The Role of Circulating Tumor Cells in the Prognosis of Metastatic Triple-Negative Breast Cancers: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Methods
3. Results
3.1. The Role of CTC in TNBC Prognosis
3.2. The Role of CTC in TNBC Treatment Response
3.3. Approaches Used for CTC Assessment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, C.; Shah, S.P.; Chin, S.-F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012, 486, 346. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivenbark, A.G.; O’Connor, S.M.; Coleman, W.B. Molecular and cellular heterogeneity in breast cancer: Challenges for personalized medicine. Am. J. Pathol. 2013, 183, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertos, N.R.; Park, M. Breast cancer—One term, many entities? J. Clin. Investig. 2011, 121, 3789. [Google Scholar] [CrossRef] [PubMed]
- Treatment of Breast Cancer—American Family Physician. Available online: https://www.aafp.org/afp/2010/0601/p1339.html (accessed on 19 March 2022).
- Fabisiewicz, A.; Szostakowska-Rodzos, M.; Zaczek, A.J.; Grzybowska, E.A. Circulating tumor cells in early and advanced breast cancer; biology and prognostic value. Int. J. Mol. Sci. 2020, 21, 1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Network, T.C.G.A. Comprehensive molecular portraits of human breast tumors. Nature 2012, 490, 61. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Chen, A.; Bai, Z. Integrative investigation on breast cancer in ER, PR and HER2-defined subgroups using MRNA and MiRNA expression profiling. Sci. Rep. 2014, 4, 6566. [Google Scholar] [CrossRef] [Green Version]
- Mani, S.A.; Guo, W.; Liao, M.-J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Clouthier, S.G.; Deol, Y.; Liu, S.; Nagrath, S.; Azizi, E.; Wicha, M.S. Breast cancer stem cells: Current advances and clinical implications. Methods Mol. Biol. 2015, 1293, 1–49. [Google Scholar] [CrossRef]
- Wicha, M.S.; Liu, S.; Dontu, G. Cancer stem cells: An old idea—A paradigm shift. Cancer Res. 2006, 66, 1883–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisencu, L.A.; Bonci, E.-A.; Irimie, A.; Balacescu, O.; Lisencu, C. The role of circulating tumor cells in chemoresistant metastatic breast cancer. J. Clin. Med. 2021, 10, 684. [Google Scholar] [CrossRef]
- Scioli, M.G.; Storti, G.; D’Amico, F.; Gentile, P.; Fabbri, G.; Cervelli, V.; Orlandi, A. The role of breast cancer stem cells as a prognostic marker and a target to improve the efficacy of breast cancer therapy. Cancers 2019, 11, 1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koren, S.; Bentires-Alj, M. Breast tumor heterogeneity: Source of fitness, hurdle for therapy. Mol. Cell 2015, 60, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Agnoletto, C.; Corrà, F.; Minotti, L.; Baldassari, F.; Crudele, F.; Cook, W.J.J.; di Leva, G.; d’Adamo, A.P.; Gasparini, P.; Volinia, S. Heterogeneity in circulating tumor cells: The relevance of the stem-cell subset. Cancers 2019, 11, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Yelle, N.; Venugopal, C.; Singh, S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther. 2018, 182, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.; Cabezas-Sainz, P.; Pereira-Veiga, T.; Falo, C.; Abalo, A.; Morilla, I.; Curiel, T.; Cueva, J.; Rodríguez, C.; Varela-Pose, V.; et al. Looking for a better characterization of triple-negative breast cancer by means of circulating tumor cells. J. Clin. Med. 2020, 9, 353. [Google Scholar] [CrossRef] [Green Version]
