Looking for the Holy Grail—Drug Candidates for Glioblastoma Multiforme Chemotherapy
Abstract
:1. Introduction
1.1. Glioblastoma Multiforme—An Overview
1.2. Standard Therapy—Chemotherapy
2. GBM Drug Candidates in Clinical Trials
2.1. Drug Candidates Targeting GBM Cancer Cell Metabolism
2.2. STAT3 Inhibitors as Drug Candidates for GBM Therapy
2.3. PD-1 Targeting Molecules as Drug Candidates for GBM Therapy
2.4. DNA-Targeting Drug Candidates for GBM Therapy
2.5. Histone Deacetylases Inhibitors in Clinical GBM Trials
2.6. Other Current Drug Candidates for GBM Therapy
3. Perspectives
Funding
Conflicts of Interest
References
- Delgado-Lopez, P.D.; Corrales-Garcia, E.M. Survival in glioblastoma: A review on the impact of treatment modalities. Clin. Transl. Oncol. 2016, 18, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Sacko, O.; Benouaich-Amiel, A.; Brandicourt, P.; Niare, M.; Charni, S.; Brague, D.; Catalaa, I.; Brenner, A.; Cohen-Jonathan Moyal, E.; Roux, F.E. The impact of surgery on the survival of patients with recurrent glioblastoma. Asian J. Neurosur. 2021, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Annavarapau, S.; Gogate, A.; Pham, T.; Davies, K.; Singh, P.; Robert, N. Treatment patterns and outcomes for patients with newly diagnosed glioblastoma multiforme: A retrospective cohort study. CNS Oncol. 2021, 10, CNS76. [Google Scholar] [CrossRef]
- Chambles, L.B.; Kistka, H.M.; Parker, S.L.; Hassam-Malani, L.; McGirt, M.J.; Thompson, R.C. The relative value of postoperative versus preoperative Karnofsky Performace Scale scores as a predictor of survival after surgical resection of glioblastoma multiforme. J. Neurooncol. 2015, 121, 359–364. [Google Scholar] [CrossRef]
- Mallick, S.; Benson, R.; Hakim, A.; Rath, G.K. Management of glioblastoma after recurrence: A changing paradigm. J. Egypt. Nat. Cancer Inst. 2016, 28, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, A.C.; Ashley, D.M.; Lopez, G.Y.; Mallinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. Cancer J. Clin. 2020, 79, 299–312. [Google Scholar] [CrossRef]
- Cohen, M.H.; Johnson, J.R.; Pazdur, R. Food and Drug Administration Drug approval summary: Temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clin. Cancer Res. 2005, 11, 6767–6771. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir-Kaynak, E.; Qutub, A.; Yesil-Celiktas, O. Advances in glioblastoma multiforme treatment: New models for nanoparticle therapy. Front. Physiol. 2018, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.I.; Mason, W.P. Temozolomide: The evidence for its therapeutic efficacy in malignant astrocytomas. Core Evid. 2009, 4, 93–111. [Google Scholar]
- Barciszewska, A.M.; Gurda, D.; Głodowicz, P.; Nowak, S.; Nasket-Barciszewska, M.Z. A new epigenetic mechanism of temozolomide action in glioma cells. PLoS ONE 2015, 10, e0136669. [Google Scholar] [CrossRef] [Green Version]
- Kitange, G.J.; Carlson, B.L.; Schroeder, M.A.; Grogan, P.T.; Lamont, J.D.; Decker, P.; Wu, W.; James, C.D.; Sarkaria, J.N. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro. Oncol. 2009, 11, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016, 3, 198–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Mi, Y.; Qian, H.; Guo, N.; Yan, A.; Zhang, Y.; Gao, X. A potential mechanism of temozolomide resistance in glioma—Ferroptosis. Front. Oncol. 2020, 10, 897. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, R.; Perazzoli, G.; Cabeza, L.; Jimenza-Luna, C.; Laque, R.; Prados, J.; Melguizo, C. Temozolomide: An updated overview of resistance mechanisms, nanotechnology advances and clinical applications. Curr. Neuropharmacol. 2021, 19, 513–537. [Google Scholar] [CrossRef]
