Levosimendan Ameliorates Cardiopulmonary Function but Not Inflammatory Response in a Dual Model of Experimental ARDS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaesthesia and Instrumentation
2.2. Extended Respiratory Monitoring
2.3. ARDS Induction
2.4. Study Protocol and Measured Parameters
- Levosimendan (Simdax, Orion Pharma, Espoo, Finland; Bolus 24 µg kg−1 over 20 min, followed by 0.3 µg kg−1 min) intravenous;
- Milrinone (Sanofi Aventis GmbH, Wien, Austria; Bolus 25 µg kg−1 over 10 min, followed by 0.6 µg kg−1 min) intravenous;
- Vehicle group (Glucose 5%, B. Braun Melsungen AG, Melsungen, Germany), 5.0 mL/h intravenous.
2.5. Histopathological Parameters
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whittaker, S.-A.; Fuchs, B.D.; Gaieski, D.F.; Christie, J.D.; Goyal, M.; Meyer, N.J.; Kean, C.; Small, D.S.; Bellamy, S.L.; Mikkelsen, M.E. Epidemiology and Outcomes in Patients with Severe Sepsis Admitted to the Hospital Wards. J. Crit. Care 2014, 30, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Umbrello, M.; Formenti, P.; Bolgiaghi, L.; Chiumello, D. Current Concepts of ARDS: A Narrative Review. Int. J. Mol. Sci. 2017, 18, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandelwal, N.; Hough, C.L.; Bansal, A.; Veenstra, D.L.; Treggiari, M.M. Long-Term Survival in Patients with Severe Acute Respiratory Distress Syndrome and Rescue Therapies for Refractory Hypoxemia. Crit. Care Med. 2014, 42, 1610–1618. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.S.; Chang, W.; Lu, Z.H.; Xie, J.F.; Qiu, H.B.; Yang, Y.; Guo, F.M. Effect of Surfactant Administration on Outcomes of Adult Patients in Acute Respiratory Distress Syndrome: A Meta-Analysis of Randomized Controlled Trials. BMC Pulm. Med. 2019, 19, 9. [Google Scholar] [CrossRef]
- Repessé, X.; Charron, C.; Vieillard-Baron, A. Acute Respiratory Distress Syndrome: The Heart Side of the Moon. Curr. Opin. Crit. Care 2016, 22, 38–44. [Google Scholar] [CrossRef]
- Scheiermann, P.; Ahluwalia, D.; Hoegl, S.; Dolfen, A.; Revermann, M.; Zwissler, B.; Muhl, H.; Boost, K.A.; Hofstetter, C. Effects of Intravenous and Inhaled Levosimendan in Severe Rodent Sepsis. Intensive Care Med. 2009, 35, 1412–1419. [Google Scholar] [CrossRef]
- Kaddoura, R.; Omar, A.S.; Ibrahim, M.I.M.; Alkhulaifi, A.; Lorusso, R.; Elsherbini, H.; Soliman, O.; Caliskan, K. The Effectiveness of Levosimendan on Veno-Arterial Extracorporeal Membrane Oxygenation Management and Outcome: A Systematic Review and Meta-Analysis. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2483–2495. [Google Scholar] [CrossRef]
