Artificial Intelligence for Risk Prediction of End-Stage Renal Disease in Sepsis Survivors with Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Input Features
2.3. Outcomes and Class Definition
2.4. Construction of Machine Learning Models
3. Results
3.1. Study Population
3.2. Model Performance for Predicting End-Stage Renal Disease Development
3.3. Feature Importance
3.4. Performance of Machine Learning Model Versus Kidney Failure Risk Equation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Dhainaut, J.F.; Claessens, Y.E.; Janes, J.; Nelson, D.R. Underlying disorders and their impact on the host response to infection. Clin. Infect. Dis. 2005, 41 (Suppl. 7), S481–S489. [Google Scholar] [CrossRef] [Green Version]
- Doi, K.; Leelahavanichkul, A.; Hu, X.; Sidransky, K.L.; Zhou, H.; Qin, Y.; Eisner, C.; Schnermann, J.; Yuen, P.S.; Star, R.A. Pre-existing renal disease promotes sepsis-induced acute kidney injury and worsens outcome. Kidney Int. 2008, 74, 1017–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leelahavanichkul, A.; Huang, Y.; Hu, X.; Zhou, H.; Tsuji, T.; Chen, R.; Kopp, J.B.; Schnermann, J.; Yuen, P.S.; Star, R.A. Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney Int. 2011, 80, 1198–1211. [Google Scholar] [CrossRef] [Green Version]
- Arshad, A.; Ayaz, A.; Rehman, S.; Ukrani, R.D.; Akbar, I.; Jamil, B. Progression of Acute Kidney Injury to Chronic Kidney Disease in Sepsis Survivors: 1-Year Follow-Up Study. J. Intensive Care Med. 2021, 36, 1366–1370. [Google Scholar] [CrossRef]
- Chua, H.R.; Wong, W.K.; Ong, V.H.; Agrawal, D.; Vathsala, A.; Tay, H.M.; Mukhopadhyay, A. Extended Mortality and Chronic Kidney Disease After Septic Acute Kidney Injury. J. Intensive Care Med. 2020, 35, 527–535. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Peerapornratana, S.; Manrique-Caballero, C.L.; Gomez, H.; Kellum, J.A. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019, 96, 1083–1099. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; George, C.; Bellomo, R.; Committe, A.D.M. A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol. Dial. Transpl. 2008, 23, 1569–1574. [Google Scholar] [CrossRef] [Green Version]
- Gomez, H.; Ince, C.; De Backer, D.; Pickkers, P.; Payen, D.; Hotchkiss, J.; Kellum, J.A. A unified theory of sepsis-induced acute kidney injury: Inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 2014, 41, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagshaw, S.M.; Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, N.; et al. Septic acute kidney injury in critically ill patients: Clinical characteristics and outcomes. Clin. J. Am. Soc. Nephrol. 2007, 2, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, E.; Antonelli, M.; Wittebole, X.; Nanchal, R.; Francois, B.; Sakr, Y.; Vincent, J.L.; Pickkers, P. A worldwide multicentre evaluation of the influence of deterioration or improvement of acute kidney injury on clinical outcome in critically ill patients with and without sepsis at ICU admission: Results from The Intensive Care Over Nations audit. Crit. Care 2018, 22, 188. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, Z.; Chen, Y.; Wu, H.; Zhang, S.; Chen, X. Prediction Value of Serum NGAL in the Diagnosis and Prognosis of Experimental Acute and Chronic Kidney Injuries. Biomolecules 2020, 10, 981. [Google Scholar] [CrossRef]