- Peeters, D.J.E.; van Dam, P.J.; van den Eynden, G.G.M.; Rutten, A.; Wuyts, H.; Pouillon, L.; Peeters, M.; Pauwels, P.; van Laere, S.J.; van Dam, P.A.; et al. Detection and prognostic significance of circulating tumour cells in patients with metastatic breast cancer according to immunohistochemical subtypes. Br. J. Cancer 2014, 110, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Riethdorf, S.; Wu, G.; Wang, T.; Yang, K.; Peng, G.; Liu, J.; Pantel, K. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin. Cancer Res. 2012, 18, 5701–5710. [Google Scholar] [CrossRef] [Green Version]
- Gkountela, S.; Aceto, N. Stem-like features of cancer cells on their way to metastasis. Biol. Direct 2016, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Choi, J.-H.; Nam, J.-S. Targeting cancer stem cells in triple-negative breast cancer. Cancers 2019, 11, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 2003, 100, 3983–3988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, 24–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristofanilli, M.; Pierga, J.Y.; Reuben, J.; Rademaker, A.; Davis, A.A.; Peeters, D.J.; Fehm, T.; Nolé, F.; Gisbert-Criado, R.; Mavroudis, D.; et al. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit. Rev. Oncol. Hematol. 2019, 134, 39–45. [Google Scholar] [CrossRef]
- Lu, Y.J.; Wang, P.; Wang, X.; Peng, J.; Zhu, Y.W.; Shen, N. The significant prognostic value of circulating tumor cells in triple-negative breast cancer: A meta-analysis. Oncotarget 2016, 7, 37361–37369. [Google Scholar] [CrossRef] [Green Version]
- Dawood, S.; Broglio, K.; Valero, V.; Reuben, J.; Handy, B.; Islam, R.; Jackson, S.; Hortobagyi, G.N.; Fritsche, H.; Cristofanilli, M. Circulating tumor cells in metastatic breast cancer. Cancer 2008, 113, 2422–2430. [Google Scholar] [CrossRef]
- Wallwiener, M.; Hartkopf, A.D.; Baccelli, I.; Riethdorf, S.; Schott, S.; Pantel, K.; Marmé, F.; Sohn, C.; Trumpp, A.; Rack, B.; et al. The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer. Breast Cancer Res. Treat. 2012, 137, 503–510. [Google Scholar] [CrossRef]
- Munzone, E.; Botteri, E.; Sandri, M.T.; Esposito, A.; Adamoli, L.; Zorzino, L.; Sciandivasci, A.; Cassatella, M.C.; Rotmensz, N.; Aurilio, G.; et al. Prognostic value of circulating tumor cells according to immunohistochemically defined molecular subtypes in advanced breast cancer. Clin. Breast Cancer 2012, 12, 340–346. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Carey, L.A.; DeLuca, A.; Hwang, J.; Scott, J.H.; Rimawi, M.F.; Mayer, E.L.; Marcom, P.K.; Liu, M.C.; Esteva, F.J.; et al. Circulating tumor cell analysis in metastatic triple-negative breast cancers. Clin. Cancer Res. 2015, 21, 1098–1105. [Google Scholar] [CrossRef] [Green Version]
- Müller, V.; Riethdorf, S.; Rack, B.; Janni, W.; Fasching, P.A.; Solomayer, E.; Aktas, B.; Kasimir-Bauer, S.; Pantel, K.; Fehm, T. Prognostic impact of circulating tumor cells assessed with the cellsearch systemTM and adnatest breast™ in metastatic breast cancer patients: The DETECT study. Breast Cancer Res. 2012, 14, R118. [Google Scholar] [CrossRef]
- Riebensahm, C.; Joosse, S.A.; Mohme, M.; Hanssen, A.; Matschke, J.; Goy, Y.; Witzel, I.; Lamszus, K.; Kropidlowski, J.; Petersen, C.; et al. Clonality of circulating tumor cells in breast cancer brain metastasis patients. Breast Cancer Res. 2019, 21, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madic, J.; Kiialainen, A.; Bidard, F.-C.; Birzele, F.; Ramey, G.; Leroy, Q.; Frio, T.R.; Vaucher, I.; Raynal, V.; Bernard, V.; et al. Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int. J. Cancer 2015, 136, 2158–2165. [Google Scholar] [CrossRef] [PubMed]