- Boost, K.A.; Hoegl, S.; Dolfen, A.; Czerwonka, H.; Scheiermann, P.; Zwissler, B.; Hofstetter, C. Inhaled Levosimendan Reduces Mortality and Release of Proinflammatory Mediators in a Rat Model of Experimental Ventilator-Induced Lung Injury. Crit. Care Med. 2008, 36, 1873–1879. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Rissel, R.; Gosling, M.; Ruemmler, R.; Ziebart, A.; Hartmann, E.K.; Kamuf, J. Bronchoalveolar Lavage and Oleic Acid-Injection in Pigs as a Double-Hit Model for Acute Respiratory Distress Syndrome (ARDS). J. Vis. Exp. 2020, 159, e61358. [Google Scholar] [CrossRef] [PubMed]
- Olegård, C.; Söndergaard, S.; Houltz, E.; Lundin, S.; Stenqvist, O. Estimation of Functional Residual Capacity at the Bedside Using Standard Monitoring Equipment: A Modified Nitrogen Washout/Washin Technique Requiring a Small Change of the Inspired Oxygen Fraction. Anesth. Analg. 2005, 101, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, E.K.; Thomas, R.; Liu, T.; Stefaniak, J.; Ziebart, A.; Duenges, B.; Eckle, D.; Markstaller, K.; David, M. TIP Peptide Inhalation in Experimental Acute Lung Injury: Effect of Repetitive Dosage and Different Synthetic Variants. BMC Anesthesiol. 2014, 14, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziebart, A.; Hartmann, E.K.; Thomas, R.; Liu, T.; Duenges, B.; Schad, A.; Bodenstein, M.; Thal, S.C.; David, M. Low Tidal Volume Pressure Support versus Controlled Ventilation in Early Experimental Sepsis in Pigs. Respir. Res. 2014, 15, 101. [Google Scholar] [CrossRef] [Green Version]
- Bouferrache, K.; Vieillard-Baron, A. Acute Respiratory Distress Syndrome, Mechanical Ventilation, and Right Ventricular Function. Curr. Opin. Crit. Care 2011, 17, 30–35. [Google Scholar] [CrossRef]
- Bouchez, S.; Fedele, F.; Giannakoulas, G.; Gustafsson, F.; Harjola, V.-P.; Karason, K.; Kivikko, M.; von Lewinski, D.; Oliva, F.; Papp, Z.; et al. Levosimendan in Acute and Advanced Heart Failure: An Expert Perspective on Posology and Therapeutic Application. Cardiovasc. Drugs Ther. 2018, 32, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Zager, R.A.; Johnson, A.C.; Lund, S.; Hanson, S.Y.; Abrass, C.K. Levosimendan Protects against Experimental Endotoxemic Acute Renal Failure. Am. J. Physiol. Ren. Physiol. 2006, 290, F1453–F1462. [Google Scholar] [CrossRef]
- Leprán, I.; Pollesello, P.; Vajda, S.; Varró, A.; Papp, J.G. Preconditioning Effects of Levosimendan in a Rabbit Cardiac Ischemia-Reperfusion Model. J. Cardiovasc. Pharmacol. 2006, 48, 148–152. [Google Scholar] [CrossRef]
- Ertmer, C.; Morelli, A.; Westphal, M. Levo Is in the Air: Take a Deep Breath! Crit. Care Med. 2008, 36, 1979–1981. [Google Scholar] [CrossRef]
- Goren, N.; Cuenca, J.; Martín-Sanz, P.; Boscá, L. Attenuation of NF-KappaB Signalling in Rat Cardiomyocytes at Birth Restricts the Induction of Inflammatory Genes. Cardiovasc. Res. 2004, 64, 289–297. [Google Scholar] [CrossRef]
