, L.; Besson, C.; Frigeni, M. Interferon-free antiviral treatment in B-cell lymphoproliferative disorders associated with hepatitis C virus infection. Blood 2016, 128, 2527–2532. [Google Scholar] [CrossRef] [Green Version]
- Persico, M.; Aglitti, A.; Caruso, R. Efficacy and safety of new direct antiviral agents in hepatitis C virus-infected patients with diffuse large B-cell non-Hodgkin’s lymphoma. Hepatology 2018, 67, 48–55. [Google Scholar] [CrossRef]
- Occhipinti, V.; Farina, L.; Viganò, M. Concomitant therapy with direct acting antivirals and chemoimmunotherapy in HCV-associated diffuse large B-cell lymphoma. Dig. Liver Dis. 2019, 51, 719–723. [Google Scholar] [CrossRef]
- Merli, M.; Frigeni, M.; Alric, L. Direct-acting antivirals in hepatitis C virus-associated diffuse large B-cell lymphoma. Oncologist 2019, 24, e720–e729. [Google Scholar] [CrossRef] [Green Version]
- Frigeni, M.; Besson, C.; Visco, C. Interferon-free compared to interferon-based antiviral regimens as first-line therapy for B-cell lymphoproliferative disorders associated with hepatitis C virus infection. Leukemia 2020, 34, 1462–1466. [Google Scholar] [CrossRef] [PubMed]
- Chemello, L.; Cavalletto, L.; Ferrari, S.; Monaco, S. Impact of direct acting antivirals (DAA) on neurologic disorders in chronic hepatitis C. Minerva Gastroenterol. 2021, 67, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Mariotto, S.; Ferrari, S.; Monaco, S. HCV-related central and perpheral nervous system demyelinating disorders. Inflamm. Allergy Drug Targets 2014, 13, 299–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.; Radkowski, M.; Laskus, T. Hepatitis C virus neuroinvasion: Identification of infected cells. J. Virol. 2009, 83, 1312–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, N.F.; Wilson, G.K.; Murray, J.; Hu, K.; Lewis, A.; Reynolds, G.M. Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 2012, 142, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Hegary, M.T.; Hussein, M.A.; Quartuccio, L.; Fawzy, M.; Zoheir, N.; Ellawindi, M.I. Treatment of cryoglobulinemia vasculitis with sofosbuvir in 4-combination protocols. Arthritis Rheumatol. 2016, 68, 2977. [Google Scholar]
- Mazzaro, C.; Dal Maso, L.; Quartuccio, L.; Ghersetti, M.; Lenzi, M.; Mauro, E. Long-term effects of the new direct antiviral agents (DAAs) therapy for HCV-related mixed cryoglobulinemia without renal involvement: A nulticentre open-label study. Clin. Exp. Rheumatol. 2018, 36, 107–114. [Google Scholar]
- Bonacci, M.; Lens, S.; Londono, M.C.; Marino, Z.; Cid, M.C.; Ramos-Casals, M. Virologic, clinical, and immune response outcomes of patients with hepatitis C virus-associated cryoglobulinemia treated with direct acting antivirals. Clin. Gastroenterol. Hepatol. 2017, 15, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Gragnani, L.; Cerretelli, G.; Lorini, S.; Steidl, C.; Giovannelli, A.; Monti, M. Interferon-free therapy in hepatitis C virus mixed cryoglobulinemia: A prospective, controlled, clinical and quality of life analysis. Aliment. Pharmacol. Ther. 2018, 48, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Zanone, M.M.; Marinucci, C.; Ciancio, A.; Cocito, D.; Zardo, F.; Spagone, E. Peripheral neuropathy after viral eradication with direct-acting antivirals in chronic HCV hepatitis. A prospective study. Liver Int. 2021, 41, 2611–2621. [Google Scholar] [CrossRef]
- Nardelli, S.; Riggio, O.; Rosati, D.; Gioia, S.; Farcomeni, A.; Ridola, L. Hepatitis C virus eradication with directly acting antivirals improves health-related quality of life and psychological symptoms. World J. Gastroenterol. 2019, 25, 6928–6938. [Google Scholar] [CrossRef] [PubMed]
