Peripheral Neuropathies Derived from COVID-19: New Perspectives for Treatment
Abstract
:1. Introduction
2. Peripheral Neuropathy
2.1. Pathophysiology of Neuropathy
2.1.1. Inflammatory-Immunological Factors and Neuropathy
2.1.2. Neuropathies Caused by Nutritional Deficiencies and Toxic Agents
3. Neuropathy in COVID
4. Management of Neuropathies
4.1. α-Lipoic Acid
4.2. Acetyl-L-Carnitine
4.3. Vitamin D
4.4. B Vitamins
- -
- Vitamin B1 may exert an important biophysiological role in nerve conduction, and excitability;
- -
- Vitamin B12 may selectively block sensitive nerve conduction;
- -
- Prolonged pain inhibition may be due to potential vitamin interactions with intraspinal and supraspinal receptors in different systems, via tonically released endogenous opioids or inhibitory non-opioid neurotransmitters, such as serotonergic and γ-aminobutyric acid (GABA).
4.4.1. Vitamin B1 (Benfotiamine)
4.4.2. Vitamin B6 (Pyridoxal-5′-Phosphate)
4.4.3. Vitamin B12 (Methylcobalamin)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siao, P.; Kaku, M. A clinician’s approach to peripheral neuropathy. Semin. Neurol. 2019, 39, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Head, K.A. Peripheral neuropathy: Pathogenic mechanisms and alternative therapies. Altern. Med. Rev. 2006, 11, 294–329. [Google Scholar]
- Damayanthi, H.D.W.T.; Prabani, K.I.P. Nutritional determinants and COVID-19 outcomes of older patients with COVID-19: A systematic review. Arch. Gerontol. Geriatr. 2021, 95, 104411. [Google Scholar] [CrossRef]
- Jia, H. Pulmonary Angiotensin-Converting Enzyme 2 (ACE2) and inflammatory lung disease. Shock 2016, 46, 239–248. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021, 143, 1–9. [Google Scholar] [CrossRef]
- Cordova, A. Fisiologia Dinamica; Elsevier: Barcelona, Spain, 2003. [Google Scholar]
- Tortora, G.J.; Derrickson, B. Principios de Anatomía y Fisiología; Editorial Panamericana: Madrid, Spain, 2013. [Google Scholar]
- Campos, D.; Kimiko, R. Neuropatías periféricas dolorosas. Rev. Bras. Anestesiol. 2011, 61, 351–360. [Google Scholar]
- Whitesell, J. Inflammatory neuropathies. Semin. Neurol. 2010, 30, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Stojkovic, T. Peripheral neuropathies: The rational diagnostic process. Rev. Med. Intern. 2006, 27, 302–312. [Google Scholar] [CrossRef]
- Jones, R.C., 3rd; Lawson, E.; Backonja, M. Managing neuropathic pain. Med. Clin. N. Am. 2016, 100, 151–167. [Google Scholar] [CrossRef]
- Abbott, C.A.; Malik, R.A.; van Ross, E.R.; Kulkarni, J.; Boulton, A.J. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef] [Green Version]
- Argoff, C.E.; Cole, B.E.; Fishbain, D.A.; Irving, G.A. Diabetic peripheral neuropathic pain: Clinical and quality-of-life issues. Mayo Clin. Proc. 2006, 81, S3–S11. [Google Scholar] [CrossRef]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. 2017, 3, 17002. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.; Lester, D.; Clay Smither, F.; Balakhanlou, E. Peripheral neuropathic pain. NeuroRehabilitation 2020, 47, 265–283. [Google Scholar] [CrossRef]
