Chemerin as Potential Biomarker in Pediatric Diseases: A PRISMA-Compliant Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemerin and Obesity
3.2. Chemerin and Cardiovascular Diseases
3.3. Chemerin in Neonatal Studies
3.4. Chemerin and Hepatobiliary Diseases
3.5. Chemerin in Other Diseases in Children
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buechler, C.; Feder, S.; Haberl, E.M.; Aslanidis, C. Chemerin isoforms and activity in obesity. Int. J. Mol. Sci. 2019, 20, 1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacenik, D.; Fichna, J. Chemerin in immune response and gastrointestinal pathophysiology. Clin. Chim. Acta. 2020, 504, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Acewicz, M.; Kasacka, I. Chemerin activity in selected pathological states of human body—A systematic review. Adv. Med. Sci. 2021, 66, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, S.; Patel, S.; Jacobe, H.; DiSepio, D.; Ghosn, C.; Malhotra, M.; Teng, M.; Duvic, M.; Chandraratna, R.A. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Investig. Dermatol. 1997, 109, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittamer, V.; Franssen, J.D.; Vulcano, M.; Mirjolet, J.F.; Le Poul, E.; Migeotte, I.; Brézillon, S.; Tyldesley, R.; Blanpain, C.; Detheux, M.; et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 2003, 198, 7–85. [Google Scholar] [CrossRef] [PubMed]
- Du, X.Y.; Zabel, B.A.; Myles, T.; Allen, S.J.; Handel, T.M.; Lee, P.P.; Butcher, E.C.; Leung, L.L. Regulation of chemerin bioactivity by plasma carboxypeptidase, N.; carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J. Biol. Chem. 2009, 284, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, T.F.; Beck-Sickinger, A.G. Chemerin—Exploring a versatile adipokine. Biol Chem. 2022. [Google Scholar] [CrossRef] [PubMed]
- Guillabert, A.; Wittamer, V.; Bondue, B.; Godot, V.; Imbault, V.; Parmentier, M.; Communi, D. Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J. Leukoc. Biol. 2008, 84, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Schultz, S.; Saalbach, A.; Heiker, J.T.; Meier, R.; Zellmann, T.; Simon, J.C.; Beck-Sickinger, A.G. Proteolytic activation of prochemerin by kallikrein 7 breaks an ionic linkage and results in C-terminal rearrangement. Biochem. J. 2013, 452, 2–80. [Google Scholar] [CrossRef] [Green Version]
- Zabel, B.A.; Allen, S.J.; Kulig, P.; Allen, J.A.; Cichy, J.; Handel, T.M.; Butcher, E.C. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 2005, 280, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banas, M.; Zegar, A.; Kwitniewski, M.; Zabieglo, K.; Marczynska, J.; Kapinska-Mrowiecka, M.; LaJevic, M.; Zabel, B.A.; Cichy, J. The expression and regulation of chemerin in the epidermis. PLoS ONE 2015, 10, e0117830. [Google Scholar]
- Xie, C.; Chen, Q. Adipokines: New Therapeutic Target for Osteoarthritis? Curr. Rheumatol. Rep. 2019, 21, 12. [Google Scholar] [CrossRef]
- Estienne, A.; Bongrani, A.; Reverchon, M.; Ramé, C.; Ducluzeau, P.H.; Froment, P.; Dupont, J. Involvement of novel adipokines, chemerin, visfatin, resistin and apelin in reproductive functions in normal and pathological conditions in humans and animal models. Int. J. Mol. Sci. 2019, 20, 4431. [Google Scholar] [CrossRef] [Green Version]