- Helissey, C.; Berger, F.; Cottu, P.; Diéras, V.; Mignot, L.; Servois, V.; Bouleuc, C.; Asselain, B.; Pelissier, S.; Vaucher, I.; et al. Circulating tumor cell thresholds and survival scores in advanced metastatic breast cancer: The observational step of the CirCe01 phase III trial. Cancer Lett. 2015, 360, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Jansson, S.; Bendahl, P.-O.; Larsson, A.-M.; Aaltonen, K.E.; Rydén, L. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer 2016, 16, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoletti, C.; Li, Y.; Muñiz, M.C.; Kidwell, K.M.; Aung, K.; Thomas, D.G.; Brown, M.E.; Abramson, V.G.; Irvin, W.J., Jr.; Lin, N.U.; et al. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, phase II trial: TBCRC 019. Clin. Cancer Res. 2015, 21, 2771. [Google Scholar] [CrossRef] [Green Version]
- Larsson, A.-M.; Jansson, S.; Bendahl, P.-O.; Jörgensen, C.L.T.; Loman, N.; Graffman, C.; Lundgren, L.; Aaltonen, K.; Rydén, L. Longitudinal enumeration and cluster evaluation of circulating tumor cells improve prognostication for patients with newly diagnosed metastatic breast cancer in a prospective observational trial. Breast Cancer Res. 2018, 20, 48. [Google Scholar] [CrossRef]
- Iwata, H.; Masuda, N.; Yamamoto, D.; Sagara, Y.; Sato, N.; Yamamoto, Y.; Saito, M.; Fujita, T.; Oura, S.; Watanabe, J.; et al. Circulating tumor cells as a prognostic marker for efficacy in the randomized phase III JO21095 trial in Japanese patients with HER2-negative metastatic breast cancer. Breast Cancer Res. Treat. 2017, 162, 501–510. [Google Scholar] [CrossRef]
- Smerage, J.B.; Barlow, W.E.; Hortobagyi, G.N.; Winer, E.P.; Leyland-Jones, B.; Srkalovic, G.; Tejwani, S.; Schott, A.F.; O’Rourke, M.A.; Lew, D.L.; et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J. Clin. Oncol. 2014, 32, 3483. [Google Scholar] [CrossRef]
- Smerage, J.B.; Budd, G.T.; Doyle, G.V.; Brown, M.; Paoletti, C.; Muniz, M.; Miller, M.C.; Repollet, M.I.; Chianese, D.A.; Connelly, M.C.; et al. Monitoring apoptosis and Bcl-2 on circulating tumor cells in patients with metastatic breast cancer. Mol. Oncol. 2013, 7, 680. [Google Scholar] [CrossRef]
- Pierga, J.-Y.; Hajage, D.; Bachelot, T.; Delaloge, S.; Brain, E.; Campone, M.; Diéras, V.; Rolland, E.; Mignot, L.; Mathiot, C.; et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann. Oncol. 2012, 23, 618–624. [Google Scholar] [CrossRef]
- Liu, X.; Ran, R.; Shao, B.; Rugo, H.S.; Yang, Y.; Hu, Z.; Wei, Z.; Wan, F.; Kong, W.; Song, G.; et al. Combined peripheral natural killer cell and circulating tumor cell enumeration enhance prognostic efficiency in patients with metastatic triple-negative breast cancer. Chin. J. Cancer Res. 2018, 30, 315. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.C.; Janni, W.; Georgoulias, V.; Yardley, D.A.; Harbeck, N.; Wei, X.; McGovern, D.; Beck, R. First-line doublet chemotherapy for metastatic triple-negative breast cancer: Circulating tumor cell analysis of the tnAcity trial. Cancer Manag. Res. 2019, 11, 10427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.F.; Cristofanilli, M.; Shao, Z.M.; Tong, Z.S.; Song, E.W.; Wang, X.J.; Liao, N.; Hu, X.C.; Liu, Y.; Wang, Y.; et al. Circulating tumor cells predict progression-free and overall survival in Chinese patients with metastatic breast cancer, HER2-positive or triple-negative (CBCSG004): A multicenter, double-blind, prospective trial. Ann. Oncol. 2013, 24, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
- Wallwiener, M.; Riethdorf, S.; Hartkopf, A.D.; Modugno, C.; Nees, J.; Madhavan, D.; Sprick, M.R.; Schott, S.; Domschke, C.; Baccelli, I.; et al. Serial enumeration of circulating tumor cells predicts treatment response and prognosis in metastatic breast cancer: A prospective study in 393 patients. BMC Cancer 2014, 14, 512. [Google Scholar] [CrossRef]
