Recent Methods of Kidney Storage and Therapeutic Possibilities of Transplant Kidney
Abstract
:1. Introduction
2. What Occurs in the Kidney during the Storage?
3. Expanded Criteria in Kidney Graft Transplantation
4. Preservation Solutions
5. Cold Static Storage
6. Machine Perfusion
6.1. Hypothermic Machine Perfusion and Pulsatile Cold Machine Perfusion
6.2. Subnormothermic Machine Perfusion
6.3. Normothermic Machine Perfusion
7. Novel Possibilities for the Treatment of Low-Quality Grafts and Immune-Response Modulation via NMP
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carney, E.F. The impact of chronic kidney disease on global health. Nat. Rev. Nephrol. 2020, 16, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijkse, E.; de Jonge, J.; Kimenai, H.J.A.N.; Hoogduijn, M.J.; de Bruin, R.W.F.; van den Hoogen, M.W.F.; IJzermans, J.N.M.; Minnee, R.C. Safety and feasibility of 2 h of normothermic machine perfusion of donor kidneys in the Eurotransplant Senior Program. BJS Open 2021, 5, zraa024. [Google Scholar] [CrossRef] [PubMed]
- Abecassis, M.; Bartlett, S.T.; Collins, A.J.; Davis, C.L.; Delmonico, F.L.; Friedewald, J.J.; Hays, R.; Howard, A.; Jones, E.; Leichtman, A.B.; et al. Kidney Transplantation as Primary Therapy for End-Stage Renal Disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) Conference. Clin. J. Am. Soc. Nephrol. CJASN 2008, 3, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southard, J.H.; Belzer, F.O. Organ Preservation. Annu. Rev. Med. 1995, 46, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Opelz, G.; Döhler, B. Multicenter Analysis of Kidney Preservation. Transplantation 2007, 83, 247–253. [Google Scholar] [CrossRef]
- Tonelli, M.; Wiebe, N.; Knoll, G.; Bello, A.; Browne, S.; Jadhav, D.; Klarenbach, S.; Gill, J. Systematic Review: Kidney Transplantation Compared With Dialysis in Clinically Relevant Outcomes. Am. J. Transplant. 2011, 11, 2093–2109. [Google Scholar] [CrossRef]
- Petrenko, A.; Carnevale, M.; Somov, A.; Osorio, J.; Rodríguez, J.; Guibert, E.; Fuller, B.; Froghi, F. Organ Preservation into the 2020s: The Era of Dynamic Intervention. Transfus. Med. Hemotherapy 2019, 46, 151–172. [Google Scholar] [CrossRef] [Green Version]
- Salvadori, M.; Rosso, G.; Bertoni, E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J. Transplant. 2015, 5, 52–67. [Google Scholar] [CrossRef]
- Ponticelli, C. Ischaemia-reperfusion injury: A major protagonist in kidney transplantation. Nephrol. Dial. Transplant. 2014, 29, 1134–1140. [Google Scholar] [CrossRef]
- Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y.; et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Philipponnet, C.; Aniort, J.; Garrouste, C.; Kemeny, J.-L.; Heng, A.-E. Ischemia reperfusion injury in kidney transplantation. Medicine 2018, 97, e13650. [Google Scholar] [CrossRef] [PubMed]
- Summers, D.M.; Johnson, R.J.; Allen, J.; Fuggle, S.V.; Collett, D.; Watson, C.J.; Bradley, J.A. Analysis of factors that affect outcome after transplantation of kidneys donated after cardiac death in the UK: A cohort study. Lancet 2010, 376, 1303–1311. [Google Scholar] [CrossRef]
- European Region. GODT. Available online: http://www.transplant-observatory.org/european-region/ (accessed on 22 March 2021).