- Krychtiuk, K.A.; Watzke, L.; Kaun, C.; Buchberger, E.; Hofer-Warbinek, R.; Demyanets, S.; Pisoni, J.; Kastl, S.P.; Rauscher, S.; Gröger, M.; et al. Levosimendan Exerts Anti-Inflammatory Effects on Cardiac Myocytes and Endothelial Cells in Vitro. Thromb. Haemost. 2015, 113, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Krychtiuk, K.A.; Kaun, C.; Hohensinner, P.J.; Stojkovic, S.; Seigner, J.; Kastl, S.P.; Zuckermann, A.; Eppel, W.; Rauscher, S.; de Martin, R.; et al. Anti-Thrombotic and pro-Fibrinolytic Effects of Levosimendan in Human Endothelial Cells in Vitro. Vascul. Pharmacol. 2017, 90, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Mauri, T.; Masson, S.; Pradella, A.; Bellani, G.; Coppadoro, A.; Bombino, M.; Valentino, S.; Patroniti, N.; Mantovani, A.; Pesenti, A.; et al. Elevated Plasma and Alveolar Levels of Soluble Receptor for Advanced Glycation Endproducts Are Associated with Severity of Lung Dysfunction in ARDS Patients. Tohoku J. Exp. Med. 2010, 222, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Uchida, T.; Shirasawa, M.; Ware, L.B.; Kojima, K.; Hata, Y.; Makita, K.; Mednick, G.; Matthay, Z.A.; Matthay, M.A. Receptor for Advanced Glycation End-Products Is a Marker of Type I Cell Injury in Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2006, 173, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zoelen, M.A.D.; Schmidt, A.-M.; Florquin, S.; Meijers, J.C.; de Beer, R.; de Vos, A.F.; Nawroth, P.P.; Bierhaus, A.; van der Poll, T. Receptor for Advanced Glycation End Products Facilitates Host Defense during Escherichia Coli-Induced Abdominal Sepsis in Mice. J. Infect. Dis. 2009, 200, 765–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, J.A.; Parsons, P.E.; Matthay, M.A. Pathogenetic Significance of Biological Markers of Ventilator-Associated Lung Injury in Experimental and Clinical Studies. Chest 2006, 130, 1906–1914. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Looney, M.R.; Gupta, N.; Matthay, M.A. Receptor for Advanced Glycation End-Products (RAGE) Is an Indicator of Direct Lung Injury in Models of Experimental Lung Injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009, 297, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, T.K.; Mukhopadhyay, S.; Hoidal, J.R. Implication of Receptor for Advanced Glycation End Product (RAGE) in Pulmonary Health and Pathophysiology. Respir. Physiol. Neurobiol. 2008, 162, 210–215. [Google Scholar] [CrossRef]
- Headley, A.S.; Tolley, E.; Meduri, G.U. Infections and the Inflammatory Response in Acute Respiratory Distress Syndrome. Chest 1997, 111, 1306–1321. [Google Scholar] [CrossRef]
