Nucleic Acid Aptamers in Nanotechnology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fractionation of Nanoobjects
2.1.1. Treatment Methodologies for Infectious Diseases
2.1.2. siRNA-Based Diagnostics
2.1.3. Non-Viral Nanoscale Delivery of Antisense Oligonucleotides
2.2. Different Types of Nanobiosensors
2.2.1. Aptamer Folding
2.2.2. DNA Aptamers for Therapy and Diagnostics
2.2.3. Impedimetric Biosensors
2.2.4. G-quadruplex Forming Aptamer
2.2.5. High-Performance Screening of SELEX RNA Aptamer with FACS Using Liposomes
2.2.6. Ultrasensitive and Highly Specific Recognition Aptasensors with Different Detection
2.2.7. DNA Origami as a Nanosensor
2.2.8. G-quadruplex Thrombine-Binding DNA Aptamers
2.2.9. G-quadruplex Antithrombin Aptamers
2.2.10. NA Aptamers with GFP Chromophore for Biosensors
2.2.11. DNA Aptamers Binding to M11
2.2.12. Impedance Detection Methods for Miniature Analytical Systems
2.2.13. Multianalytical Analysis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandola, C.; Kalme, S.; Casteleijn, M.G.; Urtti, A.; Neerathilingam, M. Application of aptamers in diagnostics, drug-delivery and imaging. J. Biosci. 2016, 41, 535–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Vetcher, A.A.; Fan, J.-H.; Vetcher, I.A.; Lin, T.; Abramov, S.M.; Draper, R.; Kozlov, M.E.; Baughman, R.H.; Levene, S.D. Electrophoretic fractionation of carbon nanotube dispersions on agarose gels. Int. J. Nanosci. 2007, 6, 1–7. [Google Scholar] [CrossRef]
- Fedotov, P.S.; Vanifatova, N.G.; Shkinev, V.M.; Spivakov, B.Y. Fractionation and characterization of nano- and microparticles in liquid media. Anal. Bioanal. Chem. 2011, 400, 1787–1804. [Google Scholar] [CrossRef]
- Cauzzo, J.; Jennifer, J.; Balpreet, S.A.; Azeem, A.; Škalko-Basnet, N. Characterization of liposomes using quantitative phase microscopy (QPM). Pharmaceutics 2021, 13, 590. [Google Scholar] [CrossRef]
- Filipchak, N.; Yalamarti, K.S.; Xiang, L.; Parvin, P.; Torchilin, V. Developments in treatment methodologies using dendrimers for infectious diseases. Molecules 2021, 26, 3304. [Google Scholar] [CrossRef]
- Minko, T.; Khandare, J.J.; Vetcher, A.A.; Soldatenkov, V.A.; Garbuzenko, O.B.; Saad, M.; Pozharov, V.P. Multifunctional nan-otherapeutics for cancer. In Multifunctional Pharmaceutical Nanocarriers; Part of Fundamental Biomedical Technologies; Springer: New York, NY, USA, 2008; Volume 4, pp. 309–336. [Google Scholar]
- Wang, Y.; Saad, M.; Pakunlu, R.I.; Khandare, J.J.; Garbuzenko, O.B.; Vetcher, A.A.; Soldatenkov, V.A.; Pozharov, V.P.; Minko, T. Nonviral nanoscale-based delivery of antisense oligonucleotides targeted to hypoxia-inducible factor 1α enhances the efficacy of chemotherapy in drug-resistant tumor. Clin. Cancer Res. 2008, 14, 3607–3616. [Google Scholar] [CrossRef] [Green Version]
- Zein, S.S.; Vetcher, A.A.; Levene, S. PCR-based synthesis of repetitive single-stranded DNA for applications to nanobi-otechnology. Int. J. Nanosci. 2009, 4, 287–294. [Google Scholar] [CrossRef]
- Alsheddi, T.; Vetcher, A.; Baranova, A. Nanogenomics for medicine: Emerging strategies to overcome bottlenecks in siR-NA-based therapy of human diseases. Int. J. Nano Biomater. 2009, 2, 322–330. [Google Scholar] [CrossRef]
- Osypova, A.; Thakar, D.; Dejeu, J.; Bonnet, H.; Van der Heyden, A.; Dubacheva, G.V.; Richter, R.P.; Defrancq, E.; Spinelli, N.; Coche-Guerente, L.; et al. Sensor based on aptamer folding to detect low-molecular weight analytes. Anal Chem. 2015, 87, 7566–7574. [Google Scholar] [CrossRef]
- Guan, J.G.; Miao, Y.Q.; Zhang, Q.J. Impedimetric biosensors. J. Biosci. Bioeng. 2004, 97, 219–226. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, G.; Kai, M. DNA Aptamers in the Diagnosis and Treatment of Human Diseases. Molecules 2015, 20, 20979–20997. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhou, L.; Liu, C.; Zhang, H.; Zhao, Y.; Zhao, Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens. Bioelectron. 2021, 181, 113164. [Google Scholar] [CrossRef] [PubMed]