- Martínez Arcos, L.; Fabuel Alcañiz, J.J.; Gómez Dos Santos, V.; Burgos Revilla, F.J. Functional Results of Renal Preservation in Hypothermic Pulsatile Machine Perfusion Versus Cold Preservation: Systematic Review and Meta-Analysis of Clinical Trials. Transplant. Proc. 2018, 50, 24–32. [Google Scholar] [CrossRef]
- López-Navidad, A.; Caballero, F. Extended criteria for organ acceptance. Strategies for achieving organ safety and for increasing organ pool. Clin. Transplant. 2003, 17, 308–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, R.P.; Shapter, O.; Aitken, E.; Stevenson, K.; Shiels, P.G.; Kingsmore, D.B. Has the Expansion in Extended Criteria Deceased Donors Led to a Different Type of Delayed Graft Function and Poorer Outcomes? Transplant. Proc. 2018, 50, 3160–3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heylen, L.; Jochmans, I.; Samuel, U.; Tieken, I.; Naesens, M.; Pirenne, J.; Sprangers, B. The duration of asystolic ischemia determines the risk of graft failure after circulatory-dead donor kidney transplantation: A Eurotransplant cohort study. Am. J. Transplant. 2018, 18, 881–889. [Google Scholar] [CrossRef]
- Evenson, A.R. Utilization of kidneys from donation after circulatory determination of death. Curr. Opin. Organ Transplant. 2011, 16, 385–389. [Google Scholar] [CrossRef]
- Summers, D.M.; Watson, C.J.E.; Pettigrew, G.J.; Johnson, R.J.; Collett, D.; Neuberger, J.M.; Bradley, J.A. Kidney donation after circulatory death (DCD): State of the art. Kidney Int. 2015, 88, 241–249. [Google Scholar] [CrossRef]
- Latchana, N.; Peck, J.R.; Whitson, B.A.; Henry, M.L.; Elkhammas, E.A.; Black, S.M. Preservation solutions used during abdominal transplantation: Current status and outcomes. World J. Transplant. 2015, 5, 154–164. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, J.; Xia, T.C.; Xu, R.; He, X.; Xia, Y. Preservation Solutions for Kidney Transplantation: History, Advances and Mechanisms. Cell Transplant. 2019, 28, 1472–1489. [Google Scholar] [CrossRef]
- Collins, G.M.; Bravo-Shugarman, M.; Terasaki, P.I. KIDNEY PRESERVATION FOR TRANSPORTATION: Initial Perfusion and 30 Hours’ Ice Storage. Lancet 1969, 294, 1219–1222. [Google Scholar] [CrossRef]
- Jing, L.; Yao, L.; Zhao, M.; Peng, L.; Liu, M. Organ preservation: From the past to the future. Acta Pharmacol. Sin. 2018, 39, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, L.; Shah, T.; Aswad, S.; Bunnapradist, S.; Cho, Y.; Mendez, R.G.; Mendez, R.; Selby, R. Pulsatile Perfusion Reduces the Incidence of Delayed Graft Function in Expanded Criteria Donor Kidney Transplantation. Am. J. Transplant. 2006, 6, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Schreinemachers, M.C.J.M.; Doorschodt, B.M.; Florquin, S.; Tolba, R.H. Comparison of Preservation Solutions for Washout of Kidney Grafts: An Experimental Study. Transplant. Proc. 2009, 41, 4072–4079. [Google Scholar] [CrossRef] [PubMed]
- Lindell, S.L.; Compagnon, P.; Mangino, M.J.; Southard, J.H. UW Solution for Hypothermic Machine Perfusion of Warm Ischemic Kidneys. Transplantation 2005, 79, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- Fuller, B.; Froghi, F.; Davidson, B. Organ preservation solutions: Linking pharmacology to survival for the donor organ pathway. Curr. Opin. Organ Transplant. 2018, 23, 361–368. [Google Scholar] [CrossRef]
