A Pilot Study of Whole-Blood Transcriptomic Analysis to Identify Genes Associated with Repetitive Low-Level Blast Exposure in Career Breachers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Demographic, Clinical History, and Psychometric Testing
2.3. RNA Sequencing and Bioinformatic Analysis
2.4. MicroRNA Profiling and Bioinformatic Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristic
3.2. Differential microRNA Expression Differences between Experienced Breacher vs. Unexposed Control
3.3. Differential Gene Expression between Experienced Breacher vs. Unexposed Control
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritenour, A.E.; Baskin, T.W. Primary blast injury: Update on diagnosis and treatment. Crit. Care Med. 2008, 36, S311–S317. [Google Scholar] [CrossRef]
- Belmont, P.J.J.; McCriskin, B.J.; Sieg, R.N.; Burks, R.; Schoenfeld, A.J. Combat wounds in Iraq and Afghanistan from 2005 to 2009. J. Trauma Acute Care Surg. 2012, 73, 3–12. [Google Scholar] [CrossRef] [Green Version]
- McKee, A.C.; Robinson, M.E. Military-related traumatic brain injury and neurodegeneration. Alzheimers Dement. 2014, 10, S242–S253. [Google Scholar] [CrossRef] [Green Version]
- Katz, D.I.; Bernick, C.; Dodick, D.W.; Mez, J.; Mariani, M.L.; Adler, C.H.; Alosco, M.L.; Balcer, L.J.; Banks, S.J.; Barr, W.B.; et al. National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome. Neurology 2021, 96, 848–863. [Google Scholar] [CrossRef]
- Stone, J.R.; Avants, B.B.; Tustison, N.J.; Wassermann, E.M.; Gill, J.; Polejaeva, E.; Dell, K.C.; Carr, W.; Yarnell, A.M.; Lopresti, M.L.; et al. Functional and Structural Neuroimaging Correlates of Repetitive Low-Level Blast Exposure in Career Breachers. J. Neurotrauma 2020, 37, 2468–2481. [Google Scholar] [CrossRef]
- LaValle, C.R.; Carr, W.S.; Egnoto, M.J.; Misistia, A.C.; Salib, J.E.; Ramos, A.N.; Kamimori, G.H. Neurocognitive Performance Deficits Related to Immediate and Acute Blast Overpressure Exposure. Front. Neurol. 2019, 10, 949. [Google Scholar] [CrossRef] [Green Version]
- Belding, J.N.; Fitzmaurice, S.; Englert, R.M.; Koenig, H.G.; Thomsen, C.J.; Olaghere da Silva, L.U. Self-Reported Concussion Symptomology during Deployment: Differences as a Function of Injury Mechanism and Low-Level Blast Exposure. J. Neurotrauma 2020, 37, 2219–2226. [Google Scholar] [CrossRef]
- Belding, J.N.; Fitzmaurice, S.; Englert, R.M.; Lee, I.; Kowitz, B.; Highfill-McRoy, R.M.; Thomsen, C.J.; da Silva, U. Blast Exposure and Risk of Recurrent Occupational Overpressure Exposure Predict Deployment TBIs. Mil. Med. 2019, 185, e538–e544. [Google Scholar] [CrossRef] [Green Version]
- Boutté, A.M.; Thangavelu, B.; Nemes, J.; Lavalle, C.R.; Egnoto, M.; Carr, W.; Kamimori, G.H. Neurotrauma Biomarker Levels and Adverse Symptoms among Military and Law Enforcement Personnel Exposed to Occupational Overpressure without Diagnosed Traumatic Brain Injury. JAMA Netw. Open 2021, 4, e216445. [Google Scholar] [CrossRef]
- Boutté, A.M.; Thangavelu, B.; LaValle, C.R.; Nemes, J.; Gilsdorf, J.; Shear, D.A.; Kamimori, G.H. Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel. PLoS ONE 2019, 14, e0221036. [Google Scholar] [CrossRef] [Green Version]
