Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review
Abstract
:1. Introduction
2. Cardiac Biomarkers and Their Aptamers
2.1. Cardiac Troponins
2.2. Myoglobin
2.3. Creatine Kinase
2.4. Heart-Type Fatty Acid-Binding Protein
2.5. B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natriuretic Peptide
2.6. Mid-Regional pro-Adrenomedullin
2.7. Mid-Regional pro-Atrial Natriuretic Peptide
2.8. Copeptin
2.9. Interleukin-6
2.10. C-Reactive Protein
2.11. Tumor Necrosis Factor Alpha
2.12. Galectin-3
2.13. Soluble Suppression of Tumorigenicity 2
2.14. Growth Differentiation Factor 8 (Myostatin)
2.15. Growth Differentiation Factor 15
Biomarker | Aptamer Name, Type, Length | Aptamer Sequence, 5′-3′ Direction | KD | Method for Affinity Estimation | Reference |
---|---|---|---|---|---|
cTnI | Tro4, DNA, 40 nt | CGTGCAGTACGCCAACCTTTCTCATGCGCTGCCCCTCTTA | 270 pM | SPR | [20] |
Tro6, DNA, 40 nt | CGCATGCCAAACGTTGCCTCATAGTTCCCTCCCCGTGTCC | 317 pM | SPR | [20] | |
TnIApt23, DNA | No sequence published | 2.7 nM | Fluorescence | [36] | |
TnIApt19, DNA | No sequence published | 6.3 nM | Fluorescence | [36] | |
TnIApt18, DNA, 79 nt | GCCTGTTGTGAGCCTCCTAACTACATGTTCTCAGGGTTGAGGCTGGATGGCGATGGTGGCATGCTTATTCTTGTCTCCC | 9 nM | Fluorescence | [36] | |
TnIApt11, DNA, 79 nt | GCCTGTTGTGAGCCTCCTAACTTCAAGGTGTGGTCAGTCTTGGATTGGAGGAGTATGNGCATGCTTATTCTTGTCTCCC | 10.25 nM | Fluorescence | [36] | |
TnI2, DNA, 72 nt | GGCAGGAAGACAAACACCCAACCGAGGATGCAACGCTTGTTGTCATACTGTGATGTTGGTCTGTGGTGCTGT | 19.8 nM | SPR | [39,40] | |
Apt 3, DNA, 96 nt | CGTACGGTCGACGCTAGCCGGACACCCAAGTCAGACGTGCCCATTATCGCGCGATACGTATTATTTCTTGCTCGGGGCCACGTGGAGCTCGGATCC | 1.01 nM | ELONA | [41] | |
Apt 6, DNA, 96 nt | CGTACGGTCGACGCTAGCCCGGAGCGAAGGCGGCCCCGTTTGCGTGCAGCGTAGTCTGTAGACAACAGTGCTGTGGGCCACGTGGAGCTCGGATCC | 0.68 nM | ELONA | [41] | |
A4, L-DNA, 76 nt | AGTCTCCGCTGTCCTCCCAGTGCAGGCTGAGTGGGTGGGTGGGTGGTGTGGCCACGTTGGGATGACGCCGTGACTG | 3.5 nM | SPR | [18] | |
B10, L-DNA, 76 nt | AGTCTCCGCTGTCCTCCCGATGCACTTGACGTATGTCTCACTTTCTTTTCATTGACATGGGATGACGCCGTGACTG | 10.7 nM | SPR | [18] | |
A6, L-DNA, 76 nt | CAGTGAGTGATGGTGAGGGCTTAGTTCGCCGCTCATGCCGAATCTCCTGTATAAATACCCACACTGTCCATACACG | 540 pM | SPR | [42] | |
C6, L-DNA, 76 nt | CAGTGAGTGATGGTGAGGGTGAATCGGTGTCGACTATTAAATTAAGTTGTGGTTGTTCCCACACTGTCCATACACG | 305 pM | SPR | [42] | |
DNA, 28 nt | CCAATGCAGTGGGGAGGGACTGCGTTGG | nd * | nd | [47] | |
biotin-apta, DNA, 80 nt | TTCAGCACTCCACGCATAGCTCAGCCGGCAATGAACAACCTCCATTCTAACGCAGTGTTACCTATGCGTGCTACCGTGAA | nd | nd | [48] | |
TnAp1, DNA, 80 nt | GGCAGCAGGAAGACAAGACATGGGTGGCGGGGACGGGGCGATGGGAACTTAGATTGCTAGTGGTTCTGTGGTTGCTCTGT | 61.51 nM | Bioluminescence | [46] | |
