DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cardiac Tissue Samples
2.2. mRNA Extraction and Sequencing
2.3. ncRNA Extraction and Sequencing
2.4. Validation for RT-qPCR
2.5. Enzyme-Linked Immunosorbent Assay
2.6. DNA Extraction and Infinium MethylationEPIC BeadChip
2.7. Statistical Methods
3. Results
3.1. Clinical Characteristics of Patients
3.2. mRNA Expressio£n of Genes Involved in DNA Methylation
3.3. DNMT3B Regulation Analysis
3.4. State of Global DNA Methylation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briceno, N.; Schuster, A.; Lumley, M.; Perera, D. Ischaemic cardiomyopathy: Pathophysiology, assessment and the role of revascularisation. Heart 2016, 102, 397–406. [Google Scholar] [CrossRef]
- Padula, S.L.; Yutzey, K.E. Epigenetic Regulation of Heart Failure: Cell Type Matters. Circ. Res. 2021, 129, 414–416. [Google Scholar] [CrossRef]
- Di Salvo, T.G.; Haldar, S.M. Epigenetic mechanisms in heart failure pathogenesis. Circ. Heart Fail. 2014, 7, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Papait, R.; Greco, C.; Kunderfranco, P.; Latronico, M.V.; Condorelli, G. Epigenetics: A new mechanism of regulation of heart failure? Basic Res. Cardiol. 2013, 108, 361. [Google Scholar] [CrossRef] [Green Version]
- Kimball, T.H.; Vondriska, T.M. Metabolism, Epigenetics, and Causal Inference in Heart Failure. Trends Endocrinol. Metab. 2020, 31, 181–191. [Google Scholar] [CrossRef]
- Papait, R.; Serio, S.; Condorelli, G. Role of the Epigenome in Heart Failure. Physiol. Rev. 2020, 100, 1753–1777. [Google Scholar] [CrossRef]
- Ortega, A.; Tarazon, E.; Gil-Cayuela, C.; Martinez-Dolz, L.; Lago, F.; Gonzalez-Juanatey, J.R.; Sandoval, J.; Portoles, M.; Rosello-Lleti, E.; Rivera, M. ASB1 differential methylation in ischaemic cardiomyopathy: Relationship with left ventricular performance in end-stage heart failure patients. ESC Heart Fail. 2018, 5, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Bontempo, P.; Palmieri, V.; Coscioni, E.; Maiello, C.; Donatelli, F.; Benincasa, G. Epigenetic Therapies for Heart Failure: Current Insights and Future Potential. Vasc. Health Risk Manag. 2021, 17, 247–254. [Google Scholar] [CrossRef]
- Napoli, C.; Benincasa, G.; Donatelli, F.; Ambrosio, G. Precision medicine in distinct heart failure phenotypes: Focus on clinical epigenetics. Am. Heart J. 2020, 224, 113–128. [Google Scholar] [CrossRef]
- Soler-Botija, C.; Galvez-Monton, C.; Bayes-Genis, A. Epigenetic Biomarkers in Cardiovascular Diseases. Front. Genet. 2019, 10, 950. [Google Scholar] [CrossRef]
- Bain, C.R.; Ziemann, M.; Kaspi, A.; Khan, A.W.; Taylor, R.; Trahair, H.; Khurana, I.; Kaipananickal, H.; Wallace, S.; El-Osta, A.; et al. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure. ESC Heart Fail. 2020, 7, 2468–2478. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Zhang, Y. Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions. Cell 2014, 156, 45–68. [Google Scholar] [CrossRef] [Green Version]
- Li, B.Z.; Huang, Z.; Cui, Q.Y.; Song, X.H.; Du, L.; Jeltsch, A.; Chen, P.; Li, G.; Li, E.; Xu, G.L. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res. 2011, 21, 1172–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinkkonen, L.; Hugenschmidt, T.; Berninger, P.; Gaidatzis, D.; Mohn, F.; Artus-Revel, C.G.; Zavolan, M.; Svoboda, P.; Filipowicz, W. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 2008, 15, 259–267. [Google Scholar] [CrossRef]
- Pepin, M.E.; Drakos, S.; Ha, C.M.; Tristani-Firouzi, M.; Selzman, C.H.; Fang, J.C.; Wende, A.R.; Wever-Pinzon, O. DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H674–H684. [Google Scholar] [CrossRef]
- Vujic, A.; Robinson, E.L.; Ito, M.; Haider, S.; Ackers-Johnson, M.; See, K.; Methner, C.; Figg, N.; Brien, P.; Roderick, H.L.; et al. Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J. Mol. Cell. Cardiol. 2015, 82, 174–183. [Google Scholar] [CrossRef]