- Heyburn, L.; Abutarboush, R.; Goodrich, S.; Urioste, R.; Batuure, A.; Wheel, J.; Wilder, D.M.; Arun, P.; Ahlers, S.T.; Long, J.B.; et al. Repeated Low-Level Blast Acutely Alters Brain Cytokines, Neurovascular Proteins, Mechanotransduction, and Neurodegenerative Markers in a Rat Model. Front. Cell. Neurosci. 2021, 15, 636707. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Cashion, A.; Osier, N.; Arcurio, L.; Motamedi, V.; Dell, K.C.; Carr, W.; Kim, H.-S.; Yun, S.; Walker, P.; et al. Moderate blast exposure alters gene expression and levels of amyloid precursor protein. Neurol. Genet. 2017, 3, e186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, J.; Motamedi, V.; Osier, N.; Dell, K.; Arcurio, L.; Carr, W.; Walker, P.; Ahlers, S.; Lopresti, M.; Yarnell, A. Moderate blast exposure results in increased IL-6 and TNFalpha in peripheral blood. Brain Behav. Immun. 2017, 65, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wilson, C.; Mendelev, N.; Ge, Y.; Galfalvy, H.; Elder, G.; Ahlers, S.; Yarnell, A.M.; LoPresti, M.L.; Kamimori, G.; et al. Acute and Chronic Molecular Signatures and Associated Symptoms of Blast Exposure in Military Breachers. J. Neurotrauma 2019, 37, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Edwards, K.A.; Greer, K.; Leete, J.; Lai, C.; Devoto, C.; Qu, B.X.; Yarnell, A.M.; Polejaeva, E.; Dell, K.C.; LoPresti, M.L.; et al. Neuronally-derived tau is increased in experienced breachers and is associated with neurobehavioral symptoms. Sci. Rep. 2021, 11, 19527. [Google Scholar] [CrossRef]
- Iverson, G.L.; Lovell, M.R.; Collins, M.W. Interpreting Change on ImPACT Following Sport Concussion. Clin. Neuropsychol. 2003, 17, 460–467. [Google Scholar] [CrossRef]
- Franke, G.H.; Jaeger, S.; Glaesmer, H.; Barkmann, C.; Petrowski, K.; Braehler, E. Psychometric analysis of the brief symptom inventory 18 (BSI-18) in a representative German sample. BMC Med. Res. Methodol. 2017, 17, 14. [Google Scholar] [CrossRef] [Green Version]
- King, P.R.; Donnelly, K.T.; Donnelly, J.P.; Dunnam, M.; Warner, G.; Kittleson, C.J.; Bradshaw, C.B.; Alt, M.; Meier, S.T. Psychometric study of the Neurobehavioral Symptom Inventory. J. Rehabil. Res. Dev. 2012, 49, 879–888. [Google Scholar] [CrossRef]
- Weathers, F.; Litz, B.; Herman, D.; Huska, J.A.; Keane, T. The PTSD Checklist (PCL): Reliability, validity, and diagnostic utility. In Proceedings of the Annual Convention of the International Society for Traumatic Stress Studies, San Antonio, TX, USA, 25 October 1993. [Google Scholar]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Koning, N.; Uitdehaag, B.M.J.; Huitinga, I.; Hoek, R.M. Restoring immune suppression in the multiple sclerosis brain. Prog. Neurobiol. 2009, 89, 359–368. [Google Scholar] [CrossRef]
- Koning, N.; Bö, L.; Hoek, R.M.; Huitinga, I. Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann. Neurol. 2007, 62, 504–514. [Google Scholar] [CrossRef]
- Schroeder, H.W.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125 (Suppl. 2), S41–S52. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Nakamura, A. Regulation of immune and neural function via leukocyte Ig-like receptors. J. Biochem. 2017, 162, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Poliak, S.; Gollan, L.; Martinez, R.; Custer, A.; Einheber, S.; Salzer, J.L.; Trimmer, J.S.; Shrager, P.; Peles, E. Caspr2, a new member of the Neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 1999, 24, 1037–1047. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, F.M.; Lose, E.J.; Robin, N.H.; Descartes, M.D.; Rutledge, K.D.; Rutledge, S.L.; Korf, B.R.; Carroll, A.J. Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders. Am. J. Med. Genet. Part A 2011, 155, 2386–2396. [Google Scholar] [CrossRef]
- Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef]
- Nakabayashi, K.; Scherer, S.W. The human contactin-associated protein-like 2 gene (CNTNAP2) spans over 2 Mb of DNA at chromosome 7q35. Genomics 2001, 73, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Zweier, C.; de Jong, E.K.; Zweier, M.; Orrico, A.; Ousager, L.B.; Collins, A.L.; Bijlsma, E.K.; Oortveld, M.A.W.; Ekici, A.B.; Reis, A.; et al. CNTNAP2 and NRXN1 Are Mutated in Autosomal-Recessive Pitt-Hopkins-like Mental Retardation and Determine the Level of a Common Synaptic Protein in Drosophila. Am. J. Hum. Genet. 2009, 85, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; Verri, A.P.; Patricelli, M.G.; Destefani, V.; Ricca, I.; Vetro, A.; Ciccone, R.; Giorda, R.; Toniolo, D.; Maraschio, P.; et al. A 12 Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur. J. Med. Genet. 2008, 51, 631–638. [Google Scholar] [CrossRef]
- Bakkaloglu, B.; O’Roak, B.J.; Louvi, A.; Gupta, A.R.; Abelson, J.F.; Morgan, T.M.; Chawarska, K.; Klin, A.; Ercan-Sencicek, A.G.; Stillman, A.A.; et al. Molecular Cytogenetic Analysis and Resequencing of Contactin Associated Protein-Like 2 in Autism Spectrum Disorders. Am. J. Hum. Genet. 2008, 82, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Peñagarikano, O.; Abrahams, B.S.; Herman, E.I.; Winden, K.D.; Gdalyahu, A.; Dong, H.; Sonnenblick, L.I.; Gruver, R.; Almajano, J.; Bragin, A.; et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011, 147, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, J.I.; Vrijenhoek, T.; Markx, S.; Janssen, I.M.; Van Der Vliet, W.A.; Faas, B.H.W.; Knoers, N.V.; Cahn, W.; Kahn, R.S.; Edelmann, L.; et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol. Psychiatry 2008, 13, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, M.; Abrahams, B.S.; Stone, J.L.; Duvall, J.A.; Perederiy, J.V.; Bomar, J.M.; Sebat, J.; Wigler, M.; Martin, C.L.; Ledbetter, D.H.; et al. Linkage, Association, and Gene-Expression Analyses Identify CNTNAP2 as an Autism-Susceptibility Gene. Am. J. Hum. Genet. 2008, 82, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elia, J.; Gai, X.; Xie, H.M.; Perin, J.C.; Geiger, E.; Glessner, J.T.; D’Arcy, M.; Deberardinis, R.; Frackelton, E.; Kim, C.; et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol. Psychiatry 2010, 15, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Nord, A.S.; Roeb, W.; Dickel, D.E.; Walsh, T.; Kusenda, M.; O’Connor, K.L.; Malhotra, D.; McCarthy, S.E.; Stray, S.M.; Taylor, S.M.; et al. Reduced transcript expression of genes affected by inherited and de novo CNVs in autism. Eur. J. Hum. Genet. 2011, 19, 727–731. [Google Scholar] [CrossRef]
- Verkerk, A.J.M.H.; Mathews, C.A.; Joosse, M.; Eussen, B.H.J.; Heutink, P.; Oostra, B.A. CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics 2003, 82, 1–9. [Google Scholar] [CrossRef]