TnAp2, DNA, 80 nt | GGCAGCAGGAAGACAAGACAGGCAGTGTCACGCGCTCAAGGGTGGAGGGGTCGGGGAGGTTGGTTCTGTGGTTGCTCTGT | 42.01 nM | Bioluminescence | [46] | |
TnAp4, DNA, 80 nt | GGCAGCAGGAAGACAAGACACAACGCATGGGTGGGACGACGGGTGGGCAAGAGACACGCCTGGTTCTGTGGTTGCTCTGT | 167.1 nM | Bioluminescence | [46] | |
TnAp5, DNA, 80 nt | GGCAGCAGGAAGACAAGACACACGGGAGGGAGGGTAGGGTGTGTGTCGAATCACTGCGCATGGTTCTGTGGTTGCTCTGT | 255.7 nM | Bioluminescence | [46] | |
TnAp10, DNA, 80 nt | GGCAGCAGGAAGACAAGACACCACATCTATGGGTGGGACGATGGGTGGGCCGAAACGACCTGGTTCTGTGGTTGCTCTGT | 121.4 nM | Bioluminescence | [46] | |
TnAp12, DNA, 80 nt | GGCAGCAGGAAGACAAGACATCGGGAGGGAGGGAGGGCAGTCTAGTCTCATGTGTTTCCATGGTTCTGTGGTTGCTCTGT | 24.16 nM | Bioluminescence | [46] | |
TnAp14, DNA, 80 nt | GGCAGCAGGAAGACAAGACACTACCCATACACTTAGGGACGGGTGGCCGGGGAGGGAGGTTGGTTCTGTGGTTGCTCTGT | 79.04 nM | Bioluminescence | [46] | |
TnAp2t1, DNA, 40 nt | GGCAGTGTCACGCGCTCAAGGGTGGAGGGGTCGGGGAGGT | 39.06 nM | Bioluminescence | [46] | |
TnAp2t2, DNA, 54 nt | AGACAAGACAGGCAGTGTCACGCGCTCAAGGGTGGAGGGGTCGGGGAGGTTGGT | 24.93 nM | Bioluminescence | [46] | |
TnAp2t3, DNA, 27 nt | GCTCAAGGGTGGAGGGGTCGGGGAGGT | 30.6 nM | Bioluminescence | [46] | |
DNA, 55 nt | No sequence published | nd | nd | [49] | |
DNA | No sequence published | nd | nd | [50] | |
cTnT | Tro 4, DNA, 40 nt | CGTGCAGTACGCCAACCTTTCTCATGCGCTGCCCCTCTTA | nd | nd | [57,58] |
Apt.1, DNA, 71 nt | ATACGGGAGCCAACACCAGGACTAACATTATAAGAATTGCGAATAATCATTGGAGAGCAGGTGTGACGGAT | 122 nM | SPR | [59] | |
Apt.2, DNA, 71 nt | ATCCGTCACACCTGCTCTCCAATGATTATTCGCAATTCTTATAATGTTAGTCCTGGTGTTGGCTCCCGTAT | 190 nM | SPR | [59] | |
AraHH001, DNA, 40 nt | ACGTACCGACTTCGTATGCCAACAGCCCTTTATCCACCTC | 43 nM | Flowcyto- metry | [61,62] | |
Mb | Myo40-7-27, DNA, 40 nt | CCCTCCTTTCCTTCGACGTAGATCTGCTGCGTTGTTCCGA | 4.93 nM | SPR | [75] |
Myo40-7-69, DNA, 40 nt | CGAGTACTTCTTTGCTAGTTCGCGAGATACGTTGGCTAGG | 6.38 nM | SPR | [75] | |
Myo40-7-34, DNA, 40 nt | ACGCACAATTCCTTGTCCAATTAGGAAATTCTACGCGGAT | 5.58 nM | SPR | [75] | |
Mb 089, DNA, 72 nt | ATCCGTCACACCTGCTCTTAATTACAGGCAGTTCCACTTAGACAGACACACGAATGGTGTTGGCTCCCGTAT | nd | nd | [80] | |
ST1, DNA | No sequence published | 65 pM | SPR | [81] | |
DNA, 78 nt | ATCCAGAGTGACGCAGCACAACGTGCAAATTATACCTGTTTTCCCCTTTTCCTACAAGTGCTATGGACACGGCTTAGT | 65 pM | nd | [83] | |
CK-MB | C.Apt.21, DNA, 45 nt | GGGGGGTGGGTGGGGGATCTCGGAGGATGCTTTTAGGGGGTTGGG | 0.81 nM | ELONA | [96] |
C.Apt.30, DNA, 43 nt | CATTGAGAGGGGGTGGCCGTAGTCAGGTGGGTGGGGGTTTGAG | 24.04 nM | ELONA | [96] | |
hFABP | N13, DNA, 90 nt | CACCTAATACGACTCACTATAGCGGATCCGAAGGGGGCGCGAGGTGTAAGGGTGTGGGGTGGTGGGTGGGCCTGGCTCGAACAAGCTTGC | 74.3 nM | CD | [101] |