- Perazzoli, G.; Prados, J.; Ortiz, R.; Caba, O.; Cabeza, L.; Berdasco, M.; Gonzalez, B.; Melguizo, C. Temozolomide resistance in glioblastoma cell lines: Implication of MGMT, MMR, P-glycoprotein and CD133 expression. PLoS ONE 2015, 10, e0140131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Miner, A.; Hennis, L.; Mittal, S. Mechanisms of temozolomide resistance in glioblastoma—A comprehensive review. Cancer Drug Resist. 2021, 4, 17–43. [Google Scholar] [CrossRef]
- Scaringi, C.; De Sanctis, V.; Minniti, G.; Enrici, R.M. Temozolomide-related hematologic toxicity. Onkologie 2013, 36, 444–449. [Google Scholar] [CrossRef]
- Roy, S.; Lahiri, D.; Maji, T.; Biswas, J. Recurrent glioblastoma: Where we stand. South Asian J. Cancer 2015, 4, 163–173. [Google Scholar] [CrossRef]
- Carvalho, B.; Fernandes, A.C.; De Almeida, D.H.; Sampaio, L.V.; Costa, A.; Caeiro, C.; Osorio, L.; Castro, L.; Linhares, P.; Damasceno, M.; et al. Second-line chemotherapy in recurent glioblastoma: A 2-cohort study. Oncol. Res. Treat. 2015, 38, 348–354. [Google Scholar] [CrossRef]
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, S.U. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev. 2017, 18, 3–9. [Google Scholar]
- Xiao, Z.Z.; Wang, Z.F.; Lan, T.; Huang, W.H.; Zhao, Y.H.; Ma, C.; Li, Z.Q. Carmustine as s supplementary therapeutic option for glioblastoma: A systematic review and meta-analysis. Front. Neurol. 2020, 11, 1036. [Google Scholar] [CrossRef] [PubMed]
- Lyon, K.A.; Huang, J.H. Bevacizumab as an adjuvant therapy for glioblastoma in elderly patients: The facts. Transl. Cancer Res. 2018, 7, S802–S805. [Google Scholar] [CrossRef] [PubMed]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreisl, T.N.; Kim, L.; Moore, K.; Duic, P.; Royce, C.; Stroud, I.; Garren, N.; Mackey, M.; Butan, J.A.; Camphausen, K.; et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 740–745. [Google Scholar] [CrossRef]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and bevacizumab in progressive glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef]
- Badruddoja, M.A.; Pazzi, M.; Sanan, A.; Schroeder, K.; Kuzma, K.; Norton, T.; Scully, T.; Mahadevan, D.; Ahmadi, M.M. Phase II study of bi-weekly temozolomide plus bevacizumab for adult patients with recurrent glioblastoma. Cancer Chemother. Pharm. 2017, 80, 715–721. [Google Scholar] [CrossRef]
- Dasjardis, A.; Reardon, D.A.; Coan, A.; Marcello, J.; Herndon, J.E.; Bailey, L.; Peters, K.B.; Friedman, H.S.; Vredenburgh, J.J. Bevacizumab and daily temozolomide for recurrent glioblastoma. Cancer 2012, 118, 1302–1312. [Google Scholar] [CrossRef]
- Gramatzki, D.; Roth, P.; Rushing, E.J.; Weller, J.; Andratschke, N.; Hofer, S.; Korol, D.; Regli, L.; Pangalu, A.; Pless, M.; et al. Bevacizumab may improve quality of life, but not overall survival in glioblastoma: An epidemiological study. Ann. Oncol. 2018, 29, 1431–1436. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Mole, D.R.; Blancher, C.; Copley, R.R.; Pollard, P.J.; Gleadle, J.M.; Ragoussis, J.; Ratcliffe, P.J. Genome-wide Association of Hypoxia-inducible Factor (HIF)-1α and HIF-2α DNA Binding with Expression Profiling of Hypoxia-inducible Transcripts. J. Biol. Chem. 2009, 284, 16767–16775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kierans, S.J.; Taylor, C.T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J. Physiol. 2021, 599, 23–27. [Google Scholar] [CrossRef]
- Hagen, T. Oxygen versus Reactive Oxygen in Regulation of HIF-1α: The balance tips. Biochem. Res. Int. 2012, 2012, 436981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajak, B.; Siwiak, E.; Sołtyka, M.; Priebe, A.; Zieliński, R.; Fokt, I.; Ziemniak, M.; Jaśkiewicz, A.; Borowski, R.; Domoradzaki, T.; et al. 2-deoxy-D-glucose and its analogs: From diagnostic to therapeutic agents. Int. J. Mol. Sci. 2020, 21, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, I.L.; Levy, M.M.; Kerr, D.S. The 2-deoxyglucose test as a supplement to fasting for detection of childhood hypoglycemia. Pediatr. Res. 1984, 18, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strandberg, A.Y.; Pienimaki, T.; Pitkala, K.H.; Tilvis, R.S.; Salomaa, V.V.; Strandberg, T.E. Comparison of normal fsting and one-hour glucose levels as predictors of future diabetes during a 34-year follow-up. Ann. Med. 2013, 45, 336–340. [Google Scholar] [CrossRef]
