Assessment of Repetitive and Compulsive Behaviors Induced by Pramipexole in Rats: Effect of Alpha-Synuclein-Induced Nigrostriatal Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Hoarding Task (Experiment 1)
2.3. Post Training Signal Attenuation Test (PTSA, Experiment 2)
2.3.1. Magazine Training Sessions
2.3.2. Lever Press Training Sessions
2.3.3. Attenuation Sessions
2.3.4. Extinction Session (Test)
2.4. Alpha-Synuclein-Mediated Lesion and Assement of Akinesia
2.5. Treatment
2.6. Tissue Processing and Histopathological Analysis
2.6.1. Immunohistochemistry
2.6.2. Stereology
2.7. Statistical Analysis
3. Results
3.1. α-Synuclein-Induced Degeneration of Nigrostriatal TH Positive Neurons and Motor Impairment
3.2. Hoarding (Experiment 1)
3.3. PTSA (Experiment 2)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marques, A.; Durif, F.; Fernagut, P.-O. Impulse control disorders in Parkinson’s disease. J. Neural Transm. 2018, 125, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Voon, V.; Napier, T.C.; Frank, M.J.; Sgambato-Faure, V.; Grace, A.A.; Oroz, M.C.R.; Obeso, J.; Bezard, E.; Fernagut, P.-O. Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: An update. Lancet Neurol. 2017, 16, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Weintraub, D.; David, A.; Evans, A.H.; Grant, J.E.; Stacy, M. Clinical spectrum of impulse control disorders in Parkinson’s disease. Mov. Disord. 2015, 30, 121–127. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.S.; Djamshidian, A.; Evans, A.H.; Loane, C.M.; Lees, A.J.; Lawrence, A.D. Excessive hoarding in Parkinson’s disease. Mov. Disord. 2010, 25, 1026–1033. [Google Scholar] [CrossRef]
- Voon, V.; Schoerling, A.; Wenzel, S.; Ekanayake, V.; Reiff, J.; Trenkwalder, C.; Sixel-Döring, F. Frequency of impulse control behaviours associated with dopaminergic therapy in restless legs syndrome. BMC Neurol. 2011, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, S.M.C.; Baranoff, J.; Rushworth, R.L.; Butler, J.; Sorbello, J.; Vorster, J.; Thompson, T.; McCormack, A.I.; Inder, W.; Torpy, D.J. Impulse control disorders in dopamine agonist-treated hyperprolactinemia: Prevalence and risk factors. J. Clin. Endocrinol. Metab. 2020, 105, e108–e118. [Google Scholar] [CrossRef]
- Decourt, M.; Jiménez-Urbieta, H.; Benoit-Marand, M.; Fernagut, P.-O. Neuropsychiatric and cognitive deficits in Parkinson’s disease and their modeling in rodents. Biomedicines 2021, 9, 684. [Google Scholar] [CrossRef]
- Engeln, M.; Ansquer, S.; Dugast, E.; Bezard, E.; Belin, D.; Fernagut, P.-O. Multi-facetted impulsivity following nigral degeneration and dopamine replacement therapy. Neuropharmacology 2016, 109, 69–77. [Google Scholar] [CrossRef]
- Jiménez-Urbieta, H.; Gago, B.; Quiroga-Varela, A.; Rodríguez-Chinchilla, T.; Galán, L.M.; Oregi, A.; Belloso-Iguerategui, A.; Delgado-Alvarado, M.; Navalpotro-Gómez, I.; Marin, C.; et al. Pramipexole-induced impulsivity in mildparkinsonian rats: A model of impulse control disorders in Parkinson’s disease. Neurobiol. Aging 2019, 75, 126–135. [Google Scholar] [CrossRef]
- Tedford, S.E.; Persons, A.L.; Napier, T.C. Dopaminergic lesions of the dorsolateral striatum in rats increase delay discounting in an impulsive choice task. PLoS ONE 2015, 10, e0122063. [Google Scholar] [CrossRef] [Green Version]
- Rokosik, S.L.; Napier, T.C. Pramipexole-induced increased probabilistic discounting: Comparison between a rodent model of Parkinson’s disease and controls. Neuropsychopharmacology 2012, 37, 1397–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.; Silveira, M.M.; Kaur, S.; Hosking, J.G.; Adams, W.K.; Baunez, C.; Winstanley, C.A. Chronic D2/3agonist ropinirole treatment increases preference for uncertainty in rats regardless of baseline choice patterns. Eur. J. Neurosci. 2016, 45, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustine, A.; Winstanley, C.A.; Krishnan, V. Impulse control disorders in Parkinson’s disease: From bench to bedside. Front. Neurosci. 2021, 15, 654238. [Google Scholar] [CrossRef] [PubMed]