- op den Dries, S.; Karimian, N.; Sutton, M.E.; Westerkamp, A.C.; Nijsten, M.W.N.; Gouw, A.S.H.; Wiersema-Buist, J.; Lisman, T.; Leuvenink, H.G.D.; Porte, R.J. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transplant. Surg. 2013, 13, 1327–1335. [Google Scholar] [CrossRef]
- De Vries, Y.; Matton, A.P.M.; Nijsten, M.W.N.; Werner, M.J.M.; van den Berg, A.P.; de Boer, M.T.; Buis, C.I.; Fujiyoshi, M.; de Kleine, R.H.J.; van Leeuwen, O.B.; et al. Pretransplant sequential hypo- and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin-based oxygen carrier perfusion solution. Am. J. Transplant. 2019, 19, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Elliott, T.R.; Nicholson, M.L.; Hosgood, S.A. Normothermic kidney perfusion: An overview of protocols and strategies. Am. J. Transplant. 2021, 21, 1382–1390. [Google Scholar] [CrossRef]
- Aburawi, M.M.; Fontan, F.M.; Karimian, N.; Eymard, C.; Cronin, S.; Pendexter, C.; Nagpal, S.; Banik, P.; Ozer, S.; Mahboub, P.; et al. Synthetic hemoglobin-based oxygen carriers are an acceptable alternative for packed red blood cells in normothermic kidney perfusion. Am. J. Transplant. 2019, 19, 2814–2824. [Google Scholar] [CrossRef]
- Laing, R.W.; Bhogal, R.H.; Wallace, L.; Boteon, Y.; Neil, D.A.H.; Smith, A.; Stephenson, B.T.F.; Schlegel, A.; Hübscher, S.G.; Mirza, D.F.; et al. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion. Transplantation 2017, 101, 2746–2756. [Google Scholar] [CrossRef] [PubMed]
- Michel, S.G.; LaMuraglia II, G.M.; Madariaga, M.L.L.; Anderson, L.M. Innovative cold storage of donor organs using the Paragonix Sherpa Pak TM devices. Heart Lung Vessel. 2015, 7, 246–255. [Google Scholar] [PubMed]
- McLaren, A.J.; Friend, P.J. Trends in organ preservation. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2003, 16, 701–708. [Google Scholar] [CrossRef]
- Metcalfe, M.S.; Butterworth, P.C.; White, S.A.; Saunders, R.N.; Murphy, G.J.; Taub, N.; Veitch, P.S.; Nicholson, M.L. A case-control comparison of the results of renal transplantation from heart-beating and non-heart-beating donors. Transplantation 2001, 71, 1556–1559. [Google Scholar] [CrossRef]
- Talbot, D.; D’Alessandro, A.; Muiesan, P. Organ Donation and Transplantation after Cardiac Death; Oxford University Press: Oxford, UK, 2009; ISBN 978-0-19-921733-5. [Google Scholar]
- Organ Recovery Systems|Organ Preservation Products. Organ Recovery Systems. Available online: https://www.organ-recovery.com/ (accessed on 7 January 2022).
- Institut Georges Lopez. Available online: https://groupe-igl.com/pt/home-2/ (accessed on 12 April 2022).
- RM3 KIDNEY PERFUSION SYSTEM–Waters Medical Systems. Available online: https://wtrs.com/rm3-kidney-perfusion-system/ (accessed on 12 April 2022).
- Aferetica PerLife®. Aferetica. Available online: https://www.aferetica.com/en/therapeutical-solutions/perlife-tm/ (accessed on 12 April 2022).
- EBERS Medical Technology SL. Available online: https://ebersark.life/ (accessed on 12 April 2022).
- XVIVO-Extending Horizons in Organ Transplantation. Available online: https://www.organ-assist.nl/ (accessed on 12 April 2022).