- Abdelmalak, M.; Lew, A.; Ramezani, R.; Shroads, A.L.; Coats, B.S.; Langaee, T.; Shankar, M.N.; Neiberger, R.E.; Subramony, S.H.; Stacpoole, P.W. Long-term safety of dichloroacetate in congenital lactic acidosis. Mol. Genet. Metab. 2013, 109, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Satundera, G.; Michelakis, E.D. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front. Oncol. 2013, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroactetae (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 2008, 99, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Michelakis, E.D.; Sutendra, G.; Dromparis, P.; Webster, L.; Haromy, A.; Niven, E.; Maguire, C.; Gammer, T.L.; Mackey, J.R.; Fulton, D.; et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2010, 2, 31ra34. [Google Scholar] [CrossRef] [Green Version]
- Chu, Q.S.C.; Sangha, R.; Spratlin, J.; Vos, L.J.; Mackey, J.R.; McEwan, A.J.B.; Venner, P.; Michelakis, E.D. A phase I open-labeled, single-arm, dose-escalation study of dichloroacetate (DCA) in patients with advanced solid tumors. Investig. New Drugs 2015, 33, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Marier, D.; Marsden, E.; Andrews, D.; Eliaz, I. A novel form of dichloroactetate therapy for patients with advanced cancer: A report of 3 cases. Altern. Health Med. 2014, 20, 21–28. [Google Scholar]
- Tataranni, T.; Piccoli, C. Dichloroacetate (DCA) and cancer: An overview towards clinical applications. Oxidative Med. Cell. Longev. 2019, 2019, 8201079. [Google Scholar] [CrossRef] [PubMed]
- Skeberdytė, A.; Sarapinienė, I.; Aleksander-Krasko, J.; Stankevičius, V.; Sužiedėlis, K.; Jarmalaitė, S. Dichloroacetate and salinomycin exert a synergistic cytotoxic effect in colorectal cancer cell lines. Sci. Rep. 2018, 8, 17744. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Lam, Y.M.; Leung, Y.C.; Hu, X.; Chen, X.; Cheung, E.; Tam, K.Y. Combined use of arginase and dichloroacetate exhibits anti-proliferative effects in triple negative breast cancer cells. J. Pharm. Pharmacol. 2019, 71, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, X.; Xiong, H.; Zhou, P.; Ni, Z.; Yang, T.; Zhang, Y.; Zeng, Y.; He, J.; Yang, F.; et al. Inhibition of COX2 enhances the chemosensitivity of dichloroacetate in cervical cancer cells. Oncotarget 2017, 8, 51748–51757. [Google Scholar] [CrossRef] [Green Version]
- Lucido, C.; Miskimins, W.; Vermeer, P. Propranolol promotes glucose dependence and synergizes with dichloroacetate for anti-cancer activity in HNSCC. Cancers 2018, 10, 476. [Google Scholar] [CrossRef] [Green Version]
- Prokhorova, I.V.; Pyaskovskaya, O.N.; Kolesnik, D.L.; Solyanik, G.I. Influence of metformin, sodium dichloroacetate and their combination on the hematological and biochemical blood parameters of rats with gliomas C6. Exp. Oncol. 2018, 40, 205–210. [Google Scholar] [CrossRef]
- Kolesnik, D.L.; Pyaskovskaya, O.N.; Yakshibaeva, Y.R.; Solyanik, G.I. Time-dependent cytotoxicity of dichloroacetate and metformin against Lewis lung carcinoma. Exp. Oncol. 2019, 41, 14–19. [Google Scholar] [CrossRef]
- Ruban, A.; Berkutzki, T.; Cooper, I.; Mohar, B.; Teichberg, V.I. Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas. Investig. New Drugs 2012, 30, 2226–2235. [Google Scholar] [CrossRef]