- Waliszewska-Prosol, M.; Bladowska, J.; Ejma, M.; Fleischer-Stepniewska, K.; Rymer, W.; Sasiadek, M. Visual and brain-stem auditory evoked potentials in HCV-infected patients before and after interferon-free therapy. A pilot study. Int. J. Infect. Dis. 2019, 80, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.; Park, H.; Henry, L.; Adeyemi, A.; Stepanova, M. Extrahepatic manifestations of hepatitis C: A meta-analysis of prevalence, quality of life, and economic burden. Gastroenterology 2016, 150, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Cacoub, P.; Desbois, A.C.; Isnard-Bagnis, C.; Roccatello, D.; Ferrio, C. Hepatitis C virus infection and chronic kidney disease: Time for reappraisal. J. Hepatol. 2016, 65, S82–S94. [Google Scholar] [CrossRef] [Green Version]
- Fabrizi, F.; Donato, F.M.; Messa, P. Association between hepatitis C virus and chronic kidney disease: A systematic review and meta-analysis. Ann. Hepatol. 2018, 17, 364–391. [Google Scholar] [CrossRef]
- Fabrizi, F.; Cerutti, R.; Alfieri, C.M.; Ridruejo, E. Impact of antiviral therapy with direct acting antiviral agents (DAAs) on kidney disease in patients with chronic hepatitis C. Minerva Gastroenterol. 2021, 67, 244–253. [Google Scholar] [CrossRef]
- Kasuno, K.; Ono, T.; Matsumori, A.; Nogaki, F.; Kusano, H.; Watanabe, H. Hepatitis C virus-associated tubulointerstitial injury. Am. J. Kidney Dis. 2003, 41, 767–775. [Google Scholar] [CrossRef]
- Fabrizi, F.; Negro, F.; Bondin, M.; Cacoub, P. Expert opinion on the management of renal manifestations of chronic HCV infection. Antivir. Ther. 2018, 23, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Gordon, C.E.; Berenguer, M.C.; Doss, W. Prevention, diagnosis, evaluation and treatment of hepatitis C virus infection in chronic kidney disease: Synopsis of the Kidney Disease Improving Global Outcomes 2018 clinical practice guideline. Ann. Intern. Med. 2019, 171, 496–504. [Google Scholar] [CrossRef] [Green Version]
- American Association for the Study of the Liver and Infectious Diseases Society of America. HCV Guidance: Recommendations for Testing, Managing and Treating Hepatitis C. Patients with Renal Impairment. AASLD. Available online: htpps://www.hcvguidelines.org/ (accessed on 3 June 2021).
- Sise, M.E.; Backman, E.; Ortiz, G.A. Effect of sofosbuvir-based hepatitis C virus therapy on kidney function in patients with CKD. Clin. J. Am. Soc. Nephrol. 2017, 12, 1615–1623. [Google Scholar] [CrossRef]
- Aby, E.S.; Dong, T.S.; Kawamoto, J.; Pisegna, J.R.; Benhamou, J.N. Impact of sustained virologic response on chronic kidney disease progression in hepatitis C. World J. Hepatol. 2017, 9, 1352–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, E.; Furusyo, N.; Azuma, K. Elbasvir plus grazoprevir for patients with chronic hepatitis C genotype 1, a multicenter, real-world cohort study focusing on chronic kidney disease. Antiviral. Res. 2018, 159, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Alric, L.; Ollivier-Hourmand, I.; Berard, E. Grazoprevir plus elbasvir in HCV genotype 1 or 4 infected patients with stage 4/5 severe chronic kidney disease is safe and effective. Kidney Int. 2018, 94, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.C.; Lin, C.Y.; Hung, C.H. Evolution of renal function under direct-acting antivirals treatment for chronic hepatitis C: A real-world experience. J. Viral Hepat. 2019, 26, 1404–1412. [Google Scholar] [CrossRef]
- Fabrizi, F.; Cerutti, R.; Dixit, V.; Messa, P. The impact of antiviral therapy for HCV on kidney disease: A systematic review and meta-analysis. Nefrologia 2020, 40, 299–310. [Google Scholar] [CrossRef]
- Sise, M.E.; Chute, D.F.; Oppong, Y. Direct-acting antiviral therapy slows kidney function decline in patients with hepatitis C virus infection and chronic kidney disease. Kidney Int. 2020, 97, 193–201. [Google Scholar] [CrossRef]