- Joel, D. The signal attenuation rat model of obsessive–compulsive disorder: A review. Psychopharmacology 2006, 186, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Joel, D.; Doljansky, J. Selective alleviation of compulsive lever-pressing in rats by D1, but not D2, blockade: Possible implications for the involvement of D1 Receptors in obsessive–compulsive disorder. Neuropsychopharmacology 2003, 28, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdenx, M.; Dovero, S.; Engeln, M.; Bido, S.; Bastide, M.F.; Dutheil, N.; Vollenweider, I.; Baud, L.; Piron, C.; Grouthier, V.; et al. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol. Commun. 2015, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Engeln, M.; Fasano, S.; Ahmed, S.H.; Cador, M.; Baekelandt, V.; Bezard, E.; Fernagut, P.-O. Levodopa gains psychostimulant-like properties after nigral dopaminergic loss. Ann. Neurol. 2013, 74, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Olsson, M.; Nikkhah, G.; Bentlage, C.; Björklund, A. Forelimb akinesia in the rat Parkinson model: Differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J. Neurosci. 1995, 15, 3863–3875. [Google Scholar] [CrossRef]
- Maj, J.; Rogóż, Z.; Skuza, G.; Kołodziejczyk, K. The behavioural effects of pramipexole, a novel dopamine receptor agonist. Eur. J. Pharmacol. 1997, 324, 31–37. [Google Scholar] [CrossRef]
- Kelley, A.E.; Stinus, L. Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with l-dopa. Behav. Neurosci. 1985, 99, 531–545. [Google Scholar] [CrossRef]
- Li, F.; Cao, W.; Li, M.; Xu, Y.; Zhang, J.; Luo, X.; Dai, R.; Zhou, X.; Li, C. A simple method for detection of food foraging behavior in the rat: Involvement of NMDA and dopamine receptors in the behavior. Neuroscience 2012, 205, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Joel, D.; Avisar, A. Excessive lever pressing following post-training signal attenuation in rats: A possible animal model of obsessive compulsive disorder? Behav. Brain Res. 2001, 123, 77–87. [Google Scholar] [CrossRef]
- Sesia, T.; Bizup, B.; Grace, A.A. Evaluation of animal models of obsessive-compulsive disorder: Correlation with phasic dopamine neuron activity. Int. J. Neuropsychopharmacol. 2013, 16, 1295–1307. [Google Scholar] [CrossRef] [Green Version]
- Szechtman, H.; Ahmari, S.E.; Beninger, R.J.; Eilam, D.; Harvey, B.H.; Edemann-Callesen, H.; Winter, C. Obsessive-compulsive disorder: Insights from animal models. Neurosci. Biobehav. Rev. 2017, 76, 254–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dardou, D.; Reyrolle, L.; Chassain, C.; Durif, F. Chronic pramipexole treatment induces compulsive behavior in rats with 6-OHDA lesions of the substantia nigra and ventral tegmental area. Behav. Brain Res. 2017, 332, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Joel, D.; Avisar, A.; Doljansky, J. Enhancement of excessive lever-pressing after post-training signal attenuation in rats by repeated administration of the D-sub-1 antagonist SCH 23390 or the D-sub-2 agonist quinpirole, but not the D-sub-1 agonist SKF 38393 or the D-sub-2 antagonist haloperidol. Behav. Neurosci. 2001, 115, 1291–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernoloz, O.; El Mansari, M.; Blier, P. Sustained administration of pramipexole modifies the spontaneous firing of dopamine, norepinephrine, and serotonin neurons in the rat brain. Neuropsychopharmacology 2008, 34, 651–661. [Google Scholar] [CrossRef]