- Ijare, O.; Conway, D.; Cash, A.; Baskin, D.; Pichumani, K. Oxaloacetate alters glucose metabolism in glioblastoma: 13C isotopomer study. Neuro-Oncol. 2019, 21, vi43–vi44. [Google Scholar] [CrossRef]
- Kuang, Y.; Han, X.; Xu, M.; Yang, Q. Oxaloacetate induces apoptosis in HepG2 cells via inhibition of glycolysis. Cancer Med. 2018, 7, 1416–1429. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Wang, C.C.; Lin, Y.J.; Wu, C.P.; Hsieh, C.H. Cycling hypoxia induces chemoresistance through the activation of reactive oxygen species-mediated B-cell lymphoma extra-long pathway in glioblastoma multiforme. J. Transl. Med. 2015, 13, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sourbier, C.; Srivastava, G.; Ghosh, M.C.; Ghosh, S.; Yang, Y.; Gupta, G.; De Graff, W.; Krishna, M.C.; Mitchell, J.B.; Rouault, T.A.; et al. Targeting HIF2α translation with Tempol in VHL-deficient clear cell renal cell carcinoma. Oncotarget 2012, 3, 1472–1482. [Google Scholar] [CrossRef] [Green Version]
- Pajak, B.; Siwiak-Niedbalska, E.; Jaśkiewicz, A.; Sołtyka, M.; Zieliński, R.; Domoradzki, T.; Fokt, I.; Skóra, S.; Priebe, W. Synregistic anticancer effect of glycolysis and histone deacetylases inhibitors in a glioblastoma model. Biomedicines 2021, 9, 1749. [Google Scholar] [CrossRef]
- Moleculin Receives FDA Allowance to Begin a Phase 1 Study of WP1122 for the Treatment of Glioblastoma Multiforme. Available online: https://www.biospace.com/article/releases/moleculin-receives-fda-allowance-to-begin-a-phase-1-study-of-wp1122-for-the-treatment-of-glioblastoma-multiforme/ (accessed on 29 March 2022).
- Luwor, R.B.; Stylli, S.; Kaye, A.H. The role of Stat3 in glioblastoma multiforme. J. Clin. Neurosci. 2013, 20, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.W.; Cao, X.; Zhu, H.; Ali-Osman, F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin. Cancer Res. 2008, 14, 6042–6054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, L.; Li, J.; Li, Q.; Wang, X.; Medikonda, R.; Zhao, T.; Li, T.; Ma, H.; Yi, L.; Liu, P.; et al. ACT001 reduces the expression of PD-L1 by inhibiting the phosphorylation of STAT3 in glioblastoma. Theranostic 2020, 10, 5943–5956. [Google Scholar] [CrossRef]
- Pajak, B.; Gajkowska, B.; Orzechowski, A. Molecular basis of parthenolide-dependent proapoptotic activity in cancer cells. Folia Histochem. Cytobiol. 2008, 46, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Jin, P.; Madieh, S.; Augsburger, L.L. The solution and solid state stability and excipient compatibility of parthenolide in feverfew. AAPS Pharm. Sci. Tech. 2007, 8, 200. [Google Scholar] [CrossRef]
- Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials. Drug Discov. Today 2010, 15, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Lickliter, J.D.; Jennens, R.; Lemech, C.R.; Su, S.Y.C.; Chen, Y. Phase 1 dose-escalation study of ACT001 in patients with recurrent glioblastoma and other advanced solid tumors. J. Clin. Oncol. 2018, 36, e14048. [Google Scholar] [CrossRef]
- Zariquiey, F.S.; da Souza, J.V.; Estrada-Tejedor, R.; Bronowska, A.K. If you cannot win them, join them: Understanding new ways to target STAT3 by small molecules. ACS Omega 2019, 4, 13913–13921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertens, C.; Haripal, B.; Klinge, S.; Darnell, J.E. Mutations in the linker domain affect phosho-STAT3 function and suggest targets for interrupting STAT3 activity. Proc. Natl. Acad. Sci. USA 2015, 112, 14811–14816. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Yu, T.; Dong, N.; Wang, B.; Sun, F.; Jiang, D. Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J. Exp. Clin. Cancer Res. 2019, 38, 289. [Google Scholar] [CrossRef]
- A Study of BBI608 in Combination With Temozolomide in Adult Patients with Recurrent or Progressed Glioblastoma. Available online: https://clinicaltrials.gov/ct2/show/study/NCT02315534 (accessed on 27 March 2022).