- Dydyk, A.M.; Das, J. Radicular Back Pain; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Alexander, C.E.; Varacallo, M. Lumbosacral Radiculopathy; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Martyn, C.N.; Hughes, R.A. Epidemiology of peripheral neuropathy. J. Neurol. Neurosurg. Psychiatry 1997, 62, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Hanewinckel, R.; van Oijen, M.; Ikram, M.A.; van Doorn, P.A. The epidemiology and risk factors of chronic polyneuropathy. Eur. J. Epidemiol. 2016, 31, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Gregg, E.W.; Sorlie, P.; Paulose-Ram, R.; Gu, Q.; Eber-Hardt, M.S.; Wolz, M.; Burt, V.; Curtin, L.; Engelgau, M.; Geiss, L. Prevalence of lower-extremity disease in the US adult population ≥40 years of age with and without diabetes: 1999–2000 National Health and Nutrition Examination Survey. Diabetes Care 2004, 27, 1591–1597. [Google Scholar] [CrossRef] [Green Version]
- Rocha, A.P.; Kraychete, D.C.; Lemonica, L.; de Carvalho, L.R.; de Barros, G.A.; Garcia, J.B.; Sakata, R.K. Pain: Current aspects on peripheral and central sensitization. Rev. Bras. Anestesiol. 2007, 57, 94–105. [Google Scholar] [CrossRef]
- Kraychete, D.C.; Gozzani, J.L.; Kraychete, A.C. Neuropathic Pain: Neurochemical aspects. Rev. Bras. Anestesiol. 2008, 5, 498–505. [Google Scholar] [CrossRef]
- Jensen, T.S.; Baron, R. Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 2003, 102, 1–8. [Google Scholar] [CrossRef]
- Horowitz, S.H. The diagnostic workup of patients with neuropathic pain. Anesthesiol. Clin. 2007, 25, 699–708. [Google Scholar] [CrossRef]
- Rasmussen, P.V.; Sindrup, S.H.; Jensen, T.S.; Bach, F. Symptoms and signs in patients with suspected neuropathic pain. Pain 2004, 110, 461–469. [Google Scholar] [CrossRef]
- Bennett, M.I.; Attal, N.; Backonja, M.M.; Baron, R.; Bouhassira, D.; Freynhagen, R.; Scholz, J.; Tölle, T.R.; Wittchen, H.U.; Jensen, T.S. Using screening tools to identify neuropathic pain. Pain 2007, 127, 199–203. [Google Scholar] [CrossRef]
- Bennett, M.I.; Smith, B.H.; Torrance, N.; Lee, A.J. Can pain can be more or less neuropathic? Comparison of symptom assessment tools with ratings of certainty by clinicians. Pain 2006, 122, 289–294. [Google Scholar] [CrossRef]
- Said, G.; Baudoin, D.; Toyooka, K. Sensory loss, pains, motor deficit and axonal regeneration in length-dependent diabetic polyneuropathy. J. Neurol. 2008, 255, 1693–1702. [Google Scholar] [CrossRef]
- Olmos, P.R.; Niklitschek, S.; Olmos, R.I.; Faúndez, J.I.; Quezada, T.A.; Bozinovic, M.A.; Niklitschek, I.A.; Acosta, J.; Valencia, C.N.; Bravo, F.A. Bases fisiopatológicas para una clasificación de la neuropatía diabética [A new physiopathological classification of diabetic neuropathy]. Rev. Med. Chil. 2012, 140, 1593–1605. [Google Scholar] [CrossRef] [Green Version]
- Cornell, R.S.; Ducic, I. Painful diabetic neuropathy. Clin. Podiatr. Med. Surg. 2008, 25, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther. 2008, 120, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Tracy, J.A.; Dick, P.J.B. The spectrum of diabetic neuropathies. Phys. Med. Rehabil. Clin. N. Am. 2008, 19, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Tracy, J.A.; Engelstad, J.K.; Dyck, P.J.B. Microvasculitis in diabetic lumbosacral radiculoplexus neuropathy. J. Clin. Neuromuscul. Dis. 2009, 11, 44–48. [Google Scholar] [CrossRef]
- Sinnreich, M.; Taylor, B.V.; Dick, P.J. Diabetic neuropathies: Classification, clinical features and pathophysiological basis. Neurologist 2005, 11, 63–79. [Google Scholar] [CrossRef]