- Meduri, G.U.; Headley, S.; Kohler, G.; Stentz, F.; Tolley, E.; Umberger, R.; Leeper, K. Persistent Elevation of Inflammatory Cytokines Predicts a Poor Outcome in ARDS. Plasma IL-1 Beta and IL-6 Levels Are Consistent and Efficient Predictors of Outcome over Time. Chest 1995, 107, 1062–1073. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a Keystone Cytokine in Health and Disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Ruscitti, P.; Berardicurti, O.; Iagnocco, A.; Giacomelli, R. Cytokine Storm Syndrome in Severe COVID-19. Autoimmun. Rev. 2020, 19, 102562. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ye, F.; Xiong, H.; Hu, D.-N.; Limb, G.A.; Xie, T.; Peng, L.; Zhang, P.; Wei, Y.; Zhang, W.; et al. IL-1β Induces IL-6 Production in Retinal Müller Cells Predominantly through the Activation of P38 MAPK/NF-ΚB Signaling Pathway. Exp. Cell Res. 2015, 331, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, M.; Yamaguchi, S.; Nozaki, N.; Yamaoka, M.; Shirakabe, M.; Tomoike, H. Serum Levels of Soluble Form of Fas Molecule in Patients with Congestive Heart Failure. Am. J. Cardiol. 1997, 79, 1698–1701. [Google Scholar] [CrossRef]
- Gong, M.; Lin, X.-Z.; Lu, G.-T.; Zheng, L.-J. Preoperative Inhalation of Milrinone Attenuates Inflammation in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. Med. Princ. Pract. 2012, 21, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Irie, K.; Fujii, E.; Ishida, H.; Wada, K.; Suganuma, T.; Nishikori, T.; Yoshioka, T.; Muraki, T. Inhibitory Effects of Cyclic AMP Elevating Agents on Lipopolysaccharide (LPS)-Induced Microvascular Permeability Change in Mouse Skin. Br. J. Pharmacol. 2001, 133, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, S.M.; Uysal, E.; Altinay, S.; Sezgin, E.; Bilal, N.; Petekkaya, E.; Dokur, M.; Kanmaz, M.A.; Gulbagci, M.E. Protective and Therapeutic Effects of Milrinone on Acoustic Trauma in Rat Cochlea. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 1921–1931. [Google Scholar] [CrossRef]
- Yamashita, S.; Suzuki, T.; Iguchi, K.; Sakamoto, T.; Tomita, K.; Yokoo, H.; Sakai, M.; Misawa, H.; Hattori, K.; Nagata, T.; et al. Cardioprotective and Functional Effects of Levosimendan and Milrinone in Mice with Cecal Ligation and Puncture-Induced Sepsis. Naunyn Schmiedebergs Arch. Pharmacol. 2018, 391, 1021–1032. [Google Scholar] [CrossRef]
- Antila, S.; Kivikko, M.; Lehtonen, L.; Eha, J.; Heikkilä, A.; Pohjanjousi, P.; Pentikäinen, P.J. Pharmacokinetics of Levosimendan and Its Circulating Metabolites in Patients with Heart Failure after an Extended Continuous Infusion of Levosimendan. Br. J. Clin. Pharmacol. 2004, 57, 412–415. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Claar, D.; Hartert, T.V.; Peebles, R.S., Jr. The Role of Prostaglandins in Allergic Lung Inflammation and Asthma. Expert Rev. Respir. Med. 2015, 9, 55–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, M.; Ishii, Y.; Itoh, K.; Iizuka, T.; Morishima, Y.; Kimura, T.; Kiwamoto, T.; Matsuno, Y.; Hegab, A.E.; Nomura, A.; et al. Role of 15-DeoxyΔ12,14 Prostaglandin J2 and Nrf2 Pathways in Protection against Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2005, 171, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lin, Z.; Ma, Y. Suppression of Fpr2 Expression Protects against Endotoxin-Induced Acute Lung Injury by Interacting with Nrf2-Regulated TAK1 Activation. Biomed. Pharmacother. 