- Chiu, S.M.; Tsai, M.C.; Lin, C.Y. Serial changes of renal function after directly acting antivirals treatment for chronic hepatitis C. a 1-year follow-up study after treatment. PLoS ONE 2020, 15, e0231102. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, P.; Lupoli, R.; Di Minno, A.; Tarantino, L.; Spadarella, G.; Tarantino, P. The risk of coronary artery disease and cerebrovascular disease in patients with hepatitis C: A systematic review and meta-analysis. Int. J. Cardiol. 2016, 221, 746–754. [Google Scholar] [CrossRef]
- Petta, S.; Maida, M.; Macaluso, F.S.; Barbara, M.; Licata, A.; Craxì, A. Hepatitis C Virus infection is associated with increased cardiovascular mortality: A meta-analysis of observational studies. Gastroenterology 2016, 150, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Cacoub, P. Hepatitis C virus infection, a new modifiable cardiovascular risk factor. Gastroenterology 2019, 156, 862–864. [Google Scholar] [CrossRef] [Green Version]
- Pennisi, G.; Spatola, F.; Di Marco, L.; Di Martino, V.; Di Marco, V. Impact of direct-acting antivirals (DAAs) on cardiovascular diseases in patients with chronic hepatitis C. Minerva Gastroenterol. 2021, 67, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Nahon, P.; Bourcier, V.; Layese, R. Eradication of hepatitis C virus infection in patients with cirrhosis reduces risk of liver and non-liver complications. Gastroenterology 2017, 152, 142–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.T.; Mehta, D.; Mensa, F.; Park, C.; Bao, Y.; Sanchez Gonzalez, Y. Pan-genotypic hepatitis C treatment with glecaprevir and pibrentasvir for 8 weeks resulted in improved cardiovascular and metabolic outcomes and stable renal function: A post-hoc analysis of phase 3 clinical trials. Infect. Dis. Ther. 2018, 7, 473–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, D.A.; Cohen, E.; Charafeddine, M.; Cohen, D.E.; Bao, Y.; Sanchez Gonzalez, Y. Effect of hepatitis C treatment with ombitasvir/paritaprevir/R + dasabuvir on renal, cardiovascular and metabolic extrahepatic manifestations: A post-hoc analysis of phase 3 clinical trials. Infect. Dis. Ther. 2017, 6, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gordon, S.C.; Rupp, L.B. Sustained virological response to hepatitis C treatment decreases the incidence of complications associated with type 2 diabetes. Aliment. Pharmacol. Ther. 2019, 49, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.A.; Yan, P.; Shuaib, A.; Abou-Samra, A.B.; Shaikh, O.S.; Freiberg, M.S. Direct-acting antiviral therapy for HCV infection is associated with a reduced risk of cardiovascular disease events. Gastroenterology 2019, 156, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi, L.E.; Petta, S.; Fracanzani, A.L.; Coppola, C.; Narciso, V.; Nevola, R. Impact of hepatitis C virus clearance by direct-acting antiviral treatment on the incidence of major cardiovascular events: A prospective multicentre study. Atherosclerosis 2020, 296, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Novo, G.; Macaione, F.; Giannitrapani, L.; Minissale, M.G.; Bonomo, V.; Indovina, F. Subclinical cardiovascular damage in patients with HCV cirrhosis before and after treatment with direct antiviral agents: A prospective study. Aliment. Pharmacol. Ther. 2018, 48, 740–749. [Google Scholar] [CrossRef]
- Petta, S.; Adinolfi, L.E.; Fracanzani, A.L.; Rini, F.; Caldarella, R.; Calvaruso, V. Hepatitis C virus eradication by direct-acting antiviral agents improves carotid atherosclerosis in patients with severe liver fibrosis. J. Hepatol. 2018, 69, 18–24. [Google Scholar] [CrossRef]
- Salomone, F.; Petta, S.; Micek, A.; Pipitone, R.M.; Distefano, A.; Castruccio Castracani, C. Hepatitis C virus eradication by direct antiviral agents abates oxidative stress in patients with advanced liver fibrosis. Liver Int. 2020, 40, 2820–2827. [Google Scholar] [CrossRef]