- Navalkele, D.D.; Georgescu, M.M.; Burns, D.K.; Greenberg, T.; Vernino, S. Progressive leg pain and weakness. JAMA Neurol. 2013, 70, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.; Saw, C.; Marzouk, K.; Sharma, O. Sarcoidosis of the spinal cord: Literature review and report of eight cases. J. Natl. Med. Assoc. 2006, 98, 965–976. [Google Scholar]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Corona, T.; Rodríguez-Violante, M.; Delgado-García, G. Neurological manifestations in coronavirus disease 2019. Gac. Med Mex. 2020, 156, 317–320. [Google Scholar] [CrossRef]
- Montalvan, V.; Lee, J.; Bueso, T.; De Toledo, J.; Rivas, K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin. Neurol. Neurosurg. 2020, 194, 105921. [Google Scholar] [CrossRef]
- Perlman, S.; Jacobsen, G.; Olson, A.L.; Afifi, A. Identification of the spinal cord as a major site of persistence during chronic infection with a murine coronavirus. Virology 1990, 175, 418–426. [Google Scholar] [CrossRef]
- Kyuwa, S.; Yamaguchi, K.; Toyoda, Y.; Fujiwara, K.; Hilgers, J. Acute and late disease induced by murine coronavirus, strain JHM, in a series of recombinant inbred strains between BALB/cHeA and STS/A mice. Microb. Pathog. 1992, 12, 95–104. [Google Scholar] [CrossRef]
- Phan, T. Genetic diversity and evolution of SARS-CoV-2. Infect. Genet. Evol. 2020, 81, 104260. [Google Scholar] [CrossRef]
- Paliwal, V.K.; Garg, R.K.; Gupta, A.; Tejan, N. Neuromuscular presentations in patients with COVID-19. Neurol. Sci. 2020, 41, 3039–3056. [Google Scholar] [CrossRef]
- Li, H.F.; Hao, H.J.; Chen, X.J. Provisional case definitions for COVID-19-associated neurological disease. Lancet Neurol. 2020, 19, 890–891. [Google Scholar] [CrossRef]
- Garg, R.K. Spectrum of neurological manifestations in COVID-19: A review. Neurol. India 2020, 68, 560–572. [Google Scholar] [CrossRef]
- Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurological features in severe SARS-CoV-2 infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef]
- Sharifian-Dorche, M.; Huot, P.; Osherov, M.; Wen, D.; Saveriano, A.; Giacomini, P.S.; Antel, J.P.; Mowla, A. Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic. J. Neurol. Sci. 2020, 417, 117085. [Google Scholar] [CrossRef]
- Kanda, K.; Sugama, K.; Sakuma, J.; Kawakami, Y.; Suzuki, K. Evaluation of serum leaking enzymes and investigation into new biomarkers for exercise-induced muscle damage. Exerc. Immunol. Rev. 2014, 20, 39–54. [Google Scholar]
- Zhao, H.; Shen, D.; Zhou, H.; Liu, J.; Chen, S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: Causality or coincidence? Lancet Neurol. 2020, 19, 383–384. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, P.; Pang, J.; Zhong, Z.; Li, H.; He, C.; Zhang, J.; Zhao, C. Clinical characteristics of 3,062 COVID-19 patients: A meta-analysis. J. Med. Virol. 2020, 92, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Liu, X.; Xiong, L.; Cai, K. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: A systematic review and meta-analysis. J. Med. Virol. 2020, 92, 1449–1459. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Suwanwongse, K.; Shabarek, N. Rhabdomyolysis as a presentation of 2019 novel coronavirus disease. Cureus 2020, 12, e7561. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.H.; Farouji, I.; Abu Hanoud, A.; Slim, J. Weakness and elevated creatinine kinase as the initial presentation of coronavirus disease 2019 (COVID-19). Am. J. Emerg. Med. 2020, 38, 1548.e1–1548.e3. [Google Scholar] [CrossRef] [PubMed]
- Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef]