- De Henau, O.; Degroot, G.N.; Imbault, V.; Robert, V.; De Poorter, C.; Mcheik, S.; Galés, C.; Parmentier, M.; Springael, J.Y. Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS ONE 2016, 11, e0164179. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Guo, Y.; Ding, W.; Chang, A.; Wei, J.; Li, X.; Qian, H.; Zhu, C. Chemerin/CMKLR1 axis promotes the progression of proliferative diabetic retinopathy. Int. J. Endocrinol. 2021, 2021, 4468625. [Google Scholar] [PubMed]
- Gudelska, M.; Dobrzyn, K.; Kiezun, M.; Rytelewska, E.; Kisielewska, K.; Kaminska, B.; Kaminski, T.; Smolinska, N. The expression of chemerin and its receptors (CMKLR1, GPR1, CCRL2) in the porcine uterus during the oestrous cycle and early pregnancy and in trophoblasts and conceptuses. Animals 2020, 14, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Rourke, J.L.; Dranse, H.J.; Sinal, C.J. CMKLR1 and GPR1 mediate chemerin signaling through the RhoA/ROCK pathway. Mol. Cell Endocrinol. 2015, 417, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.F.; Czerniak, A.S.; Weiß, T.; Schoeder, C.T.; Wolf, P.; Seitz, O.; Meiler, J.; Beck-Sickinger, A.G. Ligand-binding and -scavenging of the chemerin receptor GPR1. Cell. Mol. Life Sci. 2021, 78, 6265–6281. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.J.; Davenport, A.P. International union of basic and clinical pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) nomenclature, pharmacology, and function. Pharmacol Rev. 2018, 70, 1–96. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Mattu, H.S.; Chatha, K.; Randeva, H.S. Chemerin in human cardiovascular disease. Vascul. Pharmacol. 2018, 110, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Karampela, I.; Christodoulatos, G.S.; Vallianou, N.; Tsilingiris, D.; Chrysanthopoulou, E.; Skyllas, G.; Antonakos, G.; Marinou, I.; Vogiatzakis, E.; Armaganidis, A.; et al. Circulating chemerin and its kinetics may be a useful diagnostic and prognostic biomarker in critically ill patients with sepsis: A prospective study. Biomolecules 2022, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Hillenbrand, A.; Weiss, M.; Knippschild, U.; Wolf, A.M.; Huber-Lang, M. Sepsis-induced adipokine change with regard to insulin resistance. Int. J. Inflam. 2012, 2012, 972368. [Google Scholar] [CrossRef] [Green Version]
- Jaworek, J.; Szklarczyk, J.; Kot, M.; Góralska, M.; Jaworek, A.; Bonior, J.; Leja-Szpak, A.; Nawrot-Porąbka, K.; Link-Lenczowski, P.; Ceranowicz, P.; et al. Chemerin alleviates acute pancreatitis in the rat thorough modulation of NF-κB signal. Pancreatology 2019, 19, 3–8. [Google Scholar] [CrossRef]
- Szpakowicz, A.; Szpakowicz, M.; Lapinska, M.; Paniczko, M.; Lawicki, S.; Raczkowski, A.; Kondraciuk, M.; Sawicka, E.; Chlabicz, M.; Kozuch, M.; et al. Serum chemerin concentration is associated with proinflammatory status in chronic coronary syndrome. Biomolecules 2021, 11, 1149. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulos, G.P.; Dalamaga, M.; Antonakos, G.; Marinou, I.; Vogiatzakis, E.; Kotopouli, M.; Karampela, I.; Christodoulatos, G.S.; Lekka, A.; Papavassiliou, A.G. Chemerin as a biomarker at the intersection of inflammation, chemotaxis, coagulation, fibrinolysis and metabolism in resectable non-small cell lung cancer. Lung Cancer 2018, 125, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Treeck, O.; Buechler, C. Chemerin signaling in cancer. Cancers 2020, 12, 3085. [Google Scholar] [CrossRef] [PubMed]