- Lindell, S.L.; Muir, H.; Brassil, J.; Mangino, M.J. Hypothermic Machine Perfusion Preservation of the DCD Kidney: Machine Effects. J. Transplant. 2013, 2013, 802618. Available online: https://www.hindawi.com/journals/jtrans/2013/802618/ (accessed on 19 November 2020). [CrossRef] [Green Version]
- Taylor, M.J.; Baicu, S.C. Current state of hypothermic machine perfusion preservation of organs: The clinical perspective. Cryobiology 2010, 60, S20–S35. [Google Scholar] [CrossRef] [Green Version]
- Jochmans, I.; O’Callaghan, J.M.; Pirenne, J.; Ploeg, R.J. Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transpl. Int. 2015, 28, 665–676. [Google Scholar] [CrossRef]
- Moers, C.; Smits, J.M.; Maathuis, M.-H.J.; Treckmann, J.; van Gelder, F.; Napieralski, B.P.; van Kasterop-Kutz, M.; van der Heide, J.J.H.; Squifflet, J.-P.; van Heurn, E.; et al. Machine Perfusion or Cold Storage in Deceased-Donor Kidney Transplantation. N. Engl. J. Med. 2009, 360, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Krzywonos-Zawadzka, A.; Franczak, A.; Moser, M.A.J.; Olejnik, A.; Sawicki, G.; Bil-Lula, I. Pharmacological Protection of Kidney Grafts from Cold Perfusion-Induced Injury. BioMed Res. Int. 2019, 2019, 9617087. Available online: https://www.hindawi.com/journals/bmri/2019/9617087/ (accessed on 13 November 2020). [CrossRef]
- Moser, M.A.J.; Sawicka, K.; Sawicka, J.; Franczak, A.; Cohen, A.; Bil-Lula, I.; Sawicki, G. Protection of the transplant kidney during cold perfusion with doxycycline: Proteomic analysis in a rat model. Proteome Sci. 2020, 18, 3. [Google Scholar] [CrossRef] [Green Version]
- Gallinat, A.; Fox, M.; Lüer, B.; Efferz, P.; Paul, A.; Minor, T. Role of Pulsatility in Hypothermic Reconditioning of Porcine Kidney Grafts by Machine Perfusion After Cold Storage. Transplantation 2013, 96, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, A.; Wszoła, M.; Kosieradzki, M.; Danielewicz, R.; Ostrowski, K.; Domagała, P.; Lisik, W.; Fesołowicz, S.; Michalak, G.; Trzebicki, J.; et al. The early and long term function and survival of kidney alografts stored before transplantation by hypothermic pulsatile perfusion. A prospective randomized study. Ann. Transplant. 2009, 14, 14–17. [Google Scholar] [PubMed]
- Lin, D.; Xiang, T.; Qiu, Q.; Leung, J.; Xu, J.; Zhou, W.; Hu, Q.; Lan, J.; Liu, Z.; Zhong, Z.; et al. Aldehyde dehydrogenase 2 regulates autophagy via the Akt-mTOR pathway to mitigate renal ischemia-reperfusion injury in hypothermic machine perfusion. Life Sci. 2020, 253, 117705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, Q.; Ye, F.; Huang, C.-Y.; Chen, W.-M.; Huang, W.-Q. Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radic. Res. 2018, 52, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Obara, H.; Morito, N.; Matsuno, N.; Yoshikawa, R.; Gouchi, M.; Otani, M.; Shonaka, T.; Takahashi, H.; Enosawa, S.; Hirano, T.; et al. Optimum Perfusate Volume of Purified Subnormothermic Machine Perfusion for Porcine Liver Donated After Cardiac Death. Transplant. Proc. 2018, 50, 2830–2833. [Google Scholar] [CrossRef]