- Glezeva, N.; Moran, B.; Collier, P.; Moravec, C.S.; Phelan, D.; Donnellan, E.; Russell-Hallinan, A.; O’Connor, D.P.; Gallagher, W.M.; Gallagher, J.; et al. Targeted DNA Methylation Profiling of Human Cardiac Tissue Reveals Novel Epigenetic Traits and Gene Deregulation across Different Heart Failure Patient Subtypes. Circ. Heart Fail. 2019, 12, e005765. [Google Scholar] [CrossRef] [Green Version]
- Baccarelli, A.; Wright, R.; Bollati, V.; Litonjua, A.; Zanobetti, A.; Tarantini, L.; Sparrow, D.; Vokonas, P.; Schwartz, J. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 2010, 21, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC), Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar]
- Macrae, D.J. The Council for International Organizations and Medical Sciences (CIOMS) guidelines on ethics of clinical trials. Proc. Am. Thorac. Soc. 2007, 4, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Rosello-Lleti, E.; Carnicer, R.; Tarazon, E.; Ortega, A.; Gil-Cayuela, C.; Lago, F.; Gonzalez-Juanatey, J.R.; Portoles, M.; Rivera, M. Human Ischemic Cardiomyopathy Shows Cardiac Nos1 Translocation and its Increased Levels are Related to Left Ventricular Performance. Sci. Rep. 2016, 6, 24060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Tarazon, E.; Portoles, M.; Rosello-Lleti, E. Protocol for Isolation of Golgi Vesicles from Human and Animal Hearts by Flotation through a Discontinuous Sucrose Gradient. STAR Protoc. 2020, 1, 100100. [Google Scholar] [CrossRef]
- Gao, J.; Cahill, C.M.; Huang, X.; Roffman, J.L.; Lamon-Fava, S.; Fava, M.; Mischoulon, D.; Rogers, J.T. S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life. Neurotherapeutics 2018, 15, 156–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhutani, N.; Burns, D.M.; Blau, H.M. DNA demethylation dynamics. Cell 2011, 146, 866–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, A.R.; Krawczyk, C.; Robertson, A.B.; Kusnierczyk, A.; Vagbo, C.B.; Schuermann, D.; Klungland, A.; Schar, P. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat. Commun. 2016, 7, 10806. [Google Scholar] [CrossRef]
- Bachman, M.; Uribe-Lewis, S.; Yang, X.; Williams, M.; Murrell, A.; Balasubramanian, S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 2014, 6, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Hrit, J.; Goodrich, L.; Li, C.; Wang, B.A.; Nie, J.; Cui, X.; Martin, E.A.; Simental, E.; Fernandez, J.; Liu, M.Y.; et al. OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development. Elife 2018, 7, e34870. [Google Scholar] [CrossRef]
- Mu, Y.; Yu, H.; Wu, T.; Zhang, J.; Evans, S.M.; Chen, J. O-linked beta-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1. PLoS Genet. 2020, 16, e1008730. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.T.; Kim, H.; Lu, W.; He, Q.; Liu, D.; Goodell, M.A.; Wan, M.; Songyang, Z. Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J. Biol. Chem. 2013, 288, 20776–20784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Liu, X.; Gao, W.; Li, P.; Hou, J.; Li, J.; Wong, J. Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked beta-N-acetylglucosamine transferase (OGT). J. Biol. Chem. 2014, 289, 5986–5996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, A. Gadd45 proteins: Key players of repair-mediated DNA demethylation. Adv. Exp. Med. Biol. 2013, 793, 35–50. [Google Scholar]
- Lucas, A.; Mialet-Perez, J.; Daviaud, D.; Parini, A.; Marber, M.S.; Sicard, P. Gadd45gamma regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling. Cardiovasc. Res. 2015, 108, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Rao, X.; Zhong, J.; Zhang, S.; Zhang, Y.; Yu, Q.; Yang, P.; Wang, M.H.; Fulton, D.J.; Shi, H.; Dong, Z.; et al. Loss of methyl-CpG-binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury. Circulation 2011, 123, 2964–2974. [Google Scholar] [CrossRef] [Green Version]