- Liu, M.C.; Shields, P.G.; Warren, R.D.; Cohen, P.; Wilkinson, M.; Ottaviano, Y.L.; Rao, S.B.; Eng-Wong, J.; Seillier-Moiseiwitsch, F.; Noone, A.-M.; et al. Circulating tumor cells: A useful predictor of treatment efficacy in metastatic breast cancer. J. Clin. Oncol. 2009, 27, 5153. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.-T.; Cui, X.; Chen, Q.; Li, Y.-F.; Cui, Y.-H.; Wang, Y.; Jiang, J. Circulating tumor cell status monitors the treatment responses in breast cancer patients: A meta-analysis. Sci. Rep. 2017, 7, 43464. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Wu, A.; Chen, X. Current detection technologies of circulating tumor cells. Chem. Soc. Rev. 2017, 46, 2038. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Technologies for detection of circulating tumor cells: Facts and vision. Lab Chip 2013, 14, 57–62. [Google Scholar] [CrossRef]
- Cherdyntseva, N.; Litviakov, N.; Denisov, E.; Gervas, P. Circulating Tumor Cells in Breast Cancer: Functional Heterogeneity, Pathogenetic and Clinical Aspects|Experimental Oncology. Available online: https://exp-oncology.com.ua/article/9310/circulating-tumor-cells-in-breast-cancer-functional-heterogeneity-pathogenetic-and-clinical-aspects (accessed on 7 September 2021).
- Aceto, N.; Bardia, A.; Miyamoto, D.T.; Donaldson, M.C.; Wittner, B.S.; Spencer, J.A.; Yu, M.; Pely, A.; Engstrom, A.; Zhu, H.; et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014, 158, 1110–1122. [Google Scholar] [CrossRef] [Green Version]
- Donato, C.; Szczerba, B.M.; Scheidmann, M.C.; Castro-Giner, F.; Aceto, N. Micromanipulation of circulating tumor cells for downstream molecular analysis and metastatic potential assessment. J. Vis. Exp. 2019, 2019, e59677. [Google Scholar] [CrossRef]
- Banys-Paluchowski, M.; Krawczyk, N.; Fehm, T. Liquid biopsy in breast cancer. Geburtshilfe Frauenheilkd. 2020, 80, 1093. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of cancer: New dimensionshallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Prospective and retrospective studies | Systematic reviews |
Meta-analysis | Non-metastatic breast cancer |
Triple-negative breast cancer | Studies that are not in the English language |
Metastatic breast cancer | Studies on species other than humans |
Studies that are available in the English language | |
Species: humans | |
The role of CTCs in the prognosis of mTNBC |
Study | Number of Patients Included | Volume of Blood Analyzed | CTC 2 Threshold | CTC Identification System | Main Objective | Main Results | Results Regarding mTNBC 1 Patients |
---|---|---|---|---|---|---|---|
1. Peeters D.J.E. et al. [19] | 154; 16 mTNBC | 7.5 mL | ≥5 CTC 2/7.5 mL blood | CellSearch | The correlation between CTC number and prognosis among different breast cancer subtypes | CTC positive status is a negative prognostic factor regarding OS 3 and PFS 4 in MBC 5 patients | CTC positive status was associated with shorter OS and PFS |
2. Cristofanilli M. et al. [25] | 2436; 358 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | Splitting MBC patients into groups based on their prognosis | Five negative prognostic factors for breast cancer patients: CTC count ≥5, triple-negative subtype, grade 3 tumor, visceral metastasis, and more than one line of therapy | In mTNBC patients, CTC count ≥5 was associated with shorter OS |
3. Lu Y.J. et al. [26] | 642; Not reported | 7.5 mL | ≥1, ≥5 CTC/7.5 mL blood | CellSearch IE/FC 6 RT/PCR 7 | Clarifying the prognostic role of CTC in TNBC 8 patients | CTC counting is an important prognostic tool in TNBC patients | CTC positive status was statistically significant, associated with shorter PFS and borderline significant for OS |
4. Dawood S. et al. [27] | 185; 48 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | Prognostic value of CTC in newly diagnosed MBC patients | Better OS in MBC patients that were CTC negative compared with CTC positive | Better OS in MBC patients that were CTC negative compared with CTC positive |