- Mefford, H.C.; Muhle, H.; Ostertag, P.; von Spiczak, S.; Buysse, K.; Baker, C.; Franke, A.; Malafosse, A.; Genton, P.; Thomas, P.; et al. Genome-wide copy number variation in epilepsy: Novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010, 6, e1000962. [Google Scholar] [CrossRef]
- Van Abel, D.; Michel, O.; Veerhuis, R.; Jacobs, M.; Van Dijk, M.; Oudejans, C.B.M. Direct downregulation of CNTNAP2 by STOX1A is associated with Alzheimer’s disease. J. Alzheimers Dis. 2012, 31, 793–800. [Google Scholar] [CrossRef] [Green Version]
Unexposed Control (N = 14) | Experienced Breacher (N = 15) | Significance | |
---|---|---|---|
Age, mean (SD) | 38.86 (7.81) | 41.60 (8.42) | t = 0.907, p = 0.372 |
Sex (Male), N (%) | 14 (100) | 15 (100) | N/A |
Race, N (%) | |||
White | 12 (85.7) | 13 (86.7) | χ2 = 2.008, p = 0.571 |
Black | 1 (7.1) | 0 (0.0) | |
Asian | 1 (7.1) | 1 (6.7) | |
American Indian/Alaskan | 0 (0) | 1 (6.7) | |
Ethnicity (Non-Hispanic), N (%) | 13 (92.9) | 15 (100) | χ2 = 1.110, p = 0.483 |
Type of Service, N (%) | |||
Military | 10 (71.4) | 10 (66.7) | N/A |
Civilian Law Enforcement | 4 (28.6) | 5 (33.3) | |
Duration of service, mean (SD) | 13.71 (7.12) | 18.40 (6.82) | t = −1.809, p = 0.082 |
Total blast exposures, mean (SD) | 5.86 (10.42) | 5659.20 (9649.52) | t = −2.269, p = 0.040 |
Breaches in career, N (%) | |||
0 | 13 (92.9) | 0 (0.0) | N/A |
10–39 | 1 (7.1) | 0 (0.0) | |
100–199 | 0 (0.0) | 1 (6.7) | |
200–399 | 0 (0.0) | 1 (6.7) | |
400+ | 0 (0.0) | 13 (86.7) | |
Breaches in past year, N (%) | |||
0 | 14 (100) | 2 (13.3) | N/A |
1–9 | 0 (0.0) | 2 (13.3) | |
10–39 | 0 (0.0) | 1 (6.7) | |
40–99 | 0 (0.0) | 1 (6.7) | |
100–199 | 0 (0.0) | 3 (20.0) | |
200–399 | 0 (0.0) | 3 (20.0) | |
400+ | 0 (0.0) | 3 (20.0) |
Unexposed Control (N = 14) | Experienced Breacher (N = 15) | Significance | |
---|---|---|---|
Headaches, Yes, N (%) | 2 (14.3) | 2 (13.3) | χ2 = 0.006, p = 0.941 |
Memory problem, Yes, N (%) | 4 (28.6) | 10 (66.7) | χ2 = 4.209, p = 0.040 |
Ringing in ears, Yes, N (%) | 4 (28.6) | 10 (66.7) | χ2 = 4.209, p = 0.040 |
Sleep problems, Yes, N (%) | 5 (35.7) | 9 (60.0) | χ2 = 1.710, p = 0.191 |
Irritability, Yes, N (%) | 2 (14.3) | 8 (53.3) | χ2 = 4.887, p = 0.027 |
Depression, Yes, N (%) | 3 (21.4) | 3 (20.0) | χ2 = 0.009, p = 0.924 |
Concentration problems, Yes, N (%) | 2 (14.3) | 9 (60.0) | χ2 = 6.428, p = 0.011 |
PCL-M, mean (SD) | 20.64 (4.48) | 26.07 (7.69) | t = −2.338, p = 0.029 |
NSI, mean (SD) | 16.86 (5.29) | 16.80 (6.70) | t = −0.025, p = 0.980 |
BSI subscale, mean (SD) | |||
Somatization | 45.29 (4.41) | 49.33 (7.46) | t = −1.762, p = 0.089 |
Depression | 45.21 (6.40) | 46.00 (7.05) | t = −0.313, p = 0.756 |
Anxiety | 44.07 (5.81) | 44.60 (8.95) | t = −0.187, p = 0.853 |
Global severity index | 43.50 (6.40) | 46.40 (9.15) | t = −0.986, p = 0.333 |
ImPACT, mean (SD) | |||
Verbal memory | 92.21 (6.33) | 92.13 (6.53) | t = 0.034, p = 0.973 |
Visual memory | 68.00 (9.12) | 78.60 (11.06) | t = −2.804, p = 0.009 |
Visual motor speed | 27.83 (3.25) | 27.33 (4.57) | t = 0.337, p = 0.738 |
Reaction time | 0.57 (0.07) | 0.64 (0.10) | t = −2.213, p = 0.034 |
Impulse control | 0.07 (0.28) | 0.33 (0.62) | t = −1.500, p = 0.150 |
Total symptom | 4.71 (6.75) | 12.40 (17.59) | t = −1.573, p = 0.133 |
Number of Blast Exposures | CEC Total Score | |||
---|---|---|---|---|
ρ | p | ρ | p | |
BSI-somatization | 0.399 | 0.032 | 0.377 | 0.044 |