- Iwamuru, A.; Szymanski, S.; Iwado, E.; Aoki, H.; Yokoyama, T.; Fokt, I.; Hess, K.; Conrad, C.; Madden, T.; Sawaya, R.; et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 2007, 26, 2435–2444. [Google Scholar] [CrossRef] [Green Version]
- Vangala, V.; Nimmu, N.V.; Khalid, S.; Kuncha, M.; Sistla, R.; Banerjee, R.; Chaudhuri, A. Combating glioblastoma by codelivering the small-molecule inhibitor of STAT3 and STAT3siRNA with a5b1 integrin receptor-selective liposomes. Mol. Pharm. 2020, 17, 6. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Qiu, C.; Yang, N. STAT3 contributes to radioresistance in cancer. Front. Oncol. 2020, 10, 1120. [Google Scholar] [CrossRef]
- Ott, M.; Kassab, C.; Marisetty, A.; Hashimoto, Y.; Wei, J.; Zamier, D.; Leu, J.S.; Tomaszewski, K.H.; Sabbagh, A.; Fang, D.; et al. Radiation with STAT3 blockade triggers dendritic cell-T cell interactions in the glioma microenvironment and therapeuthc efficact. Clin. Cancer Res. 2020, 26, 4983–4994. [Google Scholar] [CrossRef]
- Han, D.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researchers in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar]
- Litak, J.; Mazurek, M.; Grochowski, C.; Kamieniak, P.; Roliński, J. PD-L1/PD-1 axis in glioblastoma multiforme. Int. J. Mol. Sci. 2019, 20, 5347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, C.; Chen, G.; Zhao, H.; Li, Y.; Chen, J.; Zhang, H.; Li, S.; Zhao, Y.; Chen, F.; Li, W.; et al. PD-L1 expression in glioblastoma, the clinical and prognostic significance: A systematic literature review and meta-analysis. Front. Oncol. 2020, 10, 1015. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Hu, M.; Li, P.; Ma, J.; Xie, L.; Teng, F.; Zhu, Y.; Fan, B.; Mu, D.; Yu, J. Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget 2017, 8, 49702–49712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekhon, N.; Kumbla, R.A.; Mita, M. Chapter 1—Current Trends in Cancer Therapy. In Cardio-Oncology, Principles, Prevention and Management; Gottlieb, R., Mehta, P.K., Eds.; Academic Press: Amsterdam, The Netherlands, 2017; pp. 1–24. [Google Scholar]
- Faiena, I.; Cummings, A.L.; Crosetti, A.M.; Pantuck, A.J.; Chamie, K.; Drakaki, A. Durvalumab: An investigational anti-PD-L1 monoclonal antibody for the treatment of orothelial carcinoma. Drug Des. Dev. 2018, 12, 209–215. [Google Scholar] [CrossRef] [Green Version]
- US National Library of Medicine. Phase 2 Study of Durvalumab (MEDI4736) in Patients with Glioblastoma. Available online: https://clinicaltrials.gov/ct2/show/results/NCT02336165 (accessed on 29 March 2022).