5. Wallwiener M. et al. [28] | 468; 88 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | The correlation between CTC number and prognosis among different breast cancer subtypes | CTC positive status—a negative prognostic factor in terms of OS and PFS | CTC positive status was associated with shorter OS and PFS |
6. Munzone E. et al. [29] | 203; 18 mTNBC | 7.5 mL | 0; 1–4; ≥5 CTC/7.5 mL blood | CellSearch | The correlation between CTC number and prognosis among different breast cancer subtypes | CTC positive status—a negative prognostic factor for both PFS and OS in all molecular subtypes, except for TNBC subtype | CTC positive status was associated with shorter PFS, meanwhile regarding OS, the results were borderline significant in mTNBC patients |
7. Mark Jesus M. et al. [30] | 102; 102 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | Comparison between two CTC counting methods and the correlation between CTC number and prognosis | CTC number at 7–14 days after therapy initiation was a better marker for prognosis than CTC at baseline; IE/FC is comparable with CellSearch system | CTC number at 7–14 days after therapy initiation was a better marker for prognosis than CTC at baseline; IE/FC is comparable with CellSearch system |
10 mL | ≥0.67 CTC/1 mL blood | IE/FC | |||||
8. Müller V. et al. [31] | 254; 8 mTNBC | Not mentioned | ≥5 CTC/7.5 mL blood | CellSearch | Comparison between two CTC counting methods | CTC positive status was a negative prognostic factor for OS by using the CellSearch system only. For the AdnaTest BreastCancer system, no correlation between CTC and OS or PFS was noticed | CTC positive status was associated with shorter OS when using CellSearch |
Not mentioned | Not mentioned | AdnaTest BreastCancer | |||||
9. Riebensahm C. et al. [32] | 57; 10 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | To assess the genomic alteration involved in the progression of brain metastasis in breast cancer patients | Both methods showed that CTC positive status is associated with a worse OS in patients with brain metastasis of breast cancer | Not specifically mentioned |
7.5 mL | ≥1 CTC/7.5 mL blood | An EpCAM 10-independent method based on Ficoll density centrifugation | |||||
10. Madic J. et al. [33] | 40; 40 mTNBC | 5 mL | Not mentioned | NGS 11- Ilumina | The prognostic value of CTC compared to ctDNA 12 | CTC positive status at baseline—negative prognostic factor for OS and borderline significant for TTP | CTC positive status at baseline—negative prognostic factor for OS and borderline significant for TTP |
7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | |||||
11. Helissey C. et al. [34] | 56; 10 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | The prognostic significance of CTC changes in MBC patients | At baseline, negative prognostic factors in terms of OS and PFS—positive CTC status, triple-negative subtype, poor performance status, and low albumin level in MBC patients | Not specifically mentioned |
12. Jansson S. et al. [35] | 52; 4 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | The association between CTC count, PFS, and OS | CTC positive status, the presence of apoptotic CTC, and CTC clusters were useful prognostic factors for monitoring the therapeutic response | The presence of CTC clusters at baseline and at 1–3 months of therapy was more frequently found in mTNBC patients |
13. Paoletti C. et al. [36] | 64; 64 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | The prognostic role of CTC count, CTC apoptosis, and CTC clusters in MBC | Positive CTC status at baseline—negative prognostic factor in mTNBC patients | Positive CTC status at baseline—shorter PFS in mTNBC patients |