- Elia, L.; Kunderfranco, P.; Carullo, P.; Vacchiano, M.; Farina, F.M.; Hall, I.F.; Mantero, S.; Panico, C.; Papait, R.; Condorelli, G.; et al. UHRF1 epigenetically orchestrates smooth muscle cell plasticity in arterial disease. J. Clin. Investig. 2018, 128, 2473–2486. [Google Scholar] [CrossRef]
- Watson, C.J.; Collier, P.; Tea, I.; Neary, R.; Watson, J.A.; Robinson, C.; Phelan, D.; Ledwidge, M.T.; McDonald, K.M.; McCann, A.; et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum. Mol. Genet. 2014, 23, 2176–2188. [Google Scholar] [CrossRef] [Green Version]
- Shiah, S.G.; Hsiao, J.R.; Chang, H.J.; Hsu, Y.M.; Wu, G.H.; Peng, H.Y.; Chou, S.T.; Kuo, C.C.; Chang, J.Y. MiR-30a and miR-379 modulate retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J. Biomed. Sci. 2020, 27, 46. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Cheng, H.; Zhang, H.Y.; Ye, Y.Q.; Feng, Q.; Chen, Z.M.; Zheng, Y.L.; Wu, Z.G.; Wang, B.; Yao, J. Suppressing microRNA-29c promotes biliary atresia-related fibrosis by targeting DNMT3A and DNMT3B. Cell. Mol. Biol. Lett. 2019, 24, 10. [Google Scholar] [CrossRef]
- Roscigno, G.; Quintavalle, C.; Donnarumma, E.; Puoti, I.; Diaz-Lagares, A.; Iaboni, M.; Fiore, D.; Russo, V.; Todaro, M.; Romano, G.; et al. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget 2016, 7, 580–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; He, R.Q.; Wu, H.Y.; Zhang, T.T.; Liang, H.W.; Ye, Z.H.; Li, Z.Y.; Xie, T.T.; Shi, Q.; Ma, J.; et al. Expression Signature and Role of miR-30d-5p in Non-Small Cell Lung Cancer: A Comprehensive Study Based on in Silico Analysis of Public Databases and in Vitro Experiments. Cell. Physiol. Biochem. 2018, 50, 1964–1987. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, V.; Crasto, S.; Colombo, F.S.; Di Pasquale, E.; Catalucci, D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Sci. Rep. 2019, 9, 9320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Qin, B.; Moyer, A.M.; Nowsheen, S.; Liu, T.; Qin, S.; Zhuang, Y.; Liu, D.; Lu, S.W.; Kalari, K.R.; et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J. Clin. Investig. 2018, 128, 2376–2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, S.J.; Melnyk, S.; Pogribna, M.; Pogribny, I.P.; Caudill, M.A. Elevation in S-adenosylhomocysteine and DNA hypomethylation: Potential epigenetic mechanism for homocysteine-related pathology. J. Nutr. 2002, 132, 2361S–2366S. [Google Scholar] [CrossRef] [PubMed]
- Tehlivets, O.; Malanovic, N.; Visram, M.; Pavkov-Keller, T.; Keller, W. S-adenosyl-L-homocysteine hydrolase and methylation disorders: Yeast as a model system. Biochim. Biophys. Acta 2013, 1832, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.; Rivera, I.; Struys, E.A.; Jansen, E.E.; Ravasco, P.; Camilo, M.E.; Blom, H.J.; Jakobs, C.; Tavares de Almeida, I. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin. Chem. 2003, 49, 1292–1296. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, L.; Zhong, T.; Mueller, M.; Men, Y.; Zhang, N.; Xie, J.; Giang, K.; Chung, H.; Sun, X.; et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat. Commun. 2015, 6, 10221. [Google Scholar] [CrossRef] [Green Version]
- Hobuss, L.; Foinquinos, A.; Jung, M.; Kenneweg, F.; Xiao, K.; Wang, Y.; Zimmer, K.; Remke, J.; Just, A.; Nowak, J.; et al. Pleiotropic cardiac functions controlled by ischemia-induced lncRNA H19. J. Mol. Cell. Cardiol. 2020, 146, 43–59. [Google Scholar] [CrossRef]
- Omura, J.; Habbout, K.; Shimauchi, T.; Wu, W.H.; Breuils-Bonnet, S.; Tremblay, E.; Martineau, S.; Nadeau, V.; Gagnon, K.; Mazoyer, F.; et al. Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation 2020, 142, 1464–1484. [Google Scholar] [CrossRef]