- Helfer, G.; Wu, Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018, 238, R79–R94. [Google Scholar] [CrossRef] [PubMed]
- Bruno, C.; Vergani, E.; Giusti, M.; Oliva, A.; Cipolla, C.; Pitocco, D.; Mancini, A. The “Adipo-Cerebral” dialogue in childhood obesity: Focus on growth and puberty. Physiopathological and nutritional aspects. Nutrients 2021, 13, 3434. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Weihrauch-Blüher, S.; Schwarz, P.; Klusmann, J.H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism 2019, 92, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Clément, K.; Mosbah, H.; Poitou, C. Rare genetic forms of obesity: From gene to therapy. Physiol. Behav. 2020, 227, 113134. [Google Scholar] [CrossRef] [PubMed]
- Hoey, H. Management of obesity in children differs from that of adults. Proc. Nutr. Soc. 2014, 73, 519–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamza, R.T.; Elkabbany, Z.A.; Shedid, A.M.; Hamed, A.I.; Ebrahim, A.O. Serum chemerin in obese children and adolescents before and after l-carnitine therapy: Relation to nonalcoholic fatty liver disease and other features of metabolic syndrome. Arch. Med. Res. 2016, 47, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Niklowitz, P.; Rothermel, J.; Lass, N.; Barth, A.; Reinehr, T. Link between chemerin, central obesity, and parameters of the Metabolic Syndrome: Findings from a longitudinal study in obese children participating in a lifestyle intervention. Int. J. Obes. 2018, 42, 10–52. [Google Scholar] [CrossRef]
- Daxer, J.; Herttrich, T.; Zhao, Y.Y.; Vogel, M.; Hiemisch, A.; Scheuermann, K.; Körner, A.; Kratzsch, J.; Kiess, W.; Quante, M. Nocturnal levels of chemerin and progranulin in adolescents: Influence of sex, body mass index, glucose metabolism and sleep. J. Pediatr. Endocrinol. Metab. 2017, 30, 1–61. [Google Scholar] [CrossRef]
- Rowicka, G.; Dyląg, H.; Chełchowska, M.; Weker, H.; Ambroszkiewicz, J. Serum calprotectin and chemerin concentrations as markers of low-grade inflammation in prepubertal children with obesity. Int. J. Environ. Res. Public Health 2020, 17, 7575. [Google Scholar] [CrossRef] [PubMed]
- Ba, H.J.; Xu, L.L.; Qin, Y.Z.; Chen, H.S. Serum chemerin levels correlate with determinants of metabolic syndrome in obese children and adolescents. Clin. Med. Insights Pediatr. 2019, 13, 1179556519853780. [Google Scholar] [CrossRef] [Green Version]
- Salem, D.A.; Salem, N.A.; Hendawy, S.R. Association between Toxoplasma gondii infection and metabolic syndrome in obese adolescents: A possible immune-metabolic link. Parasitol. Int. 2021, 83, 102343. [Google Scholar] [CrossRef] [PubMed]
- Sledzińska, M.; Szlagatys-Sidorkiewicz, A.; Brzezinski, M.; Kaźmierska, K.; Sledziński, T.; Kamińska, B. Serum chemerin in children with excess body weight may be associated with ongoing metabolic complications—A pilot study. Adv. Med. Sci. 2017, 62, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, M.S.; Pessoa, M.C.; Bressan, J.; de Albuquerque, F.M.; Suhett, L.G.; Silva, M.A.; de Novaes, J.F. Pro- and anti-inflammatory adipokines are associated with cardiometabolic risk markers in Brazilian schoolchildren. Eur. J. Pediatr. 2021, 180, 9–41. [Google Scholar] [CrossRef] [PubMed]
- Oświecimska, J.M.; Ziora, K.T.; Suwała, A.; Swietochowska, E.; Gorczyca, P.; Ziora-Jakutowicz, K.; Machura, E.; Szczepańska, M.; Ostrowska, Z.; Ziora, D.; et al. Chemerin serum levels in girls with anorexia nervosa. Neuro Endocrinol. Lett. 2014, 35, 6. [Google Scholar]