- Ruamviboonsuk, P.; Lai, T.Y.Y.; Chang, A.; Lai, C.C.; Mieler, W.F.; Lam, D.S.C.; Asia-Pacific Vitreo-Retina Society. Chloroquine and hydroxychloroquine retinal toxicity consideration in the treatment of COVID-19. Asia Pac. J. Ophthalmol. 2020, 9, 85–87. [Google Scholar] [CrossRef]
- Mack, H.G.; Kowalski, T.; Lucattini, A.; Symons, R.A.; Wicks, I.; Hall, A.J. Genetic susceptibility to hydroxychloroquine retinal toxicity. Ophthalmic Genet. 2020, 41, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Papanas, N.; Ziegler, D. Efficacy of alpha-lipoic acid in diabetic neuropathy. Expert Opin. Pharmacother. 2014, 15, 2721–2731. [Google Scholar] [CrossRef]
- Chang, P.; Liu, J.; Yu, Y.; Cui, S.Y.; Guo, Z.H.; Chen, G.M.; Huang, Q.; Liu, Z.G. Alpha-Lipoic acid suppresses extracellular histone-induced release of the inflammatory mediator Tumor Necrosis Factor-alpha by macrophages. Cell Physiol. Biochem. 2017, 42, 2559–2568. [Google Scholar] [CrossRef] [Green Version]
- Tutelyan, V.A.; Makhova, A.A.; Pogozheva, A.V.; Shikh, E.V.; Elizarova, E.V.; Khotimchenko, S.A. Lipoic acid: Physiological role and prospects for clinical application. Vopr. Pitan. 2019, 88, 6–11. [Google Scholar] [CrossRef]
- Jesudason, E.P.; Masilamoni, J.G.; Jebaraj, C.E.; Paul, S.F.; Jayakumar, R. Efficacy of DL-alpha lipoic acid against systemic inflammation-induced mice: Antioxidant defense system. Mol. Cell Biochem. 2008, 313, 113–123. [Google Scholar] [CrossRef]
- Ruhnau, K.J.; Meissner, H.P.; Finn, J.R.; Reljanovic, M.; Lobisch, M.; Schütte, K.; Nehrdich, D.; Tritschler, H.J.; Mehnert, H.; Ziegler, D. Effects of 3-week oral treatment with the antioxidant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet. Med. 1999, 16, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Low, P.A.; Litchy, W.J.; Boulton, A.J.; Vinik, A.I.; Freeman, R.; Samigullin, R.; Tritschler, H.; Munzel, U.; Maus, J.; et al. Efficacy and safety of antioxidant treatment with alpha-lipoic acid over 4 years in diabetic polyneuropathy: The NATHAN 1 trial. Diabetes Care 2011, 34, 2054–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, D.; Ametov, A.; Barinov, A.; Dyck, P.J.; Gurieva, I.; Low, P.A.; Munzel, U.; Yakhno, N.; Raz, I.; Novosadova, M.; et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: The SYDNEY 2 trial. Diabetes Care 2006, 29, 2365–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Bai, J.; Liu, W.; Hu, Y. A systematic review and meta-analysis of alpha-lipoic acid in the treatment of diabetic peripheral neuropathy. Eur. J. Endocrinol. 2012, 167, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Reljanovic, M.; Reichel, G.; Rett, K.; Lobisch, M.; Schuette, K.; Möller, W.; Tritschler, H.J.; Mehnert, H. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): A two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha lipoic acid in diabetic neuropathy. Free Radic. Res. 1999, 31, 171–179. [Google Scholar] [CrossRef]
- Sola, S.; Mir, M.Q.; Cheema, F.A.; Khan-Merchant, N.; Menon, R.G.; Parthasarathy, S.; Khan, B.V. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: Results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation 2005, 111, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Nagamatsu, M.; Nickander, K.K.; Schmelzer, J.D.; Raya, A.; Wittrock, D.A.; Tritschler, H.; Low, P.A. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care 1995, 18, 1160–1167. [Google Scholar] [CrossRef]