- White, D.L.; Ratziu, V.; El-Serag, H.B. Hepatitis C virus infection and type 1 and type 2 diabetes mellitus. J. Hepatol. 2008, 49, 831–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naing, C.; Mak, J.W.; Ahmed, S.I.; Maung, M. Relationship between hepatitis C virus infection and type 2 diabetes mellitus: Meta-analysis. World J. Gastroenterol. 2012, 18, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Ferrari, S.M.; Giuggioli, D.; Di Domenicantonio, A.; Ruffilli, I.; Corrado, A.; Fabiani, S.; Marchi, S.; Ferri, C.; Ferrannini, E.; et al. Hepatitis C virus infection and type 1 and type 2 diabetes mellitus. World J. Diabetes 2014, 5, 586–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persico, M.; Capasso, M.; Persico, E.; Svelto, M.; Russo, R.; Spano, D.; Croce, L.; La Mura, V.; Moschella, F.; Masutti, F.; et al. Suppressor of cytokine signaling 3 (SOCS3) expression and hepatitis C virus-related chronic hepatitis: Insulin resistance and response to antiviral therapy. Hepatology 2007, 46, 1009–1015. [Google Scholar] [CrossRef]
- Vanni, E.; Abate, M.L.; Gentilcore, E. Sites and mechanisms of insulin resistance in nonobese, nondiabetic patients with chronic hepatitis C. Hepatology 2009, 50, 697–706. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Wang, Y.; Han, X.; Chen, X. Hepatitis C Virus Induced a Novel Apoptosis-Like Death of Pancreatic Beta Cells through a Caspase 3-Dependent Pathway. PLoS ONE 2012, 7, e38522. [Google Scholar] [CrossRef] [Green Version]
- Vanni, E.; Bugianesi, E.; Saracco, G. Treatment of type 2 diabetes mellitus by viral eradication in chronic hepatitis C: Myth or reality ? Dig. Liv. Dis. 2016, 48, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Gastaldi, G.; Gomes, D.; Schneiter, P. Treatment with direct-acting antivirals improves peripheral insulin sensitivity in non-diabetic, lean chronic hepatitis C patients. PLoS ONE 2019, 14, e0217751. [Google Scholar] [CrossRef]
- Carnovale, C.; Pozzi, M.; Dassano, A.; D’Addio, F.; Gentili, M.; Magni, C.; Clementi, E.; Radice, S.; Fiorina, P. The impact of a successful treatment of hepatitis C virus on glycometabolic control in diabetic patients: A systematic review and meta-analysis. Acta Diabetol. 2019, 56, 341–354. [Google Scholar] [CrossRef]
- Ribaldone, D.G.; Sacco, M.; Saracco, G.M. The effect of viral clearance achieved by direct-acting antiviral agents on Hepatitis C Virus positive patients with type 2 diabetes mellitus: A word of caution after the initial enthusiasm. J. Clin. Med. 2020, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Sacco, M.; Saracco, G. The impact of direct-acting antiviral treatment on glycemic homeostasis in patients with chronic hepatitis C. Minerva Gastroenterol. 2021, 67, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Hum, J.; Jou, J.H.; Green, P.K.; Berry, K.; Lundblad, J.; Hettinger, B.D. Improvement in glycemic control of type 2 diabetes after successful treatment of hepatitis C virus. Diabetes Care 2017, 40, 1173–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawood, A.A.; Nooh, M.Z.; Elgamal, A.A. Factors associated with improved glycemic control by direct-acting antiviral agent treatment in Egyptian type 2 diabetes mellitus patients with chronic hepatitis C genotype 4. Diabetes Metab. J. 2017, 41, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Ciancio, A.; Bosio, R.; Bo, S.; Pellegrini, M.; Sacco, M.; Vogliotti, E. Significant improvement of glycemic control in diabetic patients with HCV infection responding to direct-acting antiviral agents. J. Med. Virol. 2018, 90, 320–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilad, A.; Fricker, Z.P.; Hsieh, A.; Thomas, D.D.; Zahorian, T.; Nunes, D.P. Sustained improvement in type 2 diabetes mellitus is common after treatment of hepatitis C virus with direct-acting antiviral therapy. J. Clin. Gastroenterol. 2019, 53, 616–620. [Google Scholar] [CrossRef]
- Li, J.; Gordon, S.C.; Rupp, L.B.; Zhang, T.; Trudeau, S.; Holmberg, S.D. Sustained virological response does not improve long-term glycaemic control in patients with type 2 diabetes and chronic hepatitis C. Liver Int. 2019, 39, 1027–1032. [Google Scholar] [CrossRef]