- Yang, T.Y.; Kong, Z.; Ma, W. PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: Clinical studies, challenges and potential. Hum. Vaccin Immunother. 2021, 17, 546–553. [Google Scholar] [CrossRef]
- Torngovnick, A.; Schumacher, B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015, 6, 157. [Google Scholar]
- Silberman, S.; Hsu, S.; Muczyczenko, Z.; Picker, D.; Sipowicz, M.; Zak, E.; Buczynska, A.; Olejniczak, M.; Priebe, W. Design and initiation of pivotal studies for Berubicin, a novel potent topoisomerase II poison for the treatment of recurrent glioblastoma multiforme (GBM). Neuro-Oncol. 2021, 23, vi193. [Google Scholar] [CrossRef]
- Micaleff, I.; Baron, B. Doxorubicin: An overview of anticancer and chemoresistance mechanisms. Ann. Clin. Toxicol. 2020, 3, 1031. [Google Scholar]
- Kazerooni, R.; Conrad, C.; Johansen, M.; Sakamoto, M.; Thapar, N.; Mayer, C.; Priebe, W.; Madden, T. Phase I clinical pharmacokinetics of RTA744 (Berubicin (B)), a blood-brain barrier penetrating anthracycline active against high grade glioma, and evaluation of its 12-hydroxy metabolite, berubicinol (B-ol). Mol. Cancer 2007, 6, B101. [Google Scholar]
- Tang, F.; Tsakalozou, E.; Arnold, S.M.; Ng, C.M.; Leggas, M. Population pharmacokinetic analysis of AR-67, a lactone stable camptothecin analogue in cancer patients with solid tumors. Investig. New Drugs 2019, 37, 1218–1230. [Google Scholar] [CrossRef]
- Kumthekar, P.; Raizer, J.; Cavaliere, R.; Devoe, C.; Jensen, R.; Stieber, V.; Runk, T.; Grewal, J.; Brownell, E.; Zukiwski, A.; et al. ACTR40. Phase 2 safety and efficacy of AR-67 (7-T-butyldimethylsiltyl-10-hydroxycamptothecin) in patients with recurrent glioblastoma multiforme (GBM) or gliosarcoma. Neuro-Oncology 2019, 21, vi22. [Google Scholar] [CrossRef]
- Lee, A. Fuzuloparib: First approval. Drugs 2021, 81, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development. Cold Spring Harb Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inche, A.G.; La Thangue, N.B. Chromatin control and cancer-drug discovery: Realizing the promise. Drug Discov. Today 2006, 11, 97–109. [Google Scholar] [CrossRef]
- Parbin, S.; Kar, S.; Shilpi, A.; Sengupta, D.; Deb, M.; Rath, S.K.; Patra, S.K. Histone deacetylases: A saga of perturbed acetylation homeostasis in cancer. J. Histochem. Cytochem. 2014, 62, 11–33. [Google Scholar] [CrossRef] [Green Version]
- Zorzan, M.; Giordan, E.; Redaelli, M.; Caretta, A.; Mucignat-Caretta, C. Molecular targets in glioblastoma. Future Oncol. 2015, 11, 1407–1420. [Google Scholar] [CrossRef]
- Lee, D.H.; Ryu, H.W.; Won, H.R.; Kwon, S.H. Advances in epigenetic glioblastoma therapy. Oncotarget 2017, 8, 18577–18589. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.S.; Galloway, S.; Lagrutta, A.; Armstrong, M.; Miller, T.; Richon, V.M.; Andrews, P.A. Nonclinical safety assessment of the histone deactylase inhibitor vorinostat. Int. J. Toxicol. 2010, 29, 3–19. [Google Scholar] [CrossRef]
- Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007, 12, 1247–1252. [Google Scholar] [CrossRef]
- Palmieri, D.; Lockman, P.R.; Thomas, F.C.; Hua, E.; Herring, J.; Hargrave, E.; Johnson, M.; Flores, N.; Qian, Y.; Vega-Valle, E.; et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin. Cancer Res. 2009, 15, 6148–6157. [Google Scholar] [CrossRef] [Green Version]
- Galanis, E.; Jaeckle, K.A.; Maurer, M.J.; Reid, J.M.; Ames, M.M.; Hardwick, J.S.; Reilly, J.F.; Loboda, A.; Nebozhyn, M.; Fantin, V.R.; et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: A north Central Cancer Treatment Group study. J. Clin. Oncol. 2009, 27, 2052–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, K.B.; Lipp, E.S.; Miller, E.; Herndon, J.E., 2nd; McSherry, F.; Desjardins, A.; Reardon, D.A.; Friedman, H.S. Phase I/II trial of vorinostat, bevacizumab, and daily temozolomide for recurrent malignant gliomas. J. Neurooncol. 2018, 137, 349–356. [Google Scholar] [CrossRef] [PubMed]