- Karimian, N.; Raigani, S.; Huang, V.; Nagpal, S.; Hafiz, E.O.A.; Beijert, I.; Mahboub, P.; Porte, R.J.; Uygun, K.; Yarmush, M.; et al. Subnormothermic Machine Perfusion of Steatotic Livers Results in Increased Energy Charge at the Cost of Anti-Oxidant Capacity Compared to Normothermic Perfusion. Metabolites 2019, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Nösser, M.; Gassner, J.M.G.V.; Moosburner, S.; Wyrwal, D.; Claussen, F.; Hillebrandt, K.H.; Horner, R.; Tang, P.; Reutzel-Selke, A.; Polenz, D.; et al. Development of a Rat Liver Machine Perfusion System for Normothermic and Subnormothermic Conditions. Tissue Eng. Part A 2020, 26, 57–65. [Google Scholar] [CrossRef]
- Gringeri, E.; Bonsignore, P.; Bassi, D.; D’Amico, F.E.; Mescoli, C.; Polacco, M.; Buggio, M.; Luisetto, R.; Boetto, R.; Noaro, G.; et al. Subnormothermic machine perfusion for non-heart-beating donor liver grafts preservation in a Swine model: A new strategy to increase the donor pool? Transplant. Proc. 2012, 44, 2026–2028. [Google Scholar] [CrossRef]
- Hoyer, D.P.; Gallinat, A.; Swoboda, S.; Wohlschläger, J.; Rauen, U.; Paul, A.; Minor, T. Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl. Int. 2014, 27, 1097–1106. [Google Scholar] [CrossRef]
- Schopp, I.; Reissberg, E.; Lüer, B.; Efferz, P.; Minor, T. Controlled Rewarming after Hypothermia: Adding a New Principle to Renal Preservation. Clin. Transl. Sci. 2015, 8, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Gallinat, A.; Lu, J.; von Horn, C.; Kaths, M.; Ingenwerth, M.; Paul, A.; Minor, T. Transplantation of Cold Stored Porcine Kidneys After Controlled Oxygenated Rewarming. Artif. Organs 2018, 42, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; De Caterina, R.; Bionda, A.; Gardinali, M.; Cicardi, M.; Maffei, S.; Gazzetti, P.; Pistolesi, P.; Vernazza, F.; Michelassi, C. Blood-artificial surface interactions during cardiopulmonary bypass. A comparative study of four oxygenators. Int. J. Artif. Organs 1990, 13, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Mahboub, P.; Aburawi, M.; Karimian, N.; Lin, F.; Karabacak, M.; Fontan, F.; Tessier, S.N.; Markmann, J.; Yeh, H.; Uygun, K. The efficacy of HBOC-201 in ex situ gradual rewarming kidney perfusion in a rat model. Artif. Organs 2020, 44, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, T.D.; Patel, M.; Hosgood, S.A.; Nicholson, M.L. Lowering Perfusate Temperature From 37 °C to 32 °C Diminishes Function in a Porcine Model of Ex Vivo Kidney Perfusion. Transplant. Direct 2017, 3. [Google Scholar] [CrossRef]
- Ciria, R.; Ayllon-Teran, M.D.; González-Rubio, S.; Gómez-Luque, I.; Ferrín, G.; Moreno, A.; Sánchez-Frías, M.; Alconchel, F.; Herrera, C.; Martín, V.; et al. Rescue of Discarded Grafts for Liver Transplantation by Ex Vivo Subnormothermic and Normothermic Oxygenated Machine Perfusion: First Experience in Spain. Transplant. Proc. 2019, 51, 20–24. [Google Scholar] [CrossRef]
- Okamura, Y.; Hata, K.; Tanaka, H.; Hirao, H.; Kubota, T.; Inamoto, O.; Kageyama, S.; Tamaki, I.; Yermek, N.; Yoshikawa, J.; et al. Impact of Subnormothermic Machine Perfusion Preservation in Severely Steatotic Rat Livers: A Detailed Assessment in an Isolated Setting. Am. J. Transplant. 2017, 17, 1204–1215. [Google Scholar] [CrossRef]
- Hosgood, S.A.; van Heurn, E.; Nicholson, M.L. Normothermic machine perfusion of the kidney: Better conditioning and repair? Transpl. Int. 2015, 28, 657–664. [Google Scholar] [CrossRef]
- Nicholson, M.L.; Hosgood, S.A. Renal Transplantation After Ex Vivo Normothermic Perfusion: The First Clinical Study. Am. J. Transplant. 2013, 13, 1246–1252. [Google Scholar] [CrossRef]