- Packer, L.; Witt, E.H.; Tritschler, H.J. Alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 1995, 19, 227–250. [Google Scholar] [CrossRef]
- Gilmore, T.D. Introduction to NF-κB: Players, pathways, perspectives. Oncogene 2006, 25, 6680–6684. [Google Scholar] [CrossRef] [Green Version]
- Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 2007, 8, 49–62. [Google Scholar] [CrossRef]
- Kunt, T.; Forst, T.; Wilhelm, A.; Tritschler, H.; Pfuetzner, A.; Harzer, O.; Engelbach, M.; Zschaebitz, A.; Stofft, E.; Beyer, J. Alpha-lipoic acid reduces expression of vascular cell adhesion molecule-1 and endothelial adhesion of human monocytes after stimulation with advanced glycation end products. Clin. Sci. 1999, 96, 75–82. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, H.J.; Park, K.G.; Kim, Y.N.; Kwon, T.K.; Park, J.Y.; Lee, K.U.; Kim, J.G.; Lee, I.K. Alpha-lipoic acid inhibits matrix metalloproteinase-9 expression by inhibiting NF-kappaB transcriptional activity. Exp. Mol. Med. 2007, 39, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Marracci, G.H.; Bourdette, D.N. Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2006, 175, 87–96. [Google Scholar] [CrossRef]
- Zhang, W.J.; Frei, B. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J. 2001, 15, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Marracci, G.H.; Marquardt, W.E.; Strehlow, A.; McKeon, G.P.; Gross, J.; Buck, D.C.; Kozell, L.B.; Bourdette, D.N. Lipoic acid downmodulates CD4 from human T lymphocytes by dissociation of p56(Lck). Biochem. Biophys. Res. Commun. 2006, 344, 963–971. [Google Scholar] [CrossRef]
- Ikeda, U.; Ito, T.; Shimada, K. Interleukin-6 and acute coronary syndrome. Clin. Cardiol. 2001, 24, 701–704. [Google Scholar] [CrossRef]
- Liu, H.X.; Zhou, X.Q.; Jiang, W.D.; Wu, P.; Liu, Y.; Zeng, Y.Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Feng, L. Optimal alpha-lipoic acid strengthen immunity of young grass carp (Ctenopharyngodon idella) by enhancing immune function of head kidney, spleen and skin. Fish Shellfish Immunol. 2018, 80, 600–617. [Google Scholar] [CrossRef]
- Sima, A.A.; Calvani, M.; Mehra, M.; Amato, A.; Acetyl-L-Carnitine Study Group. Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: An analysis of two randomized placebo-controlled trials. Diabetes Care 2005, 28, 89–94. [Google Scholar] [CrossRef] [Green Version]
- De Grandis, D.; Minardi, C. Acetyl-L-carnitine (levacecarnine) in the treatment of diabetic neuropathy. A long-term, randomised, double blind, placebo-controlled study. Drugs R D 2002, 3, 223–231. [Google Scholar] [CrossRef]
- Onofrj, M.; Fulgente, T.; Melchionda, D.; Marchionni, A.; Tomasello, F.; Salpietro, F.M.; Alafaci, C.; De Sanctis, E.; Pennisi, G.; Bella, R. L-acetylcarnitine as a new therapeutic approach for peripheral neuropathies with pain. Int. J. Clin. Pharmacol. Res. 1995, 15, 9–15. [Google Scholar]
- Ido, Y.; McHowat, J.; Chang, K.C.; Arrigoni-Martelli, E.; Orfalian, Z.; Kilo, C.; Corr, P.B.; Williamson, J.R. Neural dysfunction and metabolic imbalances in diabetic rats. Prevention by acetyl-L-carnitine. Diabetes 1994, 43, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Sima, A.A.; Ristic, H.; Merry, A.; Kamijo, M.; Lattimer, S.A.; Stevens, M.J.; Greene, D.A. Primary preventive and secondary interventionary effects of acetyl-Lcarnitine on diabetic neuropathy in the bio-breeding Worcester rat. J. Clin. Investig. 1996, 97, 1900–1907. [Google Scholar] [CrossRef] [Green Version]