14. Larsson A-M. et al. [37] | 156; 26 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | The prognostic impact of CTC number and the presence of CTC clusters in MBC patients | Positive CTC status at baseline and the presence of CTC clusters—negative prognostic factors for OS and PFS in MBC patients | Fifty percent of mTNBC patients were CTC positive at baseline |
Study | Total Number of Patients Included; mTNBC 1 Patients | Volume of Blood Analyzed | CTC 2 Threshold | CTC Identification System | Main Objective | Main Results | Results Regarding mTNBC 1 |
---|---|---|---|---|---|---|---|
1. Helissey C. et al. [34] | 56; 10 mTNBC 1 | 7.5 mL | ≥5 CTC 2/7.5 mL blood | CellSearch | CTC dynamic and other palliative prognostic scores | A decrease in CTC number during therapy—better prognosis regarding PFS 3 | Not specifically mentioned |
2. Paoletti C. et al. [36] | 64; 64 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | The prognostic role of CTC count, CTC apoptosis, and CTC clusters in MBC 4 | A decrease in CTC number during therapy—positive prognostic factor in terms of PFS in mTNBC patients | A decrease in CTC number during therapy—positive prognostic factor in terms of PFS in mTNBC patients |
3. Larsson A-M. et al. [37] | 156; 26 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | CTC number and the presence of CTC clusters in the prognostication of MBC patients | A persistent positive CTC status—higher odds of disease progression The presence of CTC clusters—decreased OS 5 and PFS | Not specifically mentioned |
4. Iwata H. et al. [38] | 148; 31 mTNBC | 7.5 mL | ≥2 CTC/7.5 mL blood | CellSearch | Compare PFS among different therapies | A decrease in CTC number after one cycle of therapy—a better OS and PFS in MBC patients | mTNBC subtype was associated with a worse prognosis in terms of OS and PFS |
5. Smerage JB. et al. [39] | 595; 134 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | To evaluate if change in chemotherapy after one cycle in patients with persistent increased CTC would improve the OS | A decrease in CTC number after one cycle of therapy—better OS and PFS in MBC patients | Not specifically mentioned |
6. Smerage JB. et al. [40] | 83; 13 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | CTC count, CTC expression of two markers: M30 6 and Bcl-2 7 and the prognosis | Increased number of CTC and the presence of apoptotic CTC—worse prognosis in MBC patients. | Not specifically mentioned |
7. Pierga J.-Y. et al. [41] | 265; 54 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | CTC dynamic during therapy and prognosis | Positive CTC status at baseline and sustained CTC positivity during therapy—shorter PFS and OS in MBC patients | Not specifically mentioned |
8. Liu X. et al. [42] | 75; 75 mTNBC | 8 mL | >2 CTC/2 mL blood | Pep@ MNPs assays | The predictive value of CTC count regarding PFS | CTC counting—predictive for PFS only in mTNBC that are undergoing the first line of therapy CTC-NK 8 combined counting—predictive for PFS in mTNBC patients regardless of the line of therapy | CTC counting—predictive for PFS only in mTNBC that are undergoing the first line of therapy CTC-NK 8 combined counting—predictive for PFS in mTNBC patients regardless of the line of therapy |
10. Liu MC. et al. [43] | 191; 191 mTNBC | 7.5 mL | ≥1; ≥2; ≥5 CTC/7.5 mL blood | CellSearch | CTC dynamic under three different chemotherapy regimens | CTC response to therapy holds a more important prognostic significance than baseline CTC status | CTC response to therapy holds a more important prognostic significance than baseline CTC status |