- Kohli, R.M.; Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013, 502, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Tian, S.; Zhao, W.; Liu, K..; Ma, X.; Guo, J. Aptamer-based lateral flow assay on-site biosensors. Biosens. Bioelectron. 2021, 186, 113–279. [Google Scholar] [CrossRef] [PubMed]
- Ayela, C.; Roquet, F.; Valera, L.; Granier, C.; Nicu, L.; Pugnière, M. Antibody-antigenic peptide interactions monitored by SPR and QCM-D. A model for SPR detection of IA-2 autoantibodies in human serum. Biosens. Bioelectron. 2007, 22, 3113–3119. [Google Scholar] [CrossRef]
- Fang, X.; Tan, W. Aptamers Generated from Cell-SELEX for Molecular Medicine: A Chemical Biology Approach. Acc. Chem. Res. 2009, 43, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Roberts, R.J.; Vincze, T.; Posfai, J.; Macelis, D. REBASE—Enzymes and genes for DNA restriction and modification. Nucleic Acids Res. 2007, 35, D269–D270. [Google Scholar] [CrossRef]
- Wu, Y.; Midinov, B.; White, R.J. Electrochemical sensor based on aptamer for real-time monitoring of insulin. ACS Sens. 2019, 4, 498–503. [Google Scholar] [CrossRef]
- Yu, Y.; Liang, C.; Lv, Q.; Li, D.; Xu, X.; Liu, B.; Lu, A. Molecular selection, modification and development of therapeutic oligonucleotide aptamers. Int. J. Mol. Sci. 2016, 17, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, G.; Ahmed, M.-S.L.; Dolf, A.; Endl, E.; Knolle, P.A.; Famulok, M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 2010, 5, 1993–2004. [Google Scholar] [CrossRef] [PubMed]
- Dejeu, J.; Van der Heyden, A.; Spinelli, N.; Defrancq, E.; Coche-Guérente, L. Recent progress in the design of G-quadruplex–based electrochemical aptasensors. Curr. Opin. Electrochem. 2021, 30, 100812. [Google Scholar] [CrossRef]
- Huang, R.R.; He, V.; Xia, Y.Y.; Xu, X.P.; Liu, K.; Xie, H.; Wang, S.; Peng, L.D.; Liu, Y.F.; Liu, Y.; et al. Sensitive aptasensor strategy-based signal amplification using hemin. Small 2019, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Deiminat, B.; Runagi, G.H. A novel visible light photoelectrochemical aptasensor for determination of bisphenol A based on surface plasmon resonance of gold nanoparticles activated g-C3N4 nanosheets. J. Electroanal. Chem. 2021, 886, 115–122. [Google Scholar] [CrossRef]
- Hosseinzadeh, L.; Mazloum-Ardakani, M. Chapter Six—Advances in Aptasensor Technology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 99, pp. 237–279. [Google Scholar]
- Zhang, H.; Han, Y.; Guo, Y.; Dong, C. Porphyrin functionalized graphene nanosheets-based electrochemical aptasensor for la-bel-free ATP detection. J. Mat. Chem. 2012, 22, 23900–23905. [Google Scholar] [CrossRef]
- Zhao, J.; Zhai, Q. Recent advances in the development of ligands specifically targeting telomeric multimeric G-quadruplexes. Bioorg. Chem. 2020, 103, 104229. [Google Scholar] [CrossRef]
- Nguyen, T.Q.N.; Lim, K.W.; Phan, A.T. Folding Kinetics of G-Quadruplexes: Duplex Stem Loops Drive and Accelerate G-Quadruplex Folding. J. Phys. Chem. B 2020, 124, 5122–5130. [Google Scholar] [CrossRef]
- Cecerska-Heryć, E.; Surowska, O.; Heryć, R.; Serwin, N.; Napiontek-Balińska, S.; Dołęgowska, B. Are antioxidant enzymes essential markers in the diagnosis and monitor-ing of cancer patients—A review. Clin. Biochem. 2021, 93, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Li, G.; Zou, L.; Lei, S.; Yu, Q.; Ye, B. Highly active hybrid structure of DNAzyme-peptide combined with porous palladium for a highly efficient electrochemical aptasensing platform. Sens. Actuators B-Chem. 2018, 259, 372–379. [Google Scholar] [CrossRef]
- Luo, Z.; Sun, D.; Tong, Y.; Zhong, Y.; Chen, Z. DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Microchim Acta 2019, 186, 374. [Google Scholar] [CrossRef]
- Sun, D.P.; Lin, X.A.; Lu, J.; Wei, P.; Luo, Z.B.; Lu, X.E.; Chen, Z.G.; Zhang, L.Y. DNA nanotetrahedron-assisted electro-chemical aptazensor for the detection of cardiac troponin I based on the joint catalysis of hybrid nanoenzyme, natural enzyme and artificial DNAzyme. Biosens. Bioelectron. 2019, 142, 15. [Google Scholar] [CrossRef] [PubMed]