- Boraie, M.B.M.; Elnaggar, Y.A.; Ahmed, M.O.; Mahmoud, A.M. Effect of direct acting antiviral therapy of chronic hepatitis C virus on insulin resistance and type 2 DM in Egyptian patients (prospective study). Diabetes Metab. Syndr. 2019, 13, 2641–2646. [Google Scholar] [CrossRef]
- Andres, J.; Barros, M.; Arutunian, M.; Zhao, H. Treatment of hepatitis C virus and long-term effect on glycemic control. J. Manag. Care Spec. Pharm. 2020, 26, 775–781. [Google Scholar] [CrossRef]
- Wong, A.H.; Sie, J.; Chen, A.; Gunawan, B.; Chung, J.; Rashid, N. Glycemic control after initiating direct-acting antiviral agents in patients with Hepatitis C and type 2 diabetes mellitus using the United States integrated healthcare system. J. Res. Pharm. Pract. 2020, 9, 16–23. [Google Scholar] [CrossRef]
- Zied, H.Y.; Abo Alnasr, N.M.; El-Bendary, A.S.; Abd-Elsalam, S.; Hagag, R.Y. Effect of treatment with direct antiviral agents (DAAs) on glycemic control in patients with type 2 diabetes mellitus and hepatitis C virus genotype 4. Diab. Metab. Syndr. 2020, 14, 679–682. [Google Scholar] [CrossRef]
- Ciancio, A.; Ribaldone, D.G.; Dotta, A.; Giordanino, C.; Sacco, M.; Fagoonee, S. Long-term follow-up of diabetic and non diabetic patients with chronic hepatitis C successfully treated with direct acting antiviral agents. Liver Int. 2021, 41, 276–287. [Google Scholar] [CrossRef] [PubMed]
Response | Blood | Liver | |||
---|---|---|---|---|---|
ALT | HBV DNA | HBsAg | Anti-HBs | cccDNA | |
Virologic | normal | undetectable | detected | undetectable | present |
Biochemical | normal | N/A | detected | undetectable | present |
Functional cure | normal | undetectable | undetectable | detected | present |
Complete cure | normal | undetectable | undetectable | detected | undetectable |
Author, Year, (Ref.) | Type of Study | Design | N. | Mean FPG Change (p) | Mean HbA1c Level Change (p) | Follow-Up |
---|---|---|---|---|---|---|
Hum et al., 2017 [178] | Observational | Retrospective | 2180 | Not determined | −0.37% (0.03) * | 48 weeks |
Dawood et al., 2017 [179] | Clinical trial | Open label | 378 | −23.4 mg/dL (N.A) | −0.45% (N.A.) | 12 weeks |
Ciancio et al., 2018 [180] | Observational | Prospective | 101 | −18.0 mg/dL (0.002) | −0.5% (<0.001) | 12 weeks |
Gilad et al., 2019 [181] | Observational | Retrospective | 122 | Not determined | −0.6% (0.001) | 1.5 years |
Li et al., 2019 [182] | Observational | Retrospective/Prospective | 192 | Not determined | −2.3 (<0.001) | 24 weeks |
Boraie et al., 2019 [183] | Observational | Prospective | 116 | −8.4 mg/dL (0.01) | 0.9% (0.008) | 12 weeks |
Andres et al., 2020 [184] | Observational | Retrospective | 310 | Not determined. | −0.27% (0.014) | 1.6 years |
Wong, 2020 [185] | Observational | Retrospective | 937 | Not determined | −0.39% (<0.0001) | 12 months |
Zied, 2020 [186] | Observational | Prospective | 100 | −107 mg/dL (0.005) | −0.41% (0.003) | 12 w |
Ciancio, 2021 [187] | Observational | Prospective | 141 | −15 mg/dL (0.001) | −0.7% (0.003) | 44.5 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saracco, G.M.; Marzano, A.; Rizzetto, M. Therapy of Chronic Viral Hepatitis: The Light at the End of the Tunnel? Biomedicines 2022, 10, 534. https://doi.org/10.3390/biomedicines10030534
Saracco GM, Marzano A, Rizzetto M. Therapy of Chronic Viral Hepatitis: The Light at the End of the Tunnel? Biomedicines. 2022; 10(3):534. https://doi.org/10.3390/biomedicines10030534
Chicago/Turabian StyleSaracco, Giorgio Maria, Alfredo Marzano, and Mario Rizzetto. 2022. "Therapy of Chronic Viral Hepatitis: The Light at the End of the Tunnel?" Biomedicines 10, no. 3: 534. https://doi.org/10.3390/biomedicines10030534
APA StyleSaracco, G. M., Marzano, A., & Rizzetto, M. (2022). Therapy of Chronic Viral Hepatitis: The Light at the End of the Tunnel? Biomedicines, 10(3), 534. https://doi.org/10.3390/biomedicines10030534