- Urbanellis, P.; Hamar, M.; Kaths, J.M.; Kollmann, D.; Linares, I.; Mazilescu, L.; Ganesh, S.; Wiebe, A.; Yip, P.M.; John, R.; et al. Normothermic Ex Vivo Kidney Perfusion Improves Early DCD Graft Function Compared With Hypothermic Machine Perfusion and Static Cold Storage. Transplantation 2020, 104, 947–955. [Google Scholar] [CrossRef]
- Kaths, J.M.; Cen, J.Y.; Chun, Y.M.; Echeverri, J.; Linares, I.; Ganesh, S.; Yip, P.; John, R.; Bagli, D.; Mucsi, I.; et al. Continuous Normothermic Ex Vivo Kidney Perfusion Is Superior to Brief Normothermic Perfusion Following Static Cold Storage in Donation After Circulatory Death Pig Kidney Transplantation. Am. J. Transplant. 2017, 17, 957–969. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Saeb-Parsy, K.; Hamed, M.O.; Nicholson, M.L. Successful Transplantation of Human Kidneys Deemed Untransplantable but Resuscitated by Ex Vivo Normothermic Machine Perfusion. Am. J. Transplant. 2016, 16, 3282–3285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiRito, J.R.; Hosgood, S.A.; Tietjen, G.T.; Nicholson, M.L. The future of marginal kidney repair in the context of normothermic machine perfusion. Am. J. Transplant. 2018, 18, 2400–2408. [Google Scholar] [CrossRef] [PubMed]
- Matton, A.P.M.; Burlage, L.C.; van Rijn, R.; de Vries, Y.; Karangwa, S.A.; Nijsten, M.W.; Gouw, A.S.H.; Wiersema-Buist, J.; Adelmeijer, J.; Westerkamp, A.C.; et al. Normothermic machine perfusion of donor livers without the need for human blood products. Liver Transplant. 2018, 24, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Schutter, R.; Lantinga, V.A.; Hamelink, T.L.; Pool, M.B.F.; van Varsseveld, O.C.; Potze, J.H.; Hillebrands, J.-L.; van den Heuvel, M.C.; Dierckx, R.A.J.O.; Leuvenink, H.G.D.; et al. Magnetic resonance imaging assessment of renal flow distribution patterns during ex vivo normothermic machine perfusion in porcine and human kidneys. Transpl. Int. 2021, 34, 1643–1655. [Google Scholar] [CrossRef] [PubMed]
- Sierra Parraga, J.M.; Rozenberg, K.; Eijken, M.; Leuvenink, H.G.; Hunter, J.; Merino, A.; Moers, C.; Møller, B.K.; Ploeg, R.J.; Baan, C.C.; et al. Effects of Normothermic Machine Perfusion Conditions on Mesenchymal Stromal Cells. Front. Immunol. 2019, 10, 765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pool, M.; Eertman, T.; Sierra Parraga, J.; ’t Hart, N.; Roemeling-van Rhijn, M.; Eijken, M.; Jespersen, B.; Reinders, M.; Hoogduijn, M.; Ploeg, R.; et al. Infusing Mesenchymal Stromal Cells into Porcine Kidneys during Normothermic Machine Perfusion: Intact MSCs Can Be Traced and Localised to Glomeruli. Int. J. Mol. Sci. 2019, 20, 3607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laing, R.W.; Stubblefield, S.; Wallace, L.; Roobrouck, V.D.; Bhogal, R.H.; Schlegel, A.; Boteon, Y.L.; Reynolds, G.M.; Ting, A.E.; Mirza, D.F.; et al. The Delivery of Multipotent Adult Progenitor Cells to Extended Criteria Human Donor Livers Using Normothermic Machine Perfusion. Front. Immunol. 2020, 11, 1226. [Google Scholar] [CrossRef]
- Pool, M.B.F.; Vos, J.; Eijken, M.; van Pel, M.; Reinders, M.E.J.; Ploeg, R.J.; Hoogduijn, M.J.; Jespersen, B.; Leuvenink, H.G.D.; Moers, C. Treating Ischemically Damaged Porcine Kidneys with Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stromal Cells During Ex Vivo Normothermic Machine Perfusion. Stem Cells Dev. 2020, 29, 1320–1330. [Google Scholar] [CrossRef]