2020, 125, 109943. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Mochizuki, M.; Ishii, Y.; Ishii, T.; Shibata, T.; Kawamoto, Y.; Kelly, V.; Sekizawa, K.; Uchida, K.; Yamamoto, M. Transcription Factor Nrf2 Regulates Inflammation by Mediating the Effect of 15-Deoxy-Delta(12,14)-Prostaglandin j(2). Mol. Cell. Biol. 2004, 24, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, Cellular, and Molecular Biology. Annu. Rev. Biochem. 2000, 69, 145–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Wang, L.; Chen, J.; Bai, M.; Zhou, C.; Liu, S.; Lin, Q. Regulation of COX-2 Expression and Epithelial-to-Mesenchymal Transition by Hypoxia-Inducible Factor-1α Is Associated with Poor Prognosis in Hepatocellular Carcinoma Patients Post TACE Surgery. Int. J. Oncol. 2016, 48, 2144–2154. [Google Scholar] [CrossRef]
Parameter | Group | BLH | T0 | T4 | T8 |
---|---|---|---|---|---|
MEAN (SD) | MEAN (SD) | MEAN (SD) | MEAN (SD) | ||
Levosimendan | 99 (1) | 89 (6) | 96 (3) | 95 (5) | |
SpO2 | Milrinone | 98 (3) | 76 (17) | 98 (2) | 97 (1) |
(%) | Vehicle | 96 (3) | 84 (6) | 97 (1) | 96 (1) |
Levosimendan | 0.4 (0.0) | 1.0 (0.0) | 0.55 (0.1) | 0.5 (0.1) | |
FiO2 | Milrinone | 0.4 (0.0) | 1.0 (0.0) | 0.54 (0.1) | 0.49 (0.1) |
(%) | Vehicle | 0.4 (0.0) | 1.0 (0.0.) | 0.53 (0.1) | 0.5 (0.1) |
Levosimendan | 498 (88) # | 73 (31) #/* | 267 (108) # | 211 (91) | |
PaO2/FiO2 | Milrinone | 472 (110) | 60 (22) * | 217 (63) | 180 (58) |
(mmHg) | Vehicle | 367 (74) | 76 (41) * | 225 (62) | 212 (91) |
Levosimendan | 34 (33) | 572 (28) | 197 (80) | 203 (108) | |
AaDO2 | Milrinone | 47 (39) | 546 (55) | 218 (77) | 225 (72) |
(mmHg) | Vehicle | 85 (29) | 487 (204) | 201 (53) | 197 (61) |
Levosimendan | 637 (157) | 265 (79) * | 404 (126) | 413 (91) | |
FRC | Milrinone | 539 (126) | 259 (262) * | 393 (87) | 356 (130) |
(ml) | Vehicle | 535 (63) | 222 (92) * | 378 (73) | 375 (70) |
Levosimendan | 5.7 (1.1) | 5.7 (0.6) | 6.7 (0.5) * | 6.6 (0.5) * | |
MV | Milrinone | 5.8 (1.0) | 5.4 (1.3) | 7.3 (1.0) * | 7.5 (1.0) * |
(l min−1) | Vehicle | 6.7 (0.6) | 7.1 (0.5) # | 7.8 (1.4) | 8.1 (1.4) */# |
Levosimendan | 5.5 (0.4) | 5.6 (0.5) | 5.5 (0.4) | 5.4 (0.4) | |
TV | Milrinone | 5.7 (0.6) | 5.2 (1.4) | 5.9 (0.6) | 5.9 (0.4) |
(ml kg−1) | Vehicle | 6.0 (0.4) | 6.2 (0.2) | 6.0 (0.3) | 6.1 (0.3) |
Levosimendan | 15 (2) | 25 (5) | 25 (5) | 24 (6) | |
Ppeak | Milrinone | 16 (2) | 30 (7) | 26 (3) | 25 (3) |
(mbar) | Vehicle | 15 (1) | 28 (5) | 25 (4) | 24 (4) |
Levosimendan | 7.7 (0.4) | 11.1 (1.8) | 14.1 (3.2) | 13.2 (3.4) | |
Pmean | Milrinone | 8.0 (0.5) | 15.6 (6.0) | 14.5 (2.1) | 12.7 (2.3) |