- Maghsoudi, Z.; Kelishadi, R.; Hosseinzadeh-Attar, M.J. The comparison of chemerin, adiponectin and lipid profile indices in obese and non-obese adolescents. Diabetes Metab. Syndr. 2016, 10, S43–S46. [Google Scholar] [CrossRef]
- Elsehmawy, A.A.E.W.; El-Toukhy, S.E.; Seliem, N.M.A.; Moustafa, R.S.; Mohammed, D.S. Apelin and chemerin as promising adipokines in children with type 1 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2019, 12, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhett, L.G.; Hermsdorff, H.H.M.; Ribeiro, S.A.V.; Filgueiras, M.S.; Shivappa, N.; Hébert, J.R.; de Novaes, J.F. The dietary inflammatory index is associated with anti- and pro-inflammatory adipokines in Brazilian schoolchildren. Eur. J. Nutr. 2021, 60, 5–9. [Google Scholar] [CrossRef]
- Karampela, I.; Sakelliou, A.; Vallianou, N.; Christodoulatos, G.S.; Magkos, F.; Dalamaga, M. Vitamin D and obesity: Current evidence and controversies. Curr. Obes. Rep. 2021, 10, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Reyman, M.; Verrijn Stuart, A.A.; van Summeren, M.; Rakhshandehroo, M.; Nuboer, R.; de Boer, F.K.; van den Ham, H.J.; Kalkhoven, E.; Prakken, B.; Schipper, H.S. Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity. Int. J. Obes. 2014, 38, 1–52. [Google Scholar] [CrossRef]
- Eskandari, M.; Hooshmand Moghadam, B.; Bagheri, R.; Ashtary-Larky, D.; Eskandari, E.; Nordvall, M.; Dutheil, F.; Wong, A. Effects of interval jump rope exercise combined with dark chocolate supplementation on inflammatory adipokine, cytokine concentrations, and body composition in obese adolescent boys. Nutrients 2020, 12, 3011. [Google Scholar] [CrossRef]
- Liu, M.; Lin, X.; Wang, X. Decrease in serum chemerin through aerobic exercise plus dieting and its association with mitigation of cardio-metabolic risk in obese female adolescents. J. Pediatr. Endocrinol. Metab. 2018, 31, 2–35. [Google Scholar] [CrossRef]
- Marti, A.; Martínez, I.; Ojeda-Rodríguez, A.; Azcona-Sanjulian, M.C. Higher lipopolysaccharide binding protein and chemerin concentrations were associated with metabolic syndrome features in pediatric subjects with abdominal obesity during a lifestyle intervention. Nutrients 2021, 13, 289. [Google Scholar] [CrossRef]
- Saraf-Bank, S.; Ahmadi, A.; Paknahad, Z.; Maracy, M.; Nourian, M. Effects of curcumin supplementation on markers of inflammation and oxidative stress among healthy overweight and obese girl adolescents: A randomized placebo-controlled clinical trial. Phytother Res. 2019, 33, 8–22. [Google Scholar] [CrossRef] [Green Version]
- Hanthazi, A.; Jespers, P.; Vegh, G.; Degroot, G.N.; Springael, J.Y.; Lybaert, P.; Dewachter, L.; Mc Entee, K. Chemerin influences endothelin- and serotonin-induced pulmonary artery vasoconstriction in rats. Life Sci. 2019, 231, 116580. [Google Scholar] [CrossRef]
- Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Brunetti, L.; Leone, S. Adipokines: New potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol. 2020, 11, 578966. [Google Scholar] [CrossRef] [PubMed]