- Liu, L.; An, X.; Li, Z.; Song, Y.; Li, L.; Zuo, S.; Liu, N.; Yang, G.; Wang, H.; Cheng, X.; et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc. Res. 2016, 111, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lian, X.; Gao, W.; Gu, J.; Shi, H.; Ma, Y.; Li, Y.; Fan, Y.; Wang, Q.; Wang, L. Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered 2022, 13, 3826–3839. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, S.; Zhang, J.; Yuan, Y.; Jiang, W.; Zhu, H.; Ding, X.; Zhan, L.; Wu, H.; Xie, Y.; et al. lncRNA H19 Alleviated Myocardial I/RI via Suppressing miR-877-3p/Bcl-2-Mediated Mitochondrial Apoptosis. Mol. Ther. Nucleic Acids 2019, 17, 297–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Feng, Z.H.; Sun, H.; Zhao, Z.H.; Yang, S.B.; Yang, P. The blood genome-wide DNA methylation analysis reveals novel epigenetic changes in human heart failure. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
Epigenomic Study | mRNA Sequencing | ncRNA Sequencing | DNMT3B Validation | Dnmt3b Nuclear Protein * | SAM/SAH Ratio | |
---|---|---|---|---|---|---|
n = 8 | n = 13 | n = 22 | n = 14 | n = 8 | n = 30 | |
Age (years) | 53 ± 5 | 54 ± 8 | 55 ± 8 | 55 ± 8 | 53 ± 6 | 55 ± 8 |
Gender male (%) | 100 | 100 | 100 | 93 | 100 | 100 |
NYHA class | III–IV | III–IV | III–IV | III–IV | III–IV | III–IV |
BMI (kg/m2) | 28 ± 3 | 27 ± 4 | 26 ± 3 | 27 ± 4 | 28 ± 4 | 27 ± 4 |
Haemoglobin (mg/dL) | 14 ± 2 | 14 ± 3 | 14 ± 2 | 13 ± 3 | 15 ± 2 | 14 ± 2 |
Haematocrit (%) | 44 ± 4 | 41 ± 6 | 41 ± 6 | 40 ± 8 | 43 ± 4 | 41 ± 5 |
Total cholesterol (mg/dL) | 152 ± 43 | 162 ± 41 | 174 ± 45 | 160 ± 40 | 162 ± 46 | 187 ± 44 |
Prior hypertension (%) | 25 | 33 | 40 | 31 | 38 | 56 |
Prior smoking (%) | 88 | 92 | 81 | 85 | 88 | 77 |
Diabetes mellitus (%) | 63 | 42 | 45 | 38 | 50 | 55 |
LVEF (%) | 24 ± 6 | 25 ± 5 | 24 ± 7 | 24 ± 6 | 23 ± 5 | 24 ± 7 |
LVESD (mm) | 57 ± 8 | 57 ± 8 | 54 ± 8 | 57 ± 8 | 57 ± 8 | 54 ± 8 |
LVEDD (mm) | 65 ± 7 | 65 ± 8 | 63 ± 9 | 65 ± 8 | 65 ± 8 | 63 ± 8 |
Functional Genomic Distribution | ||||||
All CpG Sites | Hypermethylated CpG Sites | Hypomethylated CpG Sites | ||||
CpGs | % | CpGs | % | CpGs | % | |
TSS1500 | 67 | 10.4 | 11 | 10.0 | 56 | 10.5 |
TSS200 | 47 | 7.3 | 3 | 2.7 | 44 | 8.3 |
5’UTR | 54 | 8.4 | 9 | 8.2 | 45 | 8.4 |
1stExon | 26 | 4.0 | 5 | 4.5 | 21 | 3.9 |
Gene body | 259 | 44.3 | 49 | 44.5 | 210 | 39.4 |
3’UTR | 16 | 2.5 | 0 | 0.0 | 16 | 3.0 |
Intergenic | 174 | 27.1 | 33 | 30.0 | 141 | 26.5 |
643 | 110 | 533 | ||||
CpG Content and Neighbourhood Context | ||||||
All CpG Sites | Hypermethylated CpG Sites | Hypomethylated CpG Sites | ||||
CpGs | % | CpGs | % | CpGs | % | |
North Shelf | 28 | 4.3 | 8 | 7.3 | 20 | 3.8 |
Surth Shelf | 19 | 3.0 | 4 | 3.6 | 15 | 2.8 |
North Shore | 75 | 11.7 | 17 | 15.5 | 58 | 10.9 |
Surth Shore | 53 | 8.2 | 8 | 7.3 | 45 | 8.4 |
Island | 121 | 18.8 | 10 | 9.1 | 111 | 20.8 |
Open sea | 347 | 54.0 | 63 | 57.3 | 284 | 53.3 |
643 | 110 | 533 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarazón, E.; Pérez-Carrillo, L.; Giménez-Escamilla, I.; García-Manzanares, M.; Martínez-Dolz, L.; Portolés, M.; Roselló-Lletí, E. DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines 2022, 10, 866. https://doi.org/10.3390/biomedicines10040866
Tarazón E, Pérez-Carrillo L, Giménez-Escamilla I, García-Manzanares M, Martínez-Dolz L, Portolés M, Roselló-Lletí E. DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines. 2022; 10(4):866. https://doi.org/10.3390/biomedicines10040866
Chicago/Turabian StyleTarazón, Estefanía, Lorena Pérez-Carrillo, Isaac Giménez-Escamilla, María García-Manzanares, Luis Martínez-Dolz, Manuel Portolés, and Esther Roselló-Lletí. 2022. "DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts" Biomedicines 10, no. 4: 866. https://doi.org/10.3390/biomedicines10040866
APA StyleTarazón, E., Pérez-Carrillo, L., Giménez-Escamilla, I., García-Manzanares, M., Martínez-Dolz, L., Portolés, M., & Roselló-Lletí, E. (2022). DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines, 10(4), 866. https://doi.org/10.3390/biomedicines10040866