(mbar) | Vehicle | 8.0 (0.0) | 13.5 (2.6) | 13.5 (3.1) | 12.2 (3.2) |
Levosimendan | 5 (0) | 10 (3) | 9 (3) | 8 (2) | |
PEEP | Milrinone | 5 (0) | 10 (6) | 9 (2) | 7 (2) |
(cm H2O) | Vehicle | 5 (0) | 10 (2) | 7 (3) | 7 (2) |
Parameter | Group | BLH | T0 | T4 | T8 |
---|---|---|---|---|---|
MEAN (SD) | MEAN (SD) | MEAN (SD) | MEAN (SD) | ||
Levosimendan | 67 (6) | 74 (11) | 70 (10) | 64 (10) | |
MAP | Milrinone | 67 (8) | 73 (14) | 69 (7) | 66 (6) |
(mmHg) | Vehicle | 73 (4) | 78 (8) | 70 (9) | 70 (7) |
Levosimendan | 79 (14) | 110 (32) | 119 (43) * | 112 (46) | |
HR | Milrinone | 80 (14) | 113 (30) | 125 (44) | 130 (44) * |
(min−1) | Vehicle | 101 (16) | 104 (33) | 119 (22) | 103 (21) |
Levosimendan | 19 (3) | 31 (4) #/* | 21 (6) # | 20 (6) # | |
mPAP | Milrinone | 22 (6) | 34 (5) #/* | 26 (5) # | 24 (8) # |
(mmHg) | Vehicle | 20 (3) | 32 (2) * | 25 (4) | 23 (4) |
Levosimendan | 7 (3) | 6 (3) | 6 (3) | 6 (3) | |
CVP | Milrinone | 7 (3) | 7 (2) | 7 (2) | 7 (2) |
(mmHg) | Vehicle | 6 (1) | 5 (2) | 5 (1) | 5 (1) |
Levosimendan | 3.3 (0.7) | 3.0 (0.8) | 3.3 (1.2) | 3.7 (1.3) | |
CO | Milrinone | 3.4 (0.9) | 3.7 (0.9) | 3.2 (0.5) | 4.3 (0.8) |
(l min−1) | Vehicle | 4.6 (0.8) | 3.9 (1.0) | 3.2 (0.2) | 3.5 (0.2) |
Levosimendan | 9 (3) | 8 (2) | 8 (2) | 8 (4) | |
PCWP | Milrinone | 10 (2) | 10 (2) | 10 (1) | 9 (2) |
(mmHg) | Vehicle | 9 (1) | 9 (1) | 8 (1) | 8 (1) |
Levosimendan | 425 (117) | 440 (149) | 409 (87) | 439 (104) | |
GEDVI | Milrinone | 468 (168) | 453 (79) | 399 (55) | 432 (66) |
(mL m−2) | Vehicle | 464 (108) | 484 (115) | 400 (45) | 418 (68) |
Levosimendan | 10.3 (1.3) | 20.8 (7.4) * | 18.3 (3.6) * | 18.5 (4.9) * | |
EVLWI | Milrinone | 11.5 (2.5) | 23.1 (5.5) * | 18.2 (3.5) * | 18.2 (3.7) * |
(mL kg−1) | Vehicle | 11.2 (0.9) | 21.2 (5.7) * | 18.0 (3.1) * | 16.7 (4.5) * |
Levosimendan | 51 (8) | 36 (10) | 53 (8) | 58 (4) | |
ScO2 | Milrinone | 50 (11) | 32 (12) | 54 (11) | 60 (10) |
(%) | Vehicle | 48 (6) | 35 (5) | 53 (9) | 51 (2) |
Parameter | Group | BLH | T4 | T8 |
---|---|---|---|---|
MEAN (SD) | MEAN (SD) | MEAN (SD) | ||
Levosimendan | 10.5 (5.9) | 14.3 (13.4) | 12.7 (6.5) | |
Leucocytes | Milrinone | 12.5 (4.4) | 10.2 (6.4) | 12.4 (6.7) |
(g/L) | Vehicle | 12.9 (5.2) | 15.6 (5.7) | 12.2 (3.4) |
Levosimendan | 8.3 (0.8) | 9.4 (1.3) | 9.1 (0.6) | |
Haemoglobin | Milrinone | 9.2 (1.1) | 10.4 (0.9) | 9.1 (0.9) |
(g/dL) | Vehicle | 9.8 (0.7) | 10.8 (1.1) | 9.8 (0.8) |
Levosimendan | 376 (65) | 270 (68) | 244 (60) | |
Thrombocytes | Milrinone | 329 (112) | 272 (67) | 276 (61) |
(1000/µL) | Vehicle | 395 (76) | 303 (92) | 295 (79) |
Levosimendan | 0.26 (0.1) | 0.31 (0.18) | 0.34 (0.16) | |
CRP | Milrinone | 0.28 (0.15) | 0.38 (0.19) | 0.58 (0.16) |
(mg dL−1) | Vehicle | 0.33 (0.15) | 0.76 (0.14) | 0.91 (0.22) |
Levosimendan | 0.82 (0.20) | 0.9 (0.14) | 0.97 (0.14) | |