- Carracedo, M.; Witasp, A.; Qureshi, A.R.; Laguna-Fernandez, A.; Brismar, T.; Stenvinkel, P.; Dewachter, L.; Mc Entee, K. Chemerin inhibits vascular calcification through ChemR23 and is associated with lower coronary calcium in chronic kidney disease. J. Intern. Med. 2019, 286, 4–57. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Kozioł-Kozakowska, A.; Januś, D.; Furtak, A.; Małek, A.; Sztefko, K.; Starzyk, J.B. Circulating chemerin level may be associated with early vascular pathology in obese children without overt arterial hypertension—Preliminary results. J. Pediatr. Endocrinol. Metab. 2020, 33, 6–34. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.A.; Batouty, N.M.; Tawfik, A.M.; Sobh, D.M.; Gadelhak, B.; Hendawy, S.R.; Laimon, W. Epicardial and perihepatic fat as cardiometabolic risk predictors in girls with turner syndrome: A cardiac magnetic resonance study. J. Clin. Res. Pediatr. Endocrinol. 2021, 13, 4–17. [Google Scholar]
- Zhang, X.Y.; Yang, T.T.; Hu, X.F.; Wen, Y.; Fang, F.; Lu, H.L. Circulating adipokines are associated with Kawasaki disease. Pediatr. Rheumatol. Online J. 2018, 16, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, H.; Chang, M.; Wang, Q.X.; Lu, H.Y. Changes in serum levels of adipokine after treatment in children with Kawasaki disease. Zhongguo Dang Dai Er Ke Za Zhi 2020, 22, 1–7. [Google Scholar]
- Léniz, A.; Fernández-Quintela, A.; Del Hoyo, M.; Díez-López, I.; Portillo, M.P. Chemerin concentrations in infants born small for gestational age: Correlations with triglycerides and parameters related to glucose homeostasis. J. Physiol. Biochem. 2021, 77, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Léniz, A.; Portillo, M.P.; Fernández-Quintela, A.; Macarulla, M.T.; Sarasua-Miranda, A.; Del Hoyo, M.; Díez-López, I. Has the adipokine profile an influence on the catch-up growth type in small for gestational age infants? J. Physiol. Biochem. 2019, 75, 3–9. [Google Scholar] [CrossRef]
- Francis, E.C.; Li, M.; Hinkle, S.N.; Chen, J.; Wu, J.; Zhu, Y.; Cao, H.; Tsai, M.Y.; Chen, L.; Zhang, C. Maternal proinflammatory adipokines throughout pregnancy and neonatal size and body composition: A prospective study. Curr. Dev. Nutr. 2021, 5, nzab113. [Google Scholar] [CrossRef] [PubMed]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic syndrome in children and adolescents: Diagnostic criteria, therapeutic options and perspectives. Curr. Obes. Rep. 2019, 8, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Vos, M.B.; Abrams, S.H.; Barlow, S.E.; Caprio, S.; Daniels, S.R.; Kohli, R.; Mouzaki, M.; Sathya, P.; Schwimmer, J.B.; Sundaram, S.S.; et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: Recommendations from the expert committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 2–34. [Google Scholar]
- Kłusek-Oksiuta, M.; Bialokoz-Kalinowska, I.; Tarasów, E.; Wojtkowska, M.; Werpachowska, I.; Lebensztejn, D.M. Chemerin as a novel non-invasive serum marker of intrahepatic lipid content in obese children. Ital. J. Pediatr. 2014, 40, 84. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.A.; Sabry, S.; Abdallah, A.M.; Elazeem, N.A.A.; Refaey, D.; Algebaly, H.A.F.; Fath, G.A.E.; Omar, H. Circulating adipokines in children with nonalcoholic fatty liver disease: Possible noninvasive diagnostic markers. Ann. Gastroenterol. 2017, 30, 4–63. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, K.; Ryzko, J.; Bobrus-Chociej, A.; Wojtkowska, M.; Lebensztejn, D.M. The role of chemerin in the pathogenesis of cholelithiasis in children and adolescents. J. Paediatr. Child Health 2021, 57, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Ambroszkiewicz, J.; Gajewska, J.; Chełchowska, M.; Rowicka, G. Assessment of inflammatory markers in children with cow’s milk allergy treated with a milk-free diet. Nutrients 2021, 13, 1057. [Google Scholar] [CrossRef] [PubMed]