- Youle, M.; Osio, M.; ALCAR Study Group. A double-blind, parallel-group, placebo controlled, multicentre study of acetyl L-carnitine in the symptomatic treatment of antiretroviral toxic neuropathy in patients with HIV-1 infection. HIV Med. 2007, 8, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Panfili, F.M.; Roversi, M.; D’Argenio, P.; Rossi, P.; Cappa, M.; Fintini, D. Possible role of vitamin D in COVID-19 infection in pediatric population. J. Endocrinol. Investig. 2021, 44, 27–35. [Google Scholar] [CrossRef]
- Ali, N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J. Infect. Public Health 2020, 13, 1373–1380. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Bandala, C.; Pichardo-Macías, L.A.; Contreras-García, I.J.; Gómez-Manzo, S.; Hernández-Ochoa, B.; Martínez-Orozco, J.A.; Ignacio-Mejía, I.; Cárdenas-Rodríguez, N. Vitamin D and its possible relationship to neuroprotection in COVID-19: Evidence in the literature. Curr. Top Med. Chem. 2022, 22. [Google Scholar] [CrossRef] [PubMed]
- Soderstrom, L.H.; Johnson, S.P.; Diaz, V.A.; Mainous, A.G., 3rd. Association between vitamin D and diabetic neuropathy in a nationally representative sample: Results from 2001–2004 NHANES. Diabet. Med. 2012, 29, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Bilir, B.; Tulubas, F.; Bilir, B.E.; Atile, N.S.; Kara, S.P.; Yildirim, T.; Gumustas, S.A.; Topcu, B.; Kaymaz, O.; Aydin, M. The association of vitamin D with inflammatory cytokines in diabetic peripheral neuropathy. J. Phys. Ther. Sci. 2016, 28, 2159–2163. [Google Scholar] [CrossRef] [Green Version]
- Caballero-García, A.; Córdova-Martínez, A.; Vicente-Salar, N.; Roche, E.; Pérez-Valdecantos, D. Vitamin D, its role in recovery after muscular damage following exercise. Nutrients 2021, 13, 2336. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- Lemire, J.M. Immunomodulatory role of 1,25-dihydroxyvitamin D3. J. Cell Biochem. 1992, 49, 26–31. [Google Scholar] [CrossRef]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef] [PubMed]
- Teymoori-Rad, M.; Shokri, F.; Salimi, V.; Marashi, S.M. The interplay between vitamin D and viral infections. Rev. Med. Virol. 2019, 29, e2032. [Google Scholar] [CrossRef] [PubMed]
- Peelen, E.; Knippenberg, S.; Muris, A.H.; Thewissen, M.; Smolders, J.; Tervaert, J.W.; Hupperts, R.; Damoiseaux, J. Effects of vitamin D on the peripheral adaptive immune system: A review. Autoimmun. Rev. 2011, 10, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, S.; Pantalena, L.C.; Liu, X.K.; Gaffen, S.L.; Liu, H.; Rohowsky-Kochan, C.; Ichiyama, K.; Yoshimura, A.; Steinman, L.; Christakos, S.; et al. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell Biol. 2011, 31, 3653–3669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, G.B.; Vanherwegen, A.S.; Eelen, G.; Gutierrez, A.C.; Van Lommel, L.; Marchal, K.; Verlinden, L.; Verstuyf, A.; Nogueira, T.; Georgiadou, M.; et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell Rep. 2015, 10, 711–725. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.D.; Kuchroo, V.K. Th17 cell pathway in human immunity: Lessons from genetics and therapeutic interventions. Immunity 2015, 43, 1040–1051. [Google Scholar] [CrossRef] [Green Version]
- Bruce, D.; Yu, S.; Ooi, J.H.; Cantorna, M.T. Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int. Immunol. 2011, 23, 519–528. [Google Scholar] [CrossRef]