- Haase, M.; Bellomo, R.; Devarajan, P.; Schlattmann, P.; Haase-Fielitz, A.; Group, N.M.-a.I. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: A systematic review and meta-analysis. Am. J. Kidney Dis. 2009, 54, 1012–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Parikh, C.R. Current concepts and advances in biomarkers of acute kidney injury. Crit. Rev. Clin. Lab. Sci. 2021, 58, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Tomasev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.; Meyer, C.; Ravuri, S.; Protsyuk, I.; et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019, 572, 116–119. [Google Scholar] [CrossRef]
- Luo, X.Q.; Yan, P.; Zhang, N.Y.; Luo, B.; Wang, M.; Deng, Y.H.; Wu, T.; Wu, X.; Liu, Q.; Wang, H.S.; et al. Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis. Sci. Rep. 2021, 11, 20269. [Google Scholar] [CrossRef]
- Tseng, P.Y.; Chen, Y.T.; Wang, C.H.; Chiu, K.M.; Peng, Y.S.; Hsu, S.P.; Chen, K.L.; Yang, C.Y.; Lee, O.K. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit. Care 2020, 24, 478. [Google Scholar] [CrossRef]
- Beretta, L.; Santaniello, A. Nearest neighbor imputation algorithms: A critical evaluation. BMC Med. Inform. Decis. Mak. 2016, 16 (Suppl. 3), 74. [Google Scholar] [CrossRef] [Green Version]
- Tangri, N.; Stevens, L.A.; Griffith, J.; Tighiouart, H.; Djurdjev, O.; Naimark, D.; Levin, A.; Levey, A.S. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011, 305, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumida, K.; Nadkarni, G.N.; Grams, M.E.; Sang, Y.; Ballew, S.H.; Coresh, J.; Matsushita, K.; Surapaneni, A.; Brunskill, N.; Chadban, S.J.; et al. Conversion of Urine Protein-Creatinine Ratio or Urine Dipstick Protein to Urine Albumin-Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis: An Individual Participant-Based Meta-analysis. Ann. Intern. Med. 2020, 173, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Poston, J.T.; Koyner, J.L. Sepsis associated acute kidney injury. BMJ 2019, 364, k4891. [Google Scholar] [CrossRef]
- Gameiro, J.; Carreiro, C.; Fonseca, J.A.; Pereira, M.; Jorge, S.; Gouveia, J.; Lopes, J.A. Acute kidney disease and long-term outcomes in critically ill acute kidney injury patients with sepsis: A cohort analysis. Clin. Kidney J. 2021, 14, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Prescott, H.C.; Langa, K.M.; Iwashyna, T.J. Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions. JAMA 2015, 313, 1055–1057. [Google Scholar] [CrossRef] [PubMed]
- Tangri, N.; Grams, M.E.; Levey, A.S.; Coresh, J.; Appel, L.J.; Astor, B.C.; Chodick, G.; Collins, A.J.; Djurdjev, O.; Elley, C.R.; et al. Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure: A Meta-analysis. JAMA 2016, 315, 164–174. [Google Scholar] [CrossRef] [Green Version]