11. Jiang Z.F. et al. [44] | 294; 39 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | To evaluate if the ≥5 CTC cut-off is predictive for OS and PFS | MBC patients—CTC number at baseline, at the first follow-up, and the second follow-up were prognostic factors in terms of OS and PFS with the exception of TNBC subtype | In mTNBC patients, CTC number at first follow-up and the second follow-up were significant prognostic factors in terms of OS and PFS |
12. Wallwiener M. et al. [45] | 393; 57 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | CTC number and CTC changes during therapy in the prognosis of MBC patients | Baseline CTC status and CTC after 1 cycle of therapy are independent prognostic factors for PFS and OS in MBC patients | mTNBC subtype was an independent prognostic factor for risk of progression and death |
13. Liu MC. et al. [46] | 74; 15 mTNBC | 7.5 mL | ≥5 CTC/7.5 mL blood | CellSearch | The correlation between CTC number and radiographic response during therapy in MBC patients | CTC levels were significantly associated with disease progression 7–9 weeks earlier than radiographic changes | Not specifically mentioned |
14. Yan WT. et al. [47] | 6712; Not mentioned | 7.5 mL | ≥5 CTC/7.5 mL blood and ≥1/7.5 mL blood | Not reported | The impact of CTC changes during therapy upon prognosis in MBC patients | A persistently high level of CTC during therapy is associated with worse OS and PFS in MBC patients | During therapy, CTC number decreased among different molecular subtypes with the exception of mTNBC subtype |
Study | CTC 1 Identification Devices | Results |
---|---|---|
Mark Jesus M. et al. [30] | Cell Search IE/FC 2 | CellSearch had a better prognostic value than IE/FC |
Muller V. et al. [31] | Cell Search AdnaTest | CellSearch is superior to the AdnaTest |
Riebensahm C. et al. [32] | CellSearch An EpCAM 3-independent method based on Ficoll density centrifugation | More CTCs were detected by the EpCAM independent method, underlining the possibility that in breast cancer brain metastasis, patients were more EpCAM negative when CTCs are present |
Liu X. et al. [42] | Pep@MNPs assays | EpCAM isolation-based devices lose CTC due to the loss of EpCAM expression by the CTC during systemic therapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisencu, L.A.; Trancă, S.; Bonci, E.-A.; Pașca, A.; Mihu, C.; Irimie, A.; Tudoran, O.; Balacescu, O.; Lisencu, I.C. The Role of Circulating Tumor Cells in the Prognosis of Metastatic Triple-Negative Breast Cancers: A Systematic Review of the Literature. Biomedicines 2022, 10, 769. https://doi.org/10.3390/biomedicines10040769
Lisencu LA, Trancă S, Bonci E-A, Pașca A, Mihu C, Irimie A, Tudoran O, Balacescu O, Lisencu IC. The Role of Circulating Tumor Cells in the Prognosis of Metastatic Triple-Negative Breast Cancers: A Systematic Review of the Literature. Biomedicines. 2022; 10(4):769. https://doi.org/10.3390/biomedicines10040769
Chicago/Turabian StyleLisencu, Lorena Alexandra, Sebastian Trancă, Eduard-Alexandru Bonci, Andrei Pașca, Carina Mihu, Alexandru Irimie, Oana Tudoran, Ovidiu Balacescu, and Ioan Cosmin Lisencu. 2022. "The Role of Circulating Tumor Cells in the Prognosis of Metastatic Triple-Negative Breast Cancers: A Systematic Review of the Literature" Biomedicines 10, no. 4: 769. https://doi.org/10.3390/biomedicines10040769
APA StyleLisencu, L. A., Trancă, S., Bonci, E. -A., Pașca, A., Mihu, C., Irimie, A., Tudoran, O., Balacescu, O., & Lisencu, I. C. (2022). The Role of Circulating Tumor Cells in the Prognosis of Metastatic Triple-Negative Breast Cancers: A Systematic Review of the Literature. Biomedicines, 10(4), 769. https://doi.org/10.3390/biomedicines10040769