- Thompson, E.R.; Bates, L.; Ibrahim, I.K.; Sewpaul, A.; Stenberg, B.; McNeill, A.; Figueiredo, R.; Girdlestone, T.; Wilkins, G.C.; Irwin, E.A.; et al. Novel delivery of cellular therapy to reduce ischaemia reperfusion injury in kidney transplantation. Transplantation 2021, 21, 1402–1414. [Google Scholar]
- Kovacsovics-Bankowski, M.; Streeter, P.R.; Hewett, E.; Van’t Hof, W.J.; Deans, R.J.; Maziarz, R.T. Multipotent Adult Progenitor Cells (MAPC) Are Immunoprivileged and Demonstrate Immunosuppressive Properties on Activated T Cell Population. Blood 2005, 106, 5227. [Google Scholar] [CrossRef]
- Porada, C.D.; Zanjani, E.D.; Almeida-Porada, G. Adult Mesenchymal Stem Cells: A Pluripotent Population with Multiple Applications. Curr. Stem Cell Res. Ther. 2006, 1, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, J.; Leighton, P.; Elliott, T.R.; Hosgood, S.A.; Nicholson, M.L.; Kosmoliaptsis, V. Extracellular vesicles in kidney transplantation: A state-of-the-art review. Kidney Int. 2022, 101, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.R.; Juncosa, E.M.; Masereeuw, R.; Lindoso, R.S. Extracellular Vesicles as a Therapeutic Tool for Kidney Disease: Current Advances and Perspectives. Int. J. Mol. Sci. 2021, 22, 5787. [Google Scholar] [CrossRef] [PubMed]
- Rigo, F.; De Stefano, N.; Navarro-Tableros, V.; David, E.; Rizza, G.; Catalano, G.; Gilbo, N.; Maione, F.; Gonella, F.; Roggio, D.; et al. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model. Transplantation 2018, 102, e205. [Google Scholar] [CrossRef]
- Rampino, T.; Gregorini, M.; Germinario, G.; Pattonieri, E.F.; Erasmi, F.; Grignano, M.A.; Bruno, S.; Alomari, E.; Bettati, S.; Asti, A.; et al. Extracellular Vesicles Derived from Mesenchymal Stromal Cells Delivered during Hypothermic Oxygenated Machine Perfusion Repair Ischemic/Reperfusion Damage of Kidneys from Extended Criteria Donors. Biology 2022, 11, 350. [Google Scholar] [CrossRef]
- Thompson, E.R.; Sewpaul, A.; Figuereido, R.; Bates, L.; Tingle, S.J.; Ferdinand, J.R.; Situmorang, G.R.; Ladak, S.S.; Connelly, C.M.; Hosgood, S.A.; et al. MicroRNA antagonist therapy during normothermic machine perfusion of donor kidneys. Am. J. Transplant. 2022, 22, 1088–1100. [Google Scholar] [CrossRef]
- Sobiak, J. Przeszczepianie narządów i komórek krwiotwórczych–rys historyczny. Now. Lek. 2011, 80, 157–161. (In Polish) [Google Scholar]
Country | Poland | Germany | USA | UK | Australia | Brazil | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 |
Total kidney transplants | 946 | 983 | 2291 | 2132 | 22,003 | 24,273 | 3642 | 3649 | 1135 | 1095 | 5975 | 6298 |
Deceased kidney transplants | 906 | 931 | 1653 | 1612 | 15,561 | 17,406 | 2608 | 2627 | 897 | 857 | 4942 | 5227 |
Actual DBD | 494 | 503 | 955 | 932 | 8589 | 9152 | 1000 | 964 | 400 | 376 | 3529 | 3767 |
Actual DCD | 4 | 1 | n/d | n/d | 2133 | 2718 | 619 | 689 | 154 | 172 | n/d | n/d |
Total number of patients active on the WL during whole year | 2745 | 2747 | 10,616 | 10,325 | 88,595 | 96,830 | 9072 | 8984 | 1979 | 2027 | 33,201 | 36,371 |
Waiting list (Patients awaiting a transplant—only active candidates—on 31/12/201_) | 1196 | 1165 | 7526 | 7148 | 60,901 | 60,566 | 5000 | 5030 | 982 | 1076 | 22,736 | 25,146 |
Patients who died while on the WL during the whole year | 73 | 75 | 453 | 387 | 3934 | 3754 | 283 | 240 | 6 | n/d | 1402 | 2156 |