- Wen, H.; Luo, J.; Zhang, X.; Zhang, C.; Zhao, X.; Wang, X.; Li, X. 1,25(OH)2-vitamin-D3 attenuates Th17-related cytokines expression in peripheral blood mononuclear cells in patients with early-diagnosed rheumatoid arthritis. Zhonghua Nei Ke Za Zhi 2015, 54, 317–321. [Google Scholar]
- Wang, Z.B.; Gan, Q.; Rupert, R.L.; Zeng, Y.M.; Song, X.J. Thiamine, pyridoxine, cyanocobalamin and their combination inhibit thermal, but not mechanical hyperalgesia in rats with primary sensory neuron injury. Pain 2005, 114, 266–277. [Google Scholar] [CrossRef]
- Devlin, T.M. (Ed.) Textbook of Biochemistry with Clinical Correlations; Wiley-Liss: New York, NY, USA, 1992. [Google Scholar]
- Chaney, S.G. Principles of nutrition II: Micronutrients. In Textbook of Biochemistry with Clinical Correlations; Delvin, T.M., Ed.; Wiley-Liss: New York, NY, USA, 1992; pp. 1115–1147. [Google Scholar]
- Torres, A.; Rubio, G. Efecto analgésico de las vitaminas del complejo B, a 50 años de la primera combinación ja de tiamina, piridoxina y Cianocobalamina. Med. Int. Mex. 2012, 28, 473–482. [Google Scholar]
- Jacobs, A.M.; Cheng, D. Management of diabetic small-fiber neuropathy with combination L-methylfolate, methylcobalamin, and pyridoxal 5’-phosphate. Rev. Neurol. Dis. 2011, 8, 39–47. [Google Scholar]
- Walker, M.J., Jr.; Morris, L.M.; Cheng, D. Improvement of cutaneous sensitivity in diabetic peripheral neuropathy with combination L-methylfolate, methylcobalamin, and pyridoxal 5’-phosphate. Rev. Neurol. Dis. 2010, 7, 132–139. [Google Scholar] [PubMed]
- Yaqub, B.A.; Siddique, A.; Sulimani, R. Effects of methylcobalamin on diabetic neuropathy. Clin. Neurol. Neurosurg. 1992, 94, 105–111. [Google Scholar] [CrossRef]
- Stirban, A.; Negrean, M.; Stratmann, B.; Gawlowski, T.; Horstmann, T.; Gotting, C.; Kleesiek, K.; Mueller-Roesel, M.; Koschinsky, T.; Uribarri, J.; et al. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 2006, 29, 2064–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stracke, H.; Gaus, W.; Achenbach, U.; Federlin, K.; Bretzel, R.G. Benfotiamine in diabetic polyneuropathy (BENDIP): Results of a randomised, double blind, placebo-controlled clinical study. Exp. Clin. Endocrinol. Diabetes 2008, 116, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Haupt, E.; Ledermann, H.; Kopcke, W. Benfotiamine in the treatment of diabetic polyneuropathy—a three-week randomized, controlled pilot study (BEDIP study). Int. J. Clin. Pharm. Ther. 2005, 43, 71–77. [Google Scholar] [CrossRef]
- Bâ, A. Metabolic and structural role of thiamine in nervous tissues. Cell Mol. Neurobiol. 2008, 28, 923–931. [Google Scholar] [CrossRef]
- Kulkantrakorn, K. Pyridoxine-induced sensory ataxic neuronopathy and neuropathy: Revisited. Neurol. Sci. 2014, 35, 1827–1830. [Google Scholar] [CrossRef]
- Bernstein, A.L. Vitamin B6 in clinical neurology. Ann. N. Y. Acad. Sci. 1990, 585, 250–260. [Google Scholar] [CrossRef]