- Durcan, M.J.; Fulker, D.W.; Campbell, I.C. Differences in the stereotypy response but not the hypomotility response to apomorphine in the roman high and low avoiding strains of rats. Psychopharmacology 1984, 82, 215–220. [Google Scholar] [CrossRef]
- Gimenezllort, L.; Canete, T.; Masip, M.G.; Fernandez-Teruel, A.; Tobena, A. Two distinctive apomorphine-induced phenotypes in the Roman high- and low-avoidance rats. Physiol. Behav. 2005, 86, 458–466. [Google Scholar] [CrossRef]
- Sanna, F.; Corda, M.G.; Melis, M.R.; Piludu, M.A.; Löber, S.; Hübner, H.; Gmeiner, P.; Argiolas, A.; Giorgi, O. Dopamine agonist-induced penile erection and yawning: A comparative study in outbred Roman high- and low-avoidance rats. Pharmacol. Biochem. Behav. 2013, 109, 59–66. [Google Scholar] [CrossRef]
- Cilia, R.; Ko, J.H.; Cho, S.S.; van Eimeren, T.; Marotta, G.; Pellecchia, G.; Pezzoli, G.; Antonini, A.; Strafella, A.P. Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiol. Dis. 2010, 39, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; Xie, S.X.; Weintraub, D. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. J. Neurol. Neurosurg. Psychiatry 2016, 87, 864–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voon, V.; Rizos, A.; Chakravartty, R.; Mulholland, N.; Robinson, S.; Howell, N.A.; Harrison, N.; Vivian, G.; Chaudhuri, K.R. Impulse control disorders in Parkinson’s disease: Decreased striatal dopamine transporter levels. J. Neurol. Neurosurg. Psychiatry 2014, 85, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammes, J.; Theis, H.; Giehl, K.; Hoenig, M.C.; Greuel, A.; Tittgemeyer, M.; Timmermann, L.; Fink, G.R.; Drzezga, A.; Eggers, C.; et al. Dopamine metabolism of the nucleus accumbens and fronto-striatal connectivity modulate impulse control. Brain 2019, 142, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Ms, E.M.; Detre, J.A.; Siderowf, A.D.; Stern, M.B.; Potenza, M.N.; Weintraub, D. Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Mov. Disord. 2010, 25, 1660–1669. [Google Scholar] [CrossRef] [Green Version]
- Theis, H.; Probst, C.; Fernagut, P.-O.; van Eimeren, T. Unlucky punches: The vulnerability-stress model for the development of impulse control disorders in Parkinson’s disease. NPJ Park. Dis. 2021, 7, 112. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Decourt, M.; Balado, E.; Jiménez-Urbieta, H.; Francheteau, M.; Fernagut, P.-O.; Benoit-Marand, M. Assessment of Repetitive and Compulsive Behaviors Induced by Pramipexole in Rats: Effect of Alpha-Synuclein-Induced Nigrostriatal Degeneration. Biomedicines 2022, 10, 542. https://doi.org/10.3390/biomedicines10030542
Decourt M, Balado E, Jiménez-Urbieta H, Francheteau M, Fernagut P-O, Benoit-Marand M. Assessment of Repetitive and Compulsive Behaviors Induced by Pramipexole in Rats: Effect of Alpha-Synuclein-Induced Nigrostriatal Degeneration. Biomedicines. 2022; 10(3):542. https://doi.org/10.3390/biomedicines10030542
Chicago/Turabian StyleDecourt, Mélina, Eric Balado, Haritz Jiménez-Urbieta, Maureen Francheteau, Pierre-Olivier Fernagut, and Marianne Benoit-Marand. 2022. "Assessment of Repetitive and Compulsive Behaviors Induced by Pramipexole in Rats: Effect of Alpha-Synuclein-Induced Nigrostriatal Degeneration" Biomedicines 10, no. 3: 542. https://doi.org/10.3390/biomedicines10030542
APA StyleDecourt, M., Balado, E., Jiménez-Urbieta, H., Francheteau, M., Fernagut, P. -O., & Benoit-Marand, M. (2022). Assessment of Repetitive and Compulsive Behaviors Induced by Pramipexole in Rats: Effect of Alpha-Synuclein-Induced Nigrostriatal Degeneration. Biomedicines, 10(3), 542. https://doi.org/10.3390/biomedicines10030542