- Tintoré, M.; Gállego, I.; Manning, B.; Eritja, R.; Fàbrega, C. DNA origami as a DNA repair nanosensor at the single-molecule level C. Angew. Chem. 2013, 52, 7747–7750. [Google Scholar] [CrossRef] [PubMed]
- Yuminova, A.V.; Smirnova, I.G.; Arutyunyan, A.M.; Kopylov, A.M.; Golovin, A.V.; Pavlova, G.V. The structure of G-quadruplex thrombine-binding DNA aptamer RA36. Mosc. Univ. Chem. Bull. 2015, 70, 43–46. [Google Scholar] [CrossRef]
- Alieva, R.R.; Zavyalova, E.G.; Tashlitsky, V.N.; Kopylov, A.M. Quantitative characterization of oligomeric state of G-quadruplex antithrombin aptamers by size exclusion HPLC. Mendeleev Commun. 2019, 29, 424–425. [Google Scholar] [CrossRef]
- Kretz, C.K.; Cuddy, K.R.; Stafford, A.R. HD1, a thrombin- and prothrombin-binding DNA aptamer, inhibits thrombin gener-ation by attenuating prothrombin activation. Thromb. Haemost. 2010, 103, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Close, D.M.; Ripp, S.; Sayler, G.S. Reporter Proteins in Whole-Cell Optical Bioreporter Detection Systems, Biosensor Integrations, and Biosensing Applications. Sensors 2009, 9, 9147–9174. [Google Scholar] [CrossRef] [Green Version]
- Hamula, C.L.; Peng, H.; Wang, Z.; Tyrrell, G.J.; Li, X.-F.; Le, X.C. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes. Methods 2015, 97, 51–57. [Google Scholar] [CrossRef]
- Yuan, X.; Hu, X.; Sun, Y.; Wu, Z.; Lu, P. A weak grid impedance detection method based on windowed Fourier transformation. Power Syst. Prot. Control 2018, 46, 96–101. [Google Scholar]
- Challier, L.; Miranda-Castro, R.; Barbe, B.; Fave, C.; Limoges, B.; Peyrin, E.; Ravelet, C.; Fiore, E.; Labbé, P.; Coche-Guérente, L.; et al. Multianalytical Study of the Binding between a Small Chiral Molecule and a DNA Aptamer: Evidence for Asymmetric Steric Effect upon 3′- versus 5′-End Sequence Modification. Anal. Chem. 2016, 88, 11963–11971. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Lee, Y.-C.; Lai, Y.-H.; Lim, J.-C.; Huang, N.-T.; Lin, C.-T.; Huang, J.-J. Review of Integrated Optical Biosensors for Point-Of-Care Applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. Biosensors 2019, 9, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Aptamer-Based Method | Aptamers | Application Areas | |
---|---|---|---|
1 | siRNA [7,17] | Dendrimers | Treatment of infectious and non-infectious diseases. |
2 | SELEX [41] | DNA aptamers binding to M11 | Diagnostics. |
3 | FACS-SELEX [22,23] | RNA-aptamers | Cancer-affected cells detection. |
4 | DNA origami [34,35] | DNA-aptamers with α-thrombin | Multiplex biochemical tests. |
5 | Liposomal drug delivery system [8] | HIF1A | Improving the effectiveness of chemotherapy. |
6 | QCM-D-method [43] | Apt49 | DNA-aptamer-based bio-recognizable sensors. Therapy. Visualization of proteins. |
7 | Circular dichroism method [36] | RA36 | Therapy with thrombin inhibitors. |
8 | HPLC size exclusion [37,38,39] | HD1, GL2-HD1 | Prevention of thrombosis. |
9 | EC biosensor [40,42] | DNA nanotetrahedron aptamer (NTH) | Analysis of cTnI for the diagnostics of heart attack. |
10 | Transgenic methods [40] | NA aptamers based on the GFP | Detection of intracellular events throug fluorescence changes. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinitsyna, V.V.; Vetcher, A.A. Nucleic Acid Aptamers in Nanotechnology. Biomedicines 2022, 10, 1079. https://doi.org/10.3390/biomedicines10051079
Sinitsyna VV, Vetcher AA. Nucleic Acid Aptamers in Nanotechnology. Biomedicines. 2022; 10(5):1079. https://doi.org/10.3390/biomedicines10051079
Chicago/Turabian StyleSinitsyna, Valentina V., and Alexandre A. Vetcher. 2022. "Nucleic Acid Aptamers in Nanotechnology" Biomedicines 10, no. 5: 1079. https://doi.org/10.3390/biomedicines10051079
APA StyleSinitsyna, V. V., & Vetcher, A. A. (2022). Nucleic Acid Aptamers in Nanotechnology. Biomedicines, 10(5), 1079. https://doi.org/10.3390/biomedicines10051079