BSI-depression | 0.430 | 0.020 | −0.003 | 0.990 |
BSI-anxiety | 0.496 | 0.006 | −0.056 | 0.773 |
BSI-global severity index | 0.413 | 0.026 | 0.162 | 0.402 |
ImPACT-verbal memory | −0.055 | 0.776 | −0.114 | 0.557 |
ImPACT-visual memory | 0.053 | 0.784 | 0.508 | 0.005 |
ImPACT-visual motor speed | −0.324 | 0.087 | 0.133 | 0.491 |
ImPACT-reaction time | 0.448 | 0.015 | 0.264 | 0.166 |
ImPACT-impulse control | 0.202 | 0.293 | −0.069 | 0.722 |
ImPACT-total symptom | 0.243 | 0.204 | 0.223 | 0.244 |
Probe Name | Log2FC | p-Value | FDR |
---|---|---|---|
hsa-miR-371b-5p | 1.177 | 0.015 | 0.848 |
hsa-miR-187-3p | 1.113 | 0.019 | 0.848 |
hsa-miR-3182 | 1.043 | 0.046 | 0.848 |
hsa-miR-568 | 0.901 | 0.035 | 0.848 |
hsa-miR-604 | 0.795 | 0.049 | 0.848 |
hsa-miR-3202 | 0.699 | 0.015 | 0.848 |
hsa-miR-206 | 0.699 | 0.019 | 0.848 |
hsa-miR-624-3p | 0.644 | 0.043 | 0.848 |
hsa-miR-93-5p | −0.706 | 0.048 | 0.848 |
hsa-miR-628-3p | −0.826 | 0.042 | 0.848 |
hsa-miR-106a-5p | −0.853 | 0.045 | 0.848 |
hsa-miR-758-5p | −0.950 | 0.007 | 0.848 |
hsa-miR-146a-5p | −0.959 | 0.045 | 0.848 |
hsa-miR-934 | −1.071 | 0.015 | 0.848 |
Gene Symbol | Gene Name | Log2FC | FDR |
---|---|---|---|
IGLV3-16 | Immunoglobulin lambda variable 3-16 | −1.880 | 0.002 |
CD200 | CD200 molecule | −0.879 | 0.024 |
LILRB5 | Leukocyte immunoglobulin-like receptor B5 | −1.689 | 0.024 |
ZNF667-AS1 | ZNF667 antisense RNA 1 | −0.974 | 0.024 |
LMOD1 | Leiomodin 1 | −2.688 | 0.025 |
CNTNAP2 | Contactin-associated protein 2 | −1.715 | 0.030 |
EVPL | Envoplakin | −2.263 | 0.030 |
DPF3 | Double PHD fingers 3 | −1.542 | 0.039 |
LINC00996 | Long intergenic non-protein coding RNA 996 | 0.866 | 0.039 |
IGHV4-34 | Immunoglobulin heavy variable 4-34 | −1.250 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorn, R.; Edwards, K.A.; Hentig, J.; Yun, S.; Kim, H.-S.; Lai, C.; Devoto, C.; Yarnell, A.M.; Polejaeva, E.; Dell, K.C.; et al. A Pilot Study of Whole-Blood Transcriptomic Analysis to Identify Genes Associated with Repetitive Low-Level Blast Exposure in Career Breachers. Biomedicines 2022, 10, 690. https://doi.org/10.3390/biomedicines10030690
Vorn R, Edwards KA, Hentig J, Yun S, Kim H-S, Lai C, Devoto C, Yarnell AM, Polejaeva E, Dell KC, et al. A Pilot Study of Whole-Blood Transcriptomic Analysis to Identify Genes Associated with Repetitive Low-Level Blast Exposure in Career Breachers. Biomedicines. 2022; 10(3):690. https://doi.org/10.3390/biomedicines10030690
Chicago/Turabian StyleVorn, Rany, Katie A. Edwards, James Hentig, Sijung Yun, Hyung-Suk Kim, Chen Lai, Christina Devoto, Angela M. Yarnell, Elena Polejaeva, Kristine C. Dell, and et al. 2022. "A Pilot Study of Whole-Blood Transcriptomic Analysis to Identify Genes Associated with Repetitive Low-Level Blast Exposure in Career Breachers" Biomedicines 10, no. 3: 690. https://doi.org/10.3390/biomedicines10030690
APA StyleVorn, R., Edwards, K. A., Hentig, J., Yun, S., Kim, H. -S., Lai, C., Devoto, C., Yarnell, A. M., Polejaeva, E., Dell, K. C., LoPresti, M. L., Walker, P., Carr, W., Stone, J. R., Ahlers, S. T., & Gill, J. M. (2022). A Pilot Study of Whole-Blood Transcriptomic Analysis to Identify Genes Associated with Repetitive Low-Level Blast Exposure in Career Breachers. Biomedicines, 10(3), 690. https://doi.org/10.3390/biomedicines10030690