- Shen, J.; Lai, C.Q.; Mattei, J.; Ordovas, J.M.; Tucker, K.L. Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: The Boston Puerto Rican Health Study. Am. J. Clin. Nutr. 2010, 91, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Friso, S.; Jacques, P.F.; Wilson, P.W.; Rosenberg, I.H.; Selhub, J. Low circulating vitamin B(6) is associated with elevation of the inflammation marker C-reactive protein independently of plasma homocysteine levels. Circulation 2001, 103, 2788–2791. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Sakakeeny, L.; Jacques, P.F.; Picciano, M.F.; Selhub, J. Vitamin B-6 intake is inversely related to, and the requirement is affected by, inflammation status. J. Nutr. 2010, 140, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, C.D.; Alviar, M.J.M.; Dans, A.L.; Bautista-Velez, G.G.P.; Villaruz-Sulit, M.V.C.; Tan, J.J.; Co, H.U.; Bautista, M.R.M.; Roxas, A.A. Vitamin B for treating peripheral neuropathy. Cochrane Database Syst. Rev. 2008, 16, CD004573. [Google Scholar] [CrossRef]
- Nishimoto, S.; Tanaka, H.; Okamoto, M.; Okada, K.; Murase, T.; Yoshikawa, H. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front. Cell Neurosci. 2015, 9, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasudevan, D.; Naik, M.M.; Mukaddam, Q.I. Efficacy and safety of methylcobalamin, alpha lipoic acid and pregabalin combination versus pregabalin monotherapy in improving pain and nerve conduction velocity in type 2 diabetes associated impaired peripheral neuropathic condition. [MAINTAIN]: Results of a pilot study. Ann. Indian Acad. Neurol. 2014, 17, 19–24. [Google Scholar] [CrossRef]
1st Line (Strong Recommendation) | 2nd Line (Moderate Recommendation) | 3rd Line (Weak Recommendation) |
---|---|---|
GABA analogs | Alkaloids | Strong opioids |
(gabapentin, pregabalin) | (capsaicin patches) | (morphine, oxycodone, |
Inhibitors of serotonin and noradrelanine reuptake | Local anesthetic | tapentadol) |
(lidocaine patches) | Neurotoxins | |
(duloxetine, venlafaxine) | Opioid analgesics | (botulinum toxin A (BTX-A)) |
Tricyclic antidepressants | (tramadol) | |
(amitriptyline, desipramine, | ||
clomipramine, imipramine, | ||
nortriptyline) |
Decrease in lymphocyte activation (Th1). |
Decrease in IL-12 production |
Decrease in IFN-γ production |
Decrease in Th17 through decreased production in IL-6 and IL-23 |
Tolerogenic dendritic cells: Th2, Treg, IL-10 |
Increase in lymphocytes Treg CD25+/Foxp3+ |
Decrease in the proliferation of T lymphocytes through decreased production in IL-2 |
Decrease in proliferation and differentiation of B cells (inhibition of differentiation in plasma cells and memory B cell) |
Decrease in synthesis of immunoglobulins |
Inhibition of NFkB (via p105/p50) in B naive cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Córdova-Martínez, A.; Caballero-García, A.; Pérez-Valdecantos, D.; Roche, E.; Noriega-González, D.C. Peripheral Neuropathies Derived from COVID-19: New Perspectives for Treatment. Biomedicines 2022, 10, 1051. https://doi.org/10.3390/biomedicines10051051
Córdova-Martínez A, Caballero-García A, Pérez-Valdecantos D, Roche E, Noriega-González DC. Peripheral Neuropathies Derived from COVID-19: New Perspectives for Treatment. Biomedicines. 2022; 10(5):1051. https://doi.org/10.3390/biomedicines10051051
Chicago/Turabian StyleCórdova-Martínez, Alfredo, Alberto Caballero-García, Daniel Pérez-Valdecantos, Enrique Roche, and David César Noriega-González. 2022. "Peripheral Neuropathies Derived from COVID-19: New Perspectives for Treatment" Biomedicines 10, no. 5: 1051. https://doi.org/10.3390/biomedicines10051051
APA StyleCórdova-Martínez, A., Caballero-García, A., Pérez-Valdecantos, D., Roche, E., & Noriega-González, D. C. (2022). Peripheral Neuropathies Derived from COVID-19: New Perspectives for Treatment. Biomedicines, 10(5), 1051. https://doi.org/10.3390/biomedicines10051051