- James, M.T.; Ghali, W.A.; Tonelli, M.; Faris, P.; Knudtson, M.L.; Pannu, N.; Klarenbach, S.W.; Manns, B.J.; Hemmelgarn, B.R. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function. Kidney Int. 2010, 78, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.; Quinn, R.R.; Luo, J.; Li, P.; Scales, D.C.; Mamdani, M.M.; Ray, J.G.; University of Toronto Acute Kidney Injury Research Group. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 2009, 302, 1179–1185. [Google Scholar] [CrossRef] [Green Version]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef] [Green Version]
- James, M.T.; Levey, A.S.; Tonelli, M.; Tan, Z.; Barry, R.; Pannu, N.; Ravani, P.; Klarenbach, S.W.; Manns, B.J.; Hemmelgarn, B.R. Incidence and Prognosis of Acute Kidney Diseases and Disorders Using an Integrated Approach to Laboratory Measurements in a Universal Health Care System. JAMA Netw. Open 2019, 2, e191795. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chinchilli, V.M.; Coca, S.; Devarajan, P.; Ghahramani, N.; Go, A.S.; Hsu, R.K.; Ikizler, T.A.; Kaufman, J.; Liu, K.D.; et al. Post-Acute Kidney Injury Proteinuria and Subsequent Kidney Disease Progression: The Assessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) Study. JAMA Intern. Med. 2020, 180, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B.; et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefansson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef] [PubMed]
- Leem, A.Y.; Park, M.S.; Park, B.H.; Jung, W.J.; Chung, K.S.; Kim, S.Y.; Kim, E.Y.; Jung, J.Y.; Kang, Y.A.; Kim, Y.S.; et al. Value of Serum Cystatin C Measurement in the Diagnosis of Sepsis-Induced Kidney Injury and Prediction of Renal Function Recovery. Yonsei Med. J. 2017, 58, 604–612. [Google Scholar] [CrossRef]
- Huang, Y.; Don-Wauchope, A.C. The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: A systematic review. Inflamm. Allergy Drug Targets 2011, 10, 260–271. [Google Scholar] [CrossRef]
- Doi, K.; Noiri, E.; Maeda-Mamiya, R.; Ishii, T.; Negishi, K.; Hamasaki, Y.; Fujita, T.; Yahagi, N.; Koide, H.; Sugaya, T.; et al. Urinary L-type fatty acid-binding protein as a new biomarker of sepsis complicated with acute kidney injury. Crit. Care Med. 2010, 38, 2037–2042. [Google Scholar] [CrossRef]
- Vanmassenhove, J.; Glorieux, G.; Lameire, N.; Hoste, E.; Dhondt, A.; Vanholder, R.; Van Biesen, W. Influence of severity of illness on neutrophil gelatinase-associated lipocalin performance as a marker of acute kidney injury: A prospective cohort study of patients with sepsis. BMC Nephrol. 2015, 16, 18. [Google Scholar] [CrossRef] [Green Version]
All | Training Set | Validation Set | |
---|---|---|---|
(n = 11,661) | (n = 8162) | (n = 3499) | |
Demographic and Clinical Characteristics | |||
Age, years | 76.7 (63.3, 85.5) | 76.7 (63.3, 85.5) | 76.7 (63.1, 85.6) |
Male sex, n (%) | 6927 (59.4) | 4865 (59.6) | 2062 (58.9) |
Smoking, n (%) | 4289 (36.8) | 3009 (36.9) | 1280 (36.6) |
Alcohol consumption, n (%) | 3291 (28.2) | 2318 (28.4) | 973 (27.8) |
ICU admission, n (%) | 6367 (54.6) | 4457 (54.6) | 1910 (54.6) |
Use of mechanical ventilators, n (%) | 4291 (36.8) | 3004 (36.8) | 1287 (36.8) |
Use of inotropic agents, n (%) | 5562 (47.7) | 3893 (47.7) | 1669 (47.7) |
Underlying Comorbidities | |||
Hypertension, n (%) | 7540 (64.7) | 5270 (64.6) | 2270 (64.9) |
Diabetes mellitus, n (%) | 6046 (51.8) | 4234 (51.9) | 1812 (51.8) |
Coronary artery disease, n (%) | 3576 (30.7) | 2511 (30.8) | 1065 (30.4) |
Heart failure, n (%) | 2551 (21.9) | 1792 (22.0) | 759 (21.7) |
Peptic ulcer disease, n (%) | 2822 (24.2) | 1990 (24.4) | 832 (23.8) |
COPD, n (%) | 2267 (19.4) | 1606 (19.7) | 661 (18.9) |
Malignancy, n (%) | 4886 (41.9) | 3422 (41.9) | 1464 (41.8) |
Charlson comorbidity index | 4 (3, 6) | 4 (3, 6) | 4 (2, 6) |
Laboratory Data at Hospital Discharge | |||
White blood cells,/mm3 | 8100 (5700, 11,900) | 8100 (5700, 11,900) | 8100 (5700, 12,000) |
HGB, g/dL | 10.5 (9.3, 12.0) | 10.5 (9.3, 12.0) | 10.5 (9.3, 12.0) |
Total cholesterol, mg/dL | 160.0 (134.0, 188.0) | 160.0 (134.0, 189.0) | 159.0 (133.0, 187.0) |
LDL-C, mg/dL | 91.0 (70.0, 114.0) | 91.0 (70.0, 115.0) | 91.0 (69.0, 113.0) |
HDL-C, mg/dL | 41.0 (32.0, 51.0) | 41.0 (32.0, 51.0) | 41.0 (32.0, 51.0) |
Glucose, mg/dL | 116.0 (95.0, 156.0) | 116.0 (94.0, 155.0) | 117.0 (95.0, 157.0) |
Uric acid, mg/dL | 5.5 (4.1, 7.1) | 5.5 (4.1, 7.1) | 5.6 (4.1, 7.1) |
HbA1c, % | 7.2 (6.1, 10.3) | 7.1 (6.1, 10.3) | 7.2 (6.1, 10.5) |
Albumin, mg/dL | 3.0 (2.6, 3.4) | 3.0 (2.6, 3.4) | 3.0 (2.6, 3.4) |
Blood urea nitrogen, mg/dL | 24.0 (14.0, 51.0) | 24.0 (14.0, 51.0) | 24.0 (14.0, 50.0) |
Creatinine, mg/dL | 1.1 (0.7, 2.1) | 1.1 (0.7, 2.2) | 1.1 (0.7, 2.1) |
eGFR, mL/min/1.73 m2 * | 59.3 (35.5, 83.6) | 59.2 (33.4, 83.6) | 59.3 (35.1, 83.2) |
C-reactive protein, mg/dL | 3.4 (1.2, 9.0) | 3.4 (1.2, 9.1) | 3.3 (1.1, 8.7) |
Sodium, mmol/L | 139.0 (135.0, 142.0) | 139.0 (135.0, 142.0) | 139.0 (135.0, 142.0) |
Potassium, mmol/L | 4.1 (3.6, 4.6) | 4.1 (3.6, 4.6) | 4.1 (3.6, 4.6) |
Chloride, mmol/L | 103.0 (98.0, 106.0) | 103.0 (98.0, 106.0) | 103.0 (98.0, 106.0) |
Calcium, mg/dL | 8.5 (8.0, 9.0) | 8.5 (8.0, 9.0) | 8.5 (8.0, 9.0) |
Phosphate, mg/dL | 3.3 (2.6, 4.0) | 3.3 (2.6, 4.0) | 3.3 (2.7, 4.1) |
Bicarbonate, mmol/L | 23.7 (19.3, 28.0) | 23.7 (19.3, 28.0) | 23.8 (19.4, 28.0) |
INR | 1.1 (1.0, 1.2) | 1.1 (1.0, 1.2) | 1.1 (1.0, 1.2) |
aPTT, seconds | 29.9 (27.1, 34.0) | 29.9 (27.2, 34.2) | 29.9 (27.1, 33.8) |
D-dimer, ug/mL | 3.6 (1.6, 8.1) | 3.6 (1.5, 7.7) | 3.9 (1.8, 9.3) |
Lactate dehydrogenase, U/L | 253.0 (196.0, 361.0) | 252.0 (196.0, 361.0) | 255.0 (197.0, 361.0) |
NT-pro-BNP, pg/mL | 3146.0 (836.5, 11,617.0) | 3142.0 (823.8, 11,648.5) | 3185.0 (856.8, 11,580.8) |
Total bilirubin, mg/dL | 0.6 (0.4, 1.1) | 0.6 (0.4, 1.1) | 0.6 (0.4, 1.1) |
Alanine transaminase, U/L | 25.0 (15.0, 44.0) | 25.0 (15.0, 45.0) | 25.0 (15.0, 44.0) |
Aspartate transaminase, U/L | 29.0 (20.0, 51.0) | 29.0 (20.0, 51.0) | 29.0 (20.0, 50.0) |
Alkaline phosphatase, U/L | 95.0 (70.0, 147.0) | 95.0 (69.0, 147.0) | 94.0 (70.0, 147.0) |
Gamma-glutamyl transferase, U/L | 54.0 (25.0, 125.0) | 53.0 (25.0, 125.0) | 54.0 (24.0, 126.0) |
UPCR, mg/mg | 0.43 (0.13, 1.72) | 0.44 (0.13, 1.73) | 0.40 (0.12, 1.67) |
Concomitant Medications | |||
Calcium channel blockers, n (%) | 6412 (55.0) | 4517 (55.3) | 1895 (54.2) |
Beta-blockers, n (%) | 5164 (44.3) | 3636 (44.5) | 1528 (43.7) |
Alpha-blockers, n (%) | 3672 (31.5) | 2592 (31.8) | 1080 (30.9) |
RAS inhibitors, n (%) | 5710 (49.0) | 3969 (48.6) | 1741 (49.8) |
Anti-platelets, n (%) | 4472 (38.4) | 3154 (38.6) | 1318 (37.7) |
Nitrates, n (%) | 3195 (27.4) | 2236 (27.4) | 959 (27.4) |
Warfarin, n (%) | 758 (6.5) | 538 (6.6) | 220 (6.3) |
Statins, n (%) | 2903 (24.9) | 2028 (24.8) | 875 (25.0) |
Diuretics, n (%) | 2414 (20.7) | 1690 (20.7) | 724 (20.7) |
NSAID, n (%) | 5550 (47.6) | 3885 (47.6) | 1665 (47.6) |
COX-2 inhibitors, n (%) | 1633 (14.0) | 1143 (14.0) | 490 (14.0) |
Metformin, n (%) | 1703 (14.6) | 1192 (14.6) | 511 (14.6) |
Sulfonylurea, n (%) | 1085 (9.3) | 760 (9.3) | 325 (9.3) |
Meglitinide analogues, n (%) | 1050 (9.0) | 735 (9.0) | 315 (9.0) |
SGLT2 inhibitors, n (%) | 47 (0.4) | 33 (0.4) | 14 (0.4) |
Dipeptidyl peptidase-4 inhibitors, n (%) | 1330 (11.4) | 931 (11.4) | 399 (11.4) |
Insulin, n (%) | 5543 (47.5) | 3895 (47.7) | 1648 (47.1) |
Model | AUC | Accuracy | F1 | Precision | Recall | Average Precision | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|
GBDT | 0.879 | 0.891 | 0.716 | 0.853 | 0.617 | 0.784 | 0.969 | 0.617 |
LGBM | 0.868 | 0.889 | 0.712 | 0.851 | 0.612 | 0.782 | 0.969 | 0.612 |
Extra-trees | 0.865 | 0.878 | 0.661 | 0.876 | 0.531 | 0.754 | 0.978 | 0.531 |
Random forest | 0.864 | 0.860 | 0.565 | 0.927 | 0.406 | 0.765 | 0.991 | 0.406 |
XGBoost | 0.859 | 0.885 | 0.708 | 0.820 | 0.623 | 0.769 | 0.961 | 0.623 |
Logistic regression | 0.854 | 0.869 | 0.665 | 0.780 | 0.580 | 0.733 | 0.953 | 0.580 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-H.; Chu, Y.-C.; Tsai, M.-T.; Tseng, W.-C.; Lin, Y.-P.; Ou, S.-M.; Tarng, D.-C. Artificial Intelligence for Risk Prediction of End-Stage Renal Disease in Sepsis Survivors with Chronic Kidney Disease. Biomedicines 2022, 10, 546. https://doi.org/10.3390/biomedicines10030546
Lee K-H, Chu Y-C, Tsai M-T, Tseng W-C, Lin Y-P, Ou S-M, Tarng D-C. Artificial Intelligence for Risk Prediction of End-Stage Renal Disease in Sepsis Survivors with Chronic Kidney Disease. Biomedicines. 2022; 10(3):546. https://doi.org/10.3390/biomedicines10030546
Chicago/Turabian StyleLee, Kuo-Hua, Yuan-Chia Chu, Ming-Tsun Tsai, Wei-Cheng Tseng, Yao-Ping Lin, Shuo-Ming Ou, and Der-Cherng Tarng. 2022. "Artificial Intelligence for Risk Prediction of End-Stage Renal Disease in Sepsis Survivors with Chronic Kidney Disease" Biomedicines 10, no. 3: 546. https://doi.org/10.3390/biomedicines10030546
APA StyleLee, K.-H., Chu, Y.-C., Tsai, M.-T., Tseng, W.-C., Lin, Y.-P., Ou, S.-M., & Tarng, D.-C. (2022). Artificial Intelligence for Risk Prediction of End-Stage Renal Disease in Sepsis Survivors with Chronic Kidney Disease. Biomedicines, 10(3), 546. https://doi.org/10.3390/biomedicines10030546