Drug Candidate/ Administration Route (IV—Intravenous, PO—Oral, IM—Intramuscular Injection) | Mechanism of Action | Indication | Clinical Phase | Clinical Trial ID (Status) |
Chemotherapy | ||||
AZD1775 -PO | selective inhibitor of Wee1 tyrosine kinase | -recurrent GBM | 1 | NCT02207010 C |
Chlorogenic acid -IV | immunomodulatory action | -advanced GBM | 2 | NCT03758014 |
USL311 -IV | C-X-C motif chemokine receptor 4 (CXCR4) inhibitor | -solid tumors (alone) -recurrent GBM (with Lomustin) | 1 2 | NCT02765165 * |
ACT001 -IV | nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3) inhibitor; immunomodulatory action | -recurrent GBM (with Perbrolizumab) | 1 | NCT05053880 R |
Prostate-specific membrane antigen (PSMA ADC) -IV | PSMA and tumor neovascularization inhibitor | -GBM -gliosarcoma | 2 | NCT01856933 C |
Cabazitaxel -IV | cell death induction by microtubule stabilization | -TMZ refractory GBM | 2 | NCT01866449 C |
Dichloroacetate (DCA) -PO | glycolysis inhibitor | -recurrent GBM | 2A | NCT05120284 A |
-t-butyldimethylsiltyl-10-hydroxy-camptothecin (AR-67) -IV | DNA replication inhibition | -recurrent GBM | 2 | NCT01124539 |
Acalabrutinib (ACP-196) -PO | irreversible Bruton’s tyrosine kinase (BTK) inhibitor | -recurrent GBM | 1/2 | NCT02586857 A |
VB-111 -IV | neovascularization inhibitor | -GBM -recurrent GBM (prior to and after surgery) | 2 | NCT04406272 R |
-Trans sodium crocetinate -IV | enhancement of the oxygenation of hypoxic tissues | -recurrent GBM (with TMZ and RT) | 3 | NCT03393000 * |
Dacomitinib (PF-00299804) -PO | pan-ErbB inhibitor | -primary GBM (prior surgery) -recurrent GBM with EGFR amplification or mutation | 2 2 | NCT01112527 C NCT01520870 C |
Durvalumab -IV | PD-1 receptor inhibitor | -GBM -recurrent GBM (after Bevacizumab) | 2 | NCT02336165 C |
Infigratinib (BGJ398) -PO | fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor | -primary GBM (patients who are not candidates for surgery) | 2 | NCT01975701 C |
BBI608 (Napabucasin) -PO | STAT3 inhibitor | -primary GBM (monotherapy prior resection and with TMZ postoperative) -recurrent GBM (with TMZ, without Bevacizumab treatment) | 1 2 | NCT02315534 C |
AEE788 -PO | multi-targeted kinase inhibitor with potent inhibitory activity against the ErbB and VEGF receptor family of tyrosine kinases | -recurrent GBM | 1/2 | NCT00116376 C |
Fuzuloparib (Fluzoparib) -PO | Poly [ADP-ribose] polymerase 1/2 (PARP1/2) inhibitor | -recurrent GBM (with TMZ) | 2 | NCT04552977 A |
Sorafenib -PO | multi-kinase inhibitor facilitating apoptosis, mitigating angiogenesis, and suppressing cell proliferation | -recurrent GBM (with TMZ) | 2 | NCT00597493 C |
Tamoxifen -PO | selective estrogen receptor (ER) modulator, mitochondrial complex I inhibitor | -recurrent GBM | 2 | NCT04765098 A |
Berubicin -IV | Topoisomerase II (Topo II) stabilization, DNA replication inhibitor | -recurrent GBM | 1/2 | NCT04915404 A NCT04762069 R |
WP1066 -PO | STAT3 inhibitor | -recurrent GBM -metastatic melanoma in the brain -pediatric patients with any progressive or recurrent malignant brain tumor | 1 1 | NCT01904123 C NCT04334863 R |
BAL101553 (Lisavanbulin) -IV | promotes tumor cell death by modulating the spindle assembly checkpoint | -advanced, recurrent solid tumors or GBM | 1/2 | NCT02895360 C |
Nivolumab -IV | PD-1 receptor inhibition | -recurrent GBM (with Bevacizumab and Ipilimumab) | 3 | NCT02017717 A |
Adjuvant for radiotherapy | ||||
Mibefrabil -PO | calcium channels (T-type and Orai1-3) blocker | -recurrent GBM | 1 | NCT02202993 C |
Axitinib -PO | VEGFR1-3, c-KIT, and platelet-derived growth factor (PDGFR) inhibitor | -GBM | 2 | NCT01508117 * |
Nivolumab -IV | PD-1 receptor inhibitor | -MGMT-unmethylated GBM (with Ipilimumab and RT) -GBM (newly diagnosed elderly patients) (with/without TMZ and RT) -MGMT-unmethylated GBM (with TMZ and RT) | 2 2 3 | NCT03367715 A NCT04195139 A NCT02617589 C |
Durvalumab -IV | PD-1 receptor inhibitor | -newly diagnosed GBM with unmethylated MGMT (with RT) | 2 | NCT02336165 C |
Ipilimumab -IV | cytotoxic T cell antigen 4 (CTLA-4) inhibitor, immunomodulatory action | -MGMT-unmethylated GBM (with TMZ and RT) | 2 | NCT03367715 |
2-hydroxyoleic acid (2-OHOA) -PO | cell cycle arrest, autophagy induction, changes in membrane–lipid composition | -newly diagnosed GBM | 1 | NCT03867123 A |
INO-5401 -IM followed by electroporation (EP) | synthetic DNA plasmids encoding for hTERT, WT-1 and PSMA | -newly diagnosed GBM (with TMZ and RT +INO-9012) | 1 | NCT03491683 A |
INO-9012 -IM followed by electroporation (EP) | synthetic DNA plasmid encoding Interleukin 12 (IL-12) | -newly diagnosed GBM (with TMZ and RT + INO5401) | 2 | NCT03491683 A |
Cemiplimab -IM followed by electroporation (EP) | PD-1 receptor inhibitor (mAb) | -newly diagnosed GBM (with TMZ and RT) | 2 | NCT03491683 A |
Arginine pegylated with 2000-molecular-weight polyethylene glycol (ADI-PEG20) -IM | arginine deprivation agent | -newly diagnosed GBM (with TMZ and RT) | 1 | NCT04587830 R |
MBM-02 (Tempol) -PO | hypoxia-inducing factor 1/2 (HIF-1/2) inhibitor | -newly diagnosed GBM (with TMZ and RT) | 2 | NCT04874506 A |
Anhydrous enol-oxaloacetate (AEO) -PO | glycolysis inhibitor | -primary GBM (after surgery along with TMZ and RT) | 2 | NCT04450160 A |
Depatuxizumab Mafodotin (ABT414) -IV | epidermal-growth-factor-receptor (EGFR)-targeting antibody–drug conjugate consisting of the mAb 806 and a toxic payload, monomethyl auristatin F | -newly diagnosed GBM (with TMZ and RT) | 1 | NCT01800695 C |
Vorinostat -IV | histone deacetylases (HDAC) inhibitor | -newly diagnosed GBM (with TMZ and RT +/− Pembrolizumab) | 1 | NCT03426891 A |
Metformin -PO | 5′AMP-activated protein kinase (AMPK) inhibitor (metabolism, angiogenesis, inflammation, and cancer stem cells control), and proliferation inhibitor (via insulinemia and glycemia reduction) | -newly diagnosed GBM (with TMZ and RT) | 2 | NCT02780024 A |
Onfekafusp alfa -IV | immunoglobulin, anti-(human fibronectin ed-b domain) (synthetic human clone L19 scfv fragment fusion protein with human tumor necrosis factor alpha (TNF), trimer | -newly diagnosed GBM (with TMZ and RT) | 1/2 | NCT04443010 A |
Everolimus -PO | selective mammalian target of rapamycin (mTOR) kinase inhibitor | -newly diagnosed GBM (with TMZ and RT and Bevacizumab) | 2 | NCT00805961 C |
Bavituximab -IV | monoclonal antibody directed against anionic phospholipids with potential antineoplastic activity | -newly diagnosed GBM (with TMZ and RT) | 2 | NCT03139916 A |
Gliadel -IV | DNA and RNA alkylating agent | -newly diagnosed GBM (with TMZ and RT and Bevacizumab) | 2 | NCT01186406 TT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pająk, B. Looking for the Holy Grail—Drug Candidates for Glioblastoma Multiforme Chemotherapy. Biomedicines 2022, 10, 1001. https://doi.org/10.3390/biomedicines10051001
Pająk B. Looking for the Holy Grail—Drug Candidates for Glioblastoma Multiforme Chemotherapy. Biomedicines. 2022; 10(5):1001. https://doi.org/10.3390/biomedicines10051001
Chicago/Turabian StylePająk, Beata. 2022. "Looking for the Holy Grail—Drug Candidates for Glioblastoma Multiforme Chemotherapy" Biomedicines 10, no. 5: 1001. https://doi.org/10.3390/biomedicines10051001
APA StylePająk, B. (2022). Looking for the Holy Grail—Drug Candidates for Glioblastoma Multiforme Chemotherapy. Biomedicines, 10(5), 1001. https://doi.org/10.3390/biomedicines10051001