Machine Perfusion Method | |||
---|---|---|---|
Parameter | HMP | SNMP | NMP |
Temperature range | 2–8 °C | 20–25 °C | 37 °C |
Perfusion solution (examples) [22,23,29,30,31] | - KPS® - BELZER MPS® UW machine perfusion solution | - BELZER MPS® UW machine perfusion solution - solution with oxygen carrier (natural and artificial ex. (HBOC)-201) | - Solution with oxygen carrier (natural and artificial ex. (HBOC)-201) |
Equipment specifications [37,38,39,40,41,42] | - ORS (organ recovery system) LifePort - RM3 Kidney Perfusion System (Water Medical System) - Organ Assist, Groningen, the Netherlands - Waves IGL (Lissieu, France) | - Organ Assist, Groningen, The Netherlands- Modified RM3 Kidney Perfusion System (Water Medical System) | - Organ Assist (XVIVO), Groningen, the Netherlands - PerKidney®, San Giovanni in Persiceto, Italy - Ark system EBERS, Zaragoza, Spain |
Oxygen | No/Yes (for most devices, it is possible to use oxygen) | Yes | Yes |
Advantages | - reduction of cellular metabolism - reduction of ATP depletion - reduction of neutrophil and platelet activity - possibility to obtain perfusate sample for constant graft monitoring - possibility for drug administration - collection of waste products | - mitochondrial injury minimalization - decreased ATP depletion - minimalization of the vacuolization and cell necrosis - possibility of using the SNMP as a resuscitation platform for graft - possibility for drug administration and graft monitoring - collection of waste products - no compulsion to use oxygen carriers to provide gas exchange | - similar nutrition and oxygen level as in vivo condition - possibility to control graft function - adequate drug uptake when administrated - reduction of free radical mediated damage - possibility of using the NMP as a resuscitation platform for graft - collection of waste products |
Disadvantages | - some cytoskeletal changes - induction of stress protein - increased ROS production after reoxygenation - loss of cellular phospholipids - the inability to accurately assess certain activities of the organ: urine production | - do not fully protect the graft from reperfusion injury - impairment of the physiological functions of the organ (in case of liver transplantation, decreased bile production) | - high level of ATP depletion - high metabolism level - high cost of a perfusion solution - risk of infection (while blood-based solution is used) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radajewska, A.; Krzywonos-Zawadzka, A.; Bil-Lula, I. Recent Methods of Kidney Storage and Therapeutic Possibilities of Transplant Kidney. Biomedicines 2022, 10, 1013. https://doi.org/10.3390/biomedicines10051013
Radajewska A, Krzywonos-Zawadzka A, Bil-Lula I. Recent Methods of Kidney Storage and Therapeutic Possibilities of Transplant Kidney. Biomedicines. 2022; 10(5):1013. https://doi.org/10.3390/biomedicines10051013
Chicago/Turabian StyleRadajewska, Anna, Anna Krzywonos-Zawadzka, and Iwona Bil-Lula. 2022. "Recent Methods of Kidney Storage and Therapeutic Possibilities of Transplant Kidney" Biomedicines 10, no. 5: 1013. https://doi.org/10.3390/biomedicines10051013
APA StyleRadajewska, A., Krzywonos-Zawadzka, A., & Bil-Lula, I. (2022). Recent Methods of Kidney Storage and Therapeutic Possibilities of Transplant Kidney. Biomedicines, 10(5), 1013. https://doi.org/10.3390/biomedicines10051013