N53, DNA, 90 nt | CACCTAATACGACTCACTATAGCGGATCCGAGGGGGTAGCGGGTGGGCCGGTG_GATGCGGGGCGCCGGCGCCTGGCTCGAACAAGCTTGC | 333.7 nM | CD | [101] | |
BNP | A10, DNA, 40 nt | GGCGATTCGTGATCTCTGCTCTCGGTTTCGCGTTCGTTCG | 12 nM | Fluorescence | [121] |
A8, DNA, 40 nt | CGAAATACACAGCCAGGACTGGAGGGCAAGGGTAACGAGC | 139.4 nM | Fluorescence | [121] | |
A11, DNA, 40 nt | TGAGCCCGGGACAGAGAGACCGGACCACGTGCCCGGGCC | 28 nM | Fluorescence | [121] | |
A14-1, DNA, 40 nt | ATAACGACATCCGCCGGCACGAAGGGATCAAGTCGATAGG | 22.4 nM | Fluorescence | [121] | |
A14-5, DNA, 40 nt | CCCGTGCTTTGGCCCTCCATGCAGCCTTGAGCCTATGCC | 104.6 nM | Fluorescence | [121] | |
8–12, DNA, 50 nt | TAAACGCTCAAAGGACAGAGGGTGCGTAGGAAGGGTATTCGACAGGAGGCTCACA | nd | ELONA | [115] | |
2F, DNA, 72 nt | ATACGGGAGCCAACACCATGGTGGGTACTACCCTTAAAAACATCGCCCCCTACGAGAGCAGGTGTGACGGAT | nd | ELONA | [120] | |
6R, DNA, 72 nt | ATCCGTCACACCTGCTCTCGTAGGGGGCGATGTTTTTAAGGGTAGTACCCACCATGGTGTTGGCTCCCGTAT | nd | ELONA | [120] | |
14bF, DNA, 72 nt | ATACGGGAGCCAACACCACCTATTACAGACCCAATTTCCACCTGGCATTTCTATAGAGCAGGTGTGACGGAT | nd | ELONA | [120] | |
25cF, DNA, 72 nt | ATACGGGAGCCAACACCACCTCTCACATTATATTGTGAATACTTCGTGCTGTTTAGAGCAGGTGTGACGGAT | nd | ELONA | [120] | |
NT-proBNP | N20a, DNA, 72 nt | GGCAGGAAGACAAACAGGTCGTAGTGGAAACTGTCCACCGTAGACCGGTTATCTAGTGGTCTGTGGTGCTGT | 2.89 nM | SPR | [39,123] |
IL-6 | 5522, DNA, 59 nt | CTCATAAGTCGTTGCAACCCCGTGCGCATGGACTGATCTTCCGCLGAATCACGAGGGTA | 6.15 µM | GMSA | [169] |
5523, DNA, 56 nt | CCTCACGAACCATGATCACGCACCAACCAGGCCGTGTTAAAGAGGGCACACTGTAT | 1.25 µM | GMSA | [169] | |
DNA, 57 nt | GTCTCTGTGTGCGCCAGAGACACTGGGGCAGATATGGGCCAGCACAGAATGAGGCCC | nd | nd | [170] | |
12L, DNA, 31 nt | GGTGGCAGGAGGACTATTTATTTGCTTTTCT | 17 nM | SPR | [171] | |
12S, DNA, 16 nt | GGTGGCAGGAGGACTA | 190 nM | SPR | [171] | |
IL62, DNA, 30 nt | CTTCCAACGCTCGTATTGTCAGTCTTTAGT | nd | nd | [174] | |
IL63, DNA, 30 nt | CTTCCGTGAAACCAACGTGCCCTCAATCCG | nd | nd | [174] | |
ATW0077, DNA, 32 nt | No sequence published | 5.4 nM | nd | [178,179] | |
ATW0082 | No sequence published | nd | nd | [176] | |
ATW0083 | No sequence published | nd | nd | [177] | |
CRP | DNA, 20 nt | GGGCCTCCGGTTCATGCCGC | nd | nd | [203] |
DNA, 72 nt | GGCAGGAAGACAAACACACAAGCGGGTGGGTGTGTACTATTGCAGTATCTATTCTGTGGTCTGTGGTGCTGT | nd | nd | [204] | |
CRP-80-17, DNA, 80 nt | AGCAGCACAGAGGTCAGATG CCCCCGCGGGTCGGCTTGCCGTTCCGTTCGGCGCTTCCCC CCTATGCGTGCTACCGTGAA | 3.9 nM | SPR | [193] | |
CRP-40-17, DNA, 40 nt | CCCCCGCGGGTCGGCTTGCCGTTCCGTTCGGCGCTTCCCC | 16.2 nM | SPR | [193] | |
6th-62-40 DNA, 40 nt | CGAAGGGGATTCGAGGGGTGATTGCGTGCTCCATTTGGTG | 16.2 nM | SPR | [194] | |
Clone 1 DNA, 72 nt | GGCAGGAAGACAAACACGATGGGGGGