Urinary Galectin-3 as a Novel Biomarker for the Prediction of Renal Fibrosis and Kidney Disease Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Populations
2.2. Clinical Variables
2.3. Blood and Urine Sampling and Gal-3 Measurement
2.4. Kidney Biopsy Specimen Analysis
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. Associations of the Urinary Gal-3 Level with Plasma Gal-3, eGFR, Creatinine and Proteinuria
3.3. Association of the Urinary Gal-3 Levels with Kidney Disease Progression
3.4. NRI, IDI, AIC, BIC and Adjusted R2 for the Combined Assessment of eGFR and Gal-3 in Predicting Kidney Disease Progression
3.5. Associations of the Urinary Gal-3 Level with the Histopathological Findings in Kidney Biopsy Specimens
3.6. Associations of the Intrarenal RNA Expression of LGALS3, Known CKD Biomarkers and Fibrosis-Associated Genes in Kidney Biopsy Specimens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cockwell, P.; Fisher, L.A. The global burden of chronic kidney disease. Lancet 2020, 395, 662–664. [Google Scholar] [CrossRef] [Green Version]
- Parmar, M.S. Chronic renal disease. BMJ 2002, 325, 85–90. [Google Scholar] [CrossRef]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Harpole, M.; Davis, J.; Espina, V. Current state of the art for enhancing urine biomarker discovery. Expert Rev. Proteom. 2016, 13, 609–626. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.E.; Sexton, W.; Benson, K.; Sutphen, R.; Koomen, J. Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiol. Prev. Biomark. 2010, 19, 953–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandi-Nejad, K.; Eddy, A.A.; Glassock, R.J.; Brenner, B.M. Why is proteinuria an ominous biomarker of progressive kidney disease? Kidney Int. 2004, 66, S76–S89. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Tang, J.W.; Owusu, L.; Sun, M.Z.; Wu, J.; Zhang, J. Galectin-3 in cancer. Clin. Chim. Acta 2014, 431, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Funasaka, T.; Raz, A.; Nangia-Makker, P. Galectin-3 in angiogenesis and metastasis. Glycobiology 2014, 24, 886–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, N.C.; Sethi, T. The regulation of inflammation by galectin-3. Immunol. Rev. 2009, 230, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Li, L.C.; Li, J.; Gao, J. Functions of galectin-3 and its role in fibrotic diseases. J. Pharmacol. Exp. Ther. 2014, 351, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Mackinnon, A.C.; Gibbons, M.A.; Farnworth, S.L.; Leffler, H.; Nilsson, U.J.; Delaine, T.; Simpson, A.J.; Forbes, S.J.; Hirani, N.; Gauldie, J.; et al. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am. J. Respir. Crit. Care Med. 2012, 185, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Calvier, L.; Martinez-Martinez, E.; Miana, M.; Cachofeiro, V.; Rousseau, E.; Sádaba, J.R.; Zannad, F.; Rossignol, P.; López-Andrés, N. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC Heart Fail. 2015, 3, 59–67. [Google Scholar] [CrossRef] [PubMed]
- O’Seaghdha, C.M.; Hwang, S.J.; Ho, J.E.; Vasan, R.S.; Levy, D.; Fox, C.S. Elevated galectin-3 precedes the development of CKD. J. Am. Soc. Nephrol. 2013, 24, 1470–1477. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.; Shrestha, K.; Shao, Z.; Borowski, A.G.; Troughton, R.W.; Thomas, J.D.; Klein, A.L. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am. J. Cardiol. 2011, 108, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotomayor, C.G.; Te Velde-Keyzer, C.A.; Diepstra, A.; van Londen, M.; Pol, R.A.; Post, A.; Gans, R.O.B.; Nolte, I.M.; Slart, R.; de Borst, M.H.; et al. Galectin-3 and Risk of Late Graft Failure in Kidney Transplant Recipients: A 10-year Prospective Cohort Study. Transplantation 2021, 105, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.M.; Tsai, M.T.; Chen, H.Y.; Li, F.A.; Tseng, W.C.; Lee, K.H.; Chang, F.P.; Lin, Y.P.; Yang, R.B.; Tarng, D.C. Identification of Galectin-3 as Potential Biomarkers for Renal Fibrosis by RNA-Sequencing and Clinicopathologic Findings of Kidney Biopsy. Front. Med. 2021, 8, 748225. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Maksimowski, N.A.; Song, X.; Bae, E.H.; Reich, H.; John, R.; Pei, Y.; Scholey, J.W.; Nephrotic Syndrome Study Network. Follistatin-Like-1 (FSTL1) Is a Fibroblast-Derived Growth Factor That Contributes to Progression of Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 9513. [Google Scholar] [CrossRef]
- Perkovic, V.; Koitka-Weber, A.; Cooper, M.E.; Schernthaner, G.; Pfarr, E.; Woerle, H.J.; von Eynatten, M.; Wanner, C. Choice of endpoint in kidney outcome trials: Considerations from the EMPA-REG OUTCOME® trial. Nephrol. Dial. Transplant. 2020, 35, 2103–2111. [Google Scholar] [CrossRef]
- Tsai, M.T.; Tseng, W.C.; Ou, S.M.; Lee, K.H.; Yang, C.Y.; Tarng, D.C. Comparison of Simplified Creatinine Index and Systemic Inflammatory Markers for Nutritional Evaluation of Hemodialysis Patients. Nutrients 2021, 13, 1870. [Google Scholar] [CrossRef]
- Ko, T.M.; Kuo, H.C.; Chang, J.S.; Chen, S.P.; Liu, Y.M.; Chen, H.W.; Tsai, F.J.; Lee, Y.C.; Chen, C.H.; Wu, J.Y.; et al. CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease. Circ. Res. 2015, 116, 876–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lousa, I.; Reis, F.; Beirão, I.; Alves, R.; Belo, L.; Santos-Silva, A. New Potential Biomarkers for Chronic Kidney Disease Management-A Review of the Literature. Int. J. Mol. Sci. 2020, 22, 43. [Google Scholar] [CrossRef] [PubMed]
- Zehra, M.; Curry, J.C.; Pillai, S.S.; Lakhani, H.V.; Edwards, C.E.; Sodhi, K. Elucidating Potential Profibrotic Mechanisms of Emerging Biomarkers for Early Prognosis of Hepatic Fibrosis. Int. J. Mol. Sci. 2020, 21, 4737. [Google Scholar] [CrossRef]
- Meersch, M.; Schmidt, C.; Van Aken, H.; Martens, S.; Rossaint, J.; Singbartl, K.; Görlich, D.; Kellum, J.A.; Zarbock, A. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE 2014, 9, e93460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayan, A.; Faubel, S.; Askenazi, D.J.; Cerda, J.; Fissell, W.H.; Heung, M.; Humphreys, B.D.; Koyner, J.L.; Liu, K.D.; Mour, G.; et al. Clinical Use of the Urine Biomarker [TIMP-2] × [IGFBP7] for Acute Kidney Injury Risk Assessment. Am. J. Kidney Dis. 2016, 68, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.I.; Lau, L.F. Resolution of organ fibrosis. J. Clin. Investig. 2018, 128, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.R.; Ridker, P.M. Advances in measuring the effect of individual predictors of cardiovascular risk: The role of reclassification measures. Ann. Intern. Med. 2009, 150, 795–802. [Google Scholar] [CrossRef]
- Pencina, M.J.; D’Agostino, R.B., Sr.; Demler, O.V. Novel metrics for evaluating improvement in discrimination: Net reclassification and integrated discrimination improvement for normal variables and nested models. Stat. Med. 2012, 31, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Dziak, J.J.; Coffman, D.L.; Lanza, S.T.; Li, R.; Jermiin, L.S. Sensitivity and specificity of information criteria. Brief. Bioinform. 2020, 21, 553–565. [Google Scholar] [CrossRef]
- Rozet, E.; Ziemons, E.; Marini, R.D.; Hubert, P. Usefulness of information criteria for the selection of calibration curves. Anal. Chem. 2013, 85, 6327–6335. [Google Scholar] [CrossRef]
- Ennis, J.L.; Luo, D.; Asplin, J.R.; Coe, F.L. A laboratory-based algorithm to predict future kidney function decline in older adults with reduced estimated glomerular filtration rate. Clin. Nephrol. 2019, 92, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Herath, N.; Dassanayake, R.; Dissanayake, M.; Janitha, C.; Weerakoon, K.; Kumarasinghe, C.; de Silva, T.G.; Agampodi, S. Normality data of eGFR and validity of commonly used screening tests for CKD in an area with endemic CKD of unknown etiology; need for age and sex based precise cutoff values. BMC Nephrol. 2019, 20, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.W.; Jones, G.R.; Mathew, T.H.; Ludlow, M.J.; Chadban, S.J.; Usherwood, T.; Polkinghorne, K.; Colagiuri, S.; Jerums, G.; Macisaac, R.; et al. Chronic kidney disease and measurement of albuminuria or proteinuria: A position statement. Med. J. Aust. 2012, 197, 224–225. [Google Scholar] [CrossRef] [Green Version]
- Rebholz, C.M.; Selvin, E.; Liang, M.; Ballantyne, C.M.; Hoogeveen, R.C.; Aguilar, D.; McEvoy, J.W.; Grams, M.E.; Coresh, J. Plasma galectin-3 levels are associated with the risk of incident chronic kidney disease. Kidney Int. 2018, 93, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Risdon, R.A.; Sloper, J.C.; De Wardener, H.E. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 1968, 2, 363–366. [Google Scholar] [CrossRef]
- Schainuck, L.I.; Striker, G.E.; Cutler, R.E.; Benditt, E.P. Structural-functional correlations in renal disease. II. The correlations. Hum. Pathol. 1970, 1, 631–641. [Google Scholar] [CrossRef]
- Striker, G.E.; Schainuck, L.I.; Cutler, R.E.; Benditt, E.P. Structural-functional correlations in renal disease. I. A method for assaying and classifying histopathologic changes in renal disease. Hum. Pathol. 1970, 1, 615–630. [Google Scholar] [CrossRef]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 2014, 10, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Black, L.M.; Lever, J.M.; Agarwal, A. Renal Inflammation and Fibrosis: A Double-edged Sword. J. Histochem. Cytochem. 2019, 67, 663–681. [Google Scholar] [CrossRef] [Green Version]
- Hewitson, T.D.; Holt, S.G.; Smith, E.R. Progression of Tubulointerstitial Fibrosis and the Chronic Kidney Disease Phenotype—Role of Risk Factors and Epigenetics. Front. Pharmacol. 2017, 8, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgkins, K.S.; Schnaper, H.W. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatric Nephrol. 2012, 27, 901–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigert, J.; Neumeier, M.; Wanninger, J.; Bauer, S.; Farkas, S.; Scherer, M.N.; Schnitzbauer, A.; Schäffler, A.; Aslanidis, C.; Schölmerich, J.; et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J. Clin. Endocrinol. Metab. 2010, 95, 1404–1411. [Google Scholar] [CrossRef] [Green Version]
- Ohkura, T.; Fujioka, Y.; Nakanishi, R.; Shiochi, H.; Sumi, K.; Yamamoto, N.; Matsuzawa, K.; Izawa, S.; Ohkura, H.; Ueta, E.; et al. Low serum galectin-3 concentrations are associated with insulin resistance in patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2014, 6, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, H.; Cakmak, M.; Inan, O.; Darcin, T.; Akcay, A. Increased levels of galectin-3 were associated with prediabetes and diabetes: New risk factor? J. Endocrinol. Investig. 2015, 38, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.; de Lemos, J.A.; Ayers, C.; Grodin, J.L.; Lingvay, I. Association of Galectin-3 with Diabetes Mellitus in the Dallas Heart Study. J. Clin. Endocrinol. Metab. 2019, 104, 4449–4458. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Giacoman, S.; Madero, M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 2015, 4, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Stefanović, V.; Djukanović, L.; Cukuranović, R.; Bukvić, D.; Ležaić, V.; Marić, I.; Ogrizovic, S.S.; Jovanović, I.; Vlahovic, P.; Pešić, I.; et al. Beta2-microglobulin and alpha1-microglobulin as markers of Balkan endemic nephropathy, a worldwide disease. Ren. Fail. 2011, 33, 176–183. [Google Scholar] [CrossRef]
- Sabbisetti, V.S.; Waikar, S.S.; Antoine, D.J.; Smiles, A.; Wang, C.; Ravisankar, A.; Ito, K.; Sharma, S.; Ramadesikan, S.; Lee, M.; et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 2014, 25, 2177–2186. [Google Scholar] [CrossRef]
- Bolignano, D.; Donato, V.; Coppolino, G.; Campo, S.; Buemi, A.; Lacquaniti, A.; Buemi, M. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis. 2008, 52, 595–605. [Google Scholar] [CrossRef]
- Sjöberg, B.; Qureshi, A.R.; Heimbürger, O.; Stenvinkel, P.; Lind, L.; Larsson, A.; Bárány, P.; Ärnlöv, J. Association between levels of pentraxin 3 and incidence of chronic kidney disease in the elderly. J. Intern. Med. 2016, 279, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.; Robinson-Cohen, C.; Smith, M.R.; Bellovich, K.A.; Bhat, Z.Y.; Bobadilla, M.; Brosius, F.; de Boer, I.H.; Essioux, L.; Formentini, I.; et al. Growth Differentiation Factor-15 and Risk of CKD Progression. J. Am. Soc. Nephrol. 2017, 28, 2233–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Alamo, B.; Shabaka, A.; Cachofeiro, V.; Cases-Corona, C.; Fernandez-Juarez, G. Serum interleukin-6 levels predict kidney disease progression in diabetic nephropathy. Clin. Nephrol. 2022, 97, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.H.; Liu, D.W.; Long, Y.; Liu, H.Z.; Chai, W.Z.; Wang, X.T. Acute renal failure during sepsis: Potential role of cell cycle regulation. J. Infect. 2009, 58, 459–464. [Google Scholar] [CrossRef]
- Rodier, F.; Campisi, J.; Bhaumik, D. Two faces of p53: Aging and tumor suppression. Nucleic Acids Res. 2007, 35, 7475–7484. [Google Scholar] [CrossRef]
- Peng, Z.-Y.; Zhou, F.; Kellum, J.A. Cross-species validation of cell cycle arrest markers for acute kidney injury in the rat during sepsis. Intensive Care Med. Exp. 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yuan, Y.; Guo, L.; Wang, Q. Comparison of urinary TIMP-2 and IGFBP7 cut-offs to predict acute kidney injury in critically ill patients: A PRISMA-compliant systematic review and meta-analysis. Medicine 2019, 98, e16232. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wilcox, C.S.; Lipkowitz, M.S.; Gordon-Cappitelli, J.; Dragoi, S. Rationale and Strategies for Preserving Residual Kidney Function in Dialysis Patients. Am. J. Nephrol. 2019, 50, 411–421. [Google Scholar] [CrossRef]
- Donadio, C.; Bozzoli, L. Urinary β-trace protein: A unique biomarker to screen early glomerular filtration rate impairment. Medicine 2016, 95, e5553. [Google Scholar] [CrossRef]
- Meng, X.M.; Tang, P.M.; Li, J.; Lan, H.Y. TGF-β/Smad signaling in renal fibrosis. Front. Physiol. 2015, 6, 82. [Google Scholar] [CrossRef] [Green Version]
Tertiles of Urinary Gal-3 | |||||
---|---|---|---|---|---|
All Patients | Lowest Tertile (<354.6 pg/mL) | Middle Tertile (354.6–510.7 pg/mL) | Highest Tertile (≥510.8 pg/mL) | p Value | |
(n = 280) | (n = 93) | (n = 93) | (n = 94) | ||
Age, years | 56.2 ± 16.5 | 54.7 ± 17.4 | 56.5 ± 17.3 | 57.3 ± 14.7 | 0.541 |
Male sex, n (%) | 170 (60.7) | 56 (60.2) | 54 (58.1) | 60 (63.8) | 0.717 |
eGFR, mL/min/1.73 m2 | 46.8 ± 36.0 | 61.0 ± 36.0 | 51.0 ± 37.5 | 28.7 ± 25.7 | <0.001 a |
≥60, mL/min/1.73 m2, n (%) | 84 (30.0) | 44 (47.3) | 30 (32.3) | 10 (10.6) | |
<60, mL/min/1.73 m2, n (%) | 196 (70.0) | 49 (52.7) | 63 (67.7) | 84 (89.4) | |
UPCR, g/g | 5.6 ± 9.4 | 2.9 ± 4.2 | 4.6 ± 5.5 | 9.2 ± 14.0 | <0.001 b |
Uric acid, mg/dL | 6.7 ± 2.2 | 6.4 ± 2.2 | 6.6 ± 2.2 | 7.0 ± 2.2 | 0.298 |
Albumin, mg/dL | 3.2 ± 0.9 | 3.4 ± 0.9 | 3.1 ± 0.8 | 3.1 ± 0.8 | 0.092 |
Alanine transaminase, U/L | 19.4 ± 14.2 | 19.7 ± 12.2 | 19.0 ± 13.2 | 19.6 ± 17.0 | 0.944 |
Hypertension, n (%) | 115 (41.1) | 35 (37.6) | 39 (41.9) | 41 (43.6) | 0.693 |
Dyslipidemia, n (%) | 55 (19.6) | 14 (15.1) | 18 (19.4) | 23 (24.5) | 0.268 |
Diabetes mellitus, n (%) | 73 (26.1) | 17 (18.3) | 23 (24.7) | 33 (35.1) | 0.030 c |
SLE, n (%) | 11 (3.9) | 4 (4.3) | 5 (5.4) | 2 (2.1) | 0.507 |
Coronary artery disease, n (%) | 23 (8.2) | 8 (8.6) | 7 (7.5) | 8 (8.5) | 0.957 |
Congestive heart failure, n (%) | 50 (17.9) | 15 (16.1) | 14 (15.1) | 21 (22.3) | 0.372 |
Stroke, n (%) | 12 (4.3) | 7 (7.5) | 1 (1.1) | 4 (4.3) | 0.094 |
COPD, n (%) | 8 (2.9) | 2 (2.2) | 1 (1.1) | 5 (5.3) | 0.194 |
Peptic ulcer disease, n (%) | 21 (7.5) | 8 (8.6) | 7 (7.5) | 6 (6.4) | 0.847 |
Malignancy, n (%) | 64 (22.9) | 18 (19.4) | 18 (19.4) | 28 (29.8) | 0.146 |
Kidney Disease Progression * | ||||||
---|---|---|---|---|---|---|
Crude HR | 95% CI | p Value | Adjusted HR † | 95% CI | p Value | |
Tertiles of urinary Gal-3 levels | ||||||
Highest vs. lowest tertile | 5.33 | 3.33–8.87 | <0.001 | 4.60 | 2.85–7.71 | <0.001 |
Middle vs. lowest tertile | 1.96 | 1.16–3.37 | 0.013 | 1.82 | 1.08–3.15 | 0.027 |
Continuous values of urinary Gal-3 levels (per 100 pg/mL) | ||||||
Urinary Gal-3 levels | 1.22 | 1.16–1.27 | <0.001 | 1.19 | 1.13–1.25 | <0.001 |
NRI and IDI Model Comparison | ||||||||
NRI | 95% CI | p Value † | IDI | 95% CI | p Value † | |||
Model 1: eGFR | - | - | - | - | - | - | ||
Model 2: eGFR + Urinary Gal-3 | 0.5395 | 0.3133–0.7657 | <0.001 | 0.0626 | 0.0344–0.0907 | <0.001 | ||
Model 3: eGFR + Plasma Gal-3 | 0.7333 | 0.5172–0.9494 | <0.001 | 0.0633 | 0.0333–0.0934 | <0.001 | ||
Model 4: eGFR + Urinary Gal-3 + Plasma Gal-3 | 0.6040 | 0.3805–0.8277 | <0.001 | 0.0909 | 0.0564–0.1254 | <0.001 | ||
AIC and BIC and R Square Model Comparison | ||||||||
AIC | BIC | Adjusted R2 | p Value | |||||
Model 1: eGFR | 287.6032 | 298.5076 | 0.3541 | <0.001 | ||||
Model 2: eGFR + Urinary Gal-3 | 269.3027 | 283.8419 | 0.3971 | <0.001 | ||||
Model 3: eGFR + Plasma Gal-3 | 267.0637 | 281.6029 | 0.4019 | <0.001 | ||||
Model 4: eGFR + Urinary Gal-3 + Plasma Gal-3 | 264.8257 | 282.9997 | 0.4088 | <0.001 |
Pathological Findings | β | SE | Odds Ratio | 95% CI | p Value |
---|---|---|---|---|---|
Glomerular description | |||||
Global sclerosis | 0.137 | 0.071 | 1.147 | 1.008–1.328 | 0.052 |
Segmental sclerosis | 0.046 | 0.051 | 1.048 | 0.947–1.163 | 0.365 |
GBM double contour * | 0.237 | 0.065 | 1.268 | 1.123–1.447 | <0.001 |
GBM rigid * | 0.258 | 0.067 | 1.295 | 1.143–1.484 | <0.001 |
GBM thickening * | 0.220 | 0.064 | 1.246 | 1.106–1.420 | 0.001 |
GBM collapse * | 0.154 | 0.058 | 1.166 | 1.046–1.315 | 0.009 |
GBM attenuation | 0.079 | 0.053 | 1.082 | 0.978–1.206 | 0.136 |
Glomerular necrosis | −0.810 | 0.537 | 0.445 | 0.128–1.076 | 0.131 |
Glomerular inflammatory change | −0.045 | 0.066 | 0.956 | 0.844–1.102 | 0.494 |
Glomerular ischemic change | 0.105 | 0.069 | 1.111 | 0.957–1.275 | 0.130 |
Endocapillary hypertrophy * | 0.235 | 0.064 | 1.265 | 1.122–1.444 | <0.001 |
Extracapillary hypertrophy | 0.075 | 0.053 | 1.077 | 0.974–1.200 | 0.157 |
Tubulointerstital descriptions | |||||
Tubulitis | 0.063 | 0.095 | 1.065 | 0.905–1.305 | 0.505 |
Interstitial edema | 0.123 | 0.111 | 1.131 | 0.838–1.371 | 0.266 |
Interstitial inflammation * | 0.207 | 0.069 | 1.229 | 1.083–1.417 | 0.003 |
Interstitial fibrosis * | 0.196 | 0.066 | 1.217 | 1.076–1.394 | 0.003 |
Tubular atrophy * | 0.208 | 0.068 | 1.231 | 1.086–1.416 | 0.002 |
Acute tubular necrosis | 0.045 | 0.107 | 1.046 | 0.807–1.247 | 0.674 |
Casts | 0.130 | 0.522 | 1.139 | 0.692–4.131 | 0.804 |
Vasculature descriptions | |||||
Hyaline arteriosclerosis | 0.029 | 0.087 | 1.029 | 0.845–1.196 | 0.740 |
Vascular intimal fibrosis | −0.031 | 0.090 | 0.969 | 0.796–1.131 | 0.728 |
Vascular necrosis | −1.457 | 0.998 | 0.233 | 0.015–1.054 | 0.144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, S.-M.; Tsai, M.-T.; Chen, H.-Y.; Li, F.-A.; Lee, K.-H.; Tseng, W.-C.; Chang, F.-P.; Lin, Y.-P.; Yang, R.-B.; Tarng, D.-C. Urinary Galectin-3 as a Novel Biomarker for the Prediction of Renal Fibrosis and Kidney Disease Progression. Biomedicines 2022, 10, 585. https://doi.org/10.3390/biomedicines10030585
Ou S-M, Tsai M-T, Chen H-Y, Li F-A, Lee K-H, Tseng W-C, Chang F-P, Lin Y-P, Yang R-B, Tarng D-C. Urinary Galectin-3 as a Novel Biomarker for the Prediction of Renal Fibrosis and Kidney Disease Progression. Biomedicines. 2022; 10(3):585. https://doi.org/10.3390/biomedicines10030585
Chicago/Turabian StyleOu, Shuo-Ming, Ming-Tsun Tsai, Huan-Yuan Chen, Fu-An Li, Kuo-Hua Lee, Wei-Cheng Tseng, Fu-Pang Chang, Yao-Ping Lin, Ruey-Bing Yang, and Der-Cherng Tarng. 2022. "Urinary Galectin-3 as a Novel Biomarker for the Prediction of Renal Fibrosis and Kidney Disease Progression" Biomedicines 10, no. 3: 585. https://doi.org/10.3390/biomedicines10030585
APA StyleOu, S. -M., Tsai, M. -T., Chen, H. -Y., Li, F. -A., Lee, K. -H., Tseng, W. -C., Chang, F. -P., Lin, Y. -P., Yang, R. -B., & Tarng, D. -C. (2022). Urinary Galectin-3 as a Novel Biomarker for the Prediction of Renal Fibrosis and Kidney Disease Progression. Biomedicines, 10(3), 585. https://doi.org/10.3390/biomedicines10030585