- Elhady, M.; Youness, E.R.; Gafar, H.S.; Abdel Aziz, A.; Mostafa, R.S.I. Circulating irisin and chemerin levels as predictors of seizure control in children with idiopathic epilepsy. Neurol. Sci. 2018, 39, 8. [Google Scholar] [CrossRef]
- Sznurkowska, K.; Kaźmierska, K.; Śledziński, T.; Zagierski, M.; Liberek, A.; Szlagatys-Sidorkiewicz, A. Serum chemerin level, cytokine profile and nutritional status in children with cystic fibrosis. Acta Biochim. Pol. 2019, 66, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, M.; Machura, E.; Adamczyk, P.; Świętochowska, E.; Trembecka-Dubel, E.; Lipiec, K.; Jędzura, A.; Ziora, K. Evaluation of adipocytokines in children with chronic kidney disease. Endokrynol. Pol. 2015, 66, 2–7. [Google Scholar]
- Scully, K.J.; Jay, L.T.; Freedman, S.; Sawicki, G.S.; Uluer, A.; Finkelstein, J.S.; Putman, M.S. The relationship between body composition, dietary intake, physical activity, and pulmonary status in adolescents and adults with cystic fibrosis. Nutrients 2022, 14, 310. [Google Scholar] [CrossRef] [PubMed]
Authors | Analyzed Population | Number of Included Patients (n) | Chemerin Concentration |
---|---|---|---|
Hamza RT et al. [33] | Obesity | 50 | Increased |
Niklowitz P et al. [34] | Obesity | 88 | Increased |
Salem DA et al. [38] | Toxoplasma gondiiseropositive-obese group | 28 | Increased |
Oświecimska et al. [41] | Anorexia nervosa | 65 | Decreased |
Elsehmawy AAEW et al. [43] | T1DM | 40 | Increased |
Reyman M et al. [46] | 25(OH)D deficient, obesity | 36 | Increased |
Salem NA et al. [55] | Turner syndrome | 46 | Increased |
Zhang XY et al. [56] | Kawasaki diasease | 80 | Increased |
Léniz A et al. [59] | SGA slow vs. normal catch-up | 27 | Increased in group with slow catch-up |
Kłusek-Oksiuta M et al. [63] | NAFLD | 45 | Increased |
Zdanowicz K et al. [65] | Cholelithiasis | 54 | Increased |
Ambroszkiewicz J et al. [66] | Allergy | 64 | Increased |
Elhady M et al. [67] | Epilepsy | 50 | Increased |
Sznurkowska K et al. [68] | Cystic fibrosis | 72 | Unchanged |
Szczepańska M et al. [69] | CKD | 28 | Decreased |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanowicz, K.; Bobrus-Chociej, A.; Lebensztejn, D.M. Chemerin as Potential Biomarker in Pediatric Diseases: A PRISMA-Compliant Study. Biomedicines 2022, 10, 591. https://doi.org/10.3390/biomedicines10030591
Zdanowicz K, Bobrus-Chociej A, Lebensztejn DM. Chemerin as Potential Biomarker in Pediatric Diseases: A PRISMA-Compliant Study. Biomedicines. 2022; 10(3):591. https://doi.org/10.3390/biomedicines10030591
Chicago/Turabian StyleZdanowicz, Katarzyna, Anna Bobrus-Chociej, and Dariusz Marek Lebensztejn. 2022. "Chemerin as Potential Biomarker in Pediatric Diseases: A PRISMA-Compliant Study" Biomedicines 10, no. 3: 591. https://doi.org/10.3390/biomedicines10030591
APA StyleZdanowicz, K., Bobrus-Chociej, A., & Lebensztejn, D. M. (2022). Chemerin as Potential Biomarker in Pediatric Diseases: A PRISMA-Compliant Study. Biomedicines, 10(3), 591. https://doi.org/10.3390/biomedicines10030591