Creatinine | Milrinone | 0.81 (0.29) | 0.80 (0.20) | 0.98 (0.24) |
(mg dL−1) | Vehicle | 0.85 (0.19) | 0.9 (0.24) | 0.9 (0.23) |
Levosimendan | 8 (2) | 10 (2) | 12 (3) | |
Urea | Milrinone | 5 (3) | 8 (2) | 11 (1) |
(mg dL−1) | Vehicle | 6 (4) | 7 (3) | 9 (2) |
Levosimendan | 1351 (7230) | 1416 (3629) | 114 (2286) | |
Creatine kinase | Milrinone | 1257 (2160) | 2118 (1217) | 1882 (1032) |
(U L−1) | Vehicle | 1468 (1138) | 1008 (779) | 936 (657) |
Parameter | Group | BLH | T0 | T4 | T8 |
---|---|---|---|---|---|
MEAN (SD) | MEAN (SD) | MEAN (SD) | MEAN (SD) | ||
Levosimendan | 7.46 (0.06) | 7.36 (0.09) | 7.47 (0.08) | 7.45 (0.09) | |
pH | Milrinone | 7.48 (0.07) | 7.28 (0.08) | 7.47 (0.06) | 7.47 (0.06) |
Vehicle | 7.45 (0.03) | 7.36 (0.09) | 7.48 (0.05) | 7.49 (0.04) | |
Levosimendan | 5.9 (2.8) | 3.9 (3.2) | 7.2 (3.2) # | 6.4 (2.8) | |
BE | Milrinone | 5.5 (2.1) | 2.1 (1.7) | 5.6 (2.9) | 5.9 (2.7) |
(mmol mL−1) | Vehicle | 5.0 (2.6) | 2.4 (3.4) | 6.8 (2.4) | 7.5 (1.5) |
Levosimendan | 42 (4) | 53 (10) | 43 (5) | 45 (10) | |
PaCO2 | Milrinone | 39 (6) | 64 (18) | 41 (5) | 40 (8) |
(mmHg) | Vehicle | 41 (1) | 51 (9) | 40 (3) | 40 (4) |
Levosimendan | 3.5 (0.3) | 3.9 (0.5) | 4.7 (0.3) | 4.5 (0.5) | |
Potassium | Milrinone | 3.4 (0.4) | 3.8 (0.4) | 4.9 (0.6) | 4.4 (0.4) |
(mmol L−1) | Vehicle | 3.4 (0.3) | 3.6 (0.2) | 4.6 (0.6) | 4.3 (0.5) |
Levosimendan | 2.2. (1.4) | 1.9 (0.7) | 1.0 (0.2) | 1.8 (2.1) | |
Lactate | Milrinone | 1.6 (1.2) | 2.0 (0.8) | 1.6 (1.5) | 1.4 (1.3) |
(mmol L−1) | Vehicle | 2.2 (2.1) | 1.9 (0.4) | 0.9 (0.3) | 0.7 (0.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rissel, R.; Gosling, M.; Kamuf, J.; Renz, M.; Ruemmler, R.; Ziebart, A.; Hartmann, E.K. Levosimendan Ameliorates Cardiopulmonary Function but Not Inflammatory Response in a Dual Model of Experimental ARDS. Biomedicines 2022, 10, 1031. https://doi.org/10.3390/biomedicines10051031
Rissel R, Gosling M, Kamuf J, Renz M, Ruemmler R, Ziebart A, Hartmann EK. Levosimendan Ameliorates Cardiopulmonary Function but Not Inflammatory Response in a Dual Model of Experimental ARDS. Biomedicines. 2022; 10(5):1031. https://doi.org/10.3390/biomedicines10051031
Chicago/Turabian StyleRissel, René, Moritz Gosling, Jens Kamuf, Miriam Renz, Robert Ruemmler, Alexander Ziebart, and Erik K. Hartmann. 2022. "Levosimendan Ameliorates Cardiopulmonary Function but Not Inflammatory Response in a Dual Model of Experimental ARDS" Biomedicines 10, no. 5: 1031. https://doi.org/10.3390/biomedicines10051031
APA StyleRissel, R., Gosling, M., Kamuf, J., Renz, M., Ruemmler, R., Ziebart, A., & Hartmann, E. K. (2022). Levosimendan Ameliorates Cardiopulmonary Function but Not Inflammatory Response in a Dual Model of Experimental ARDS. Biomedicines, 10(5), 1031. https://doi.org/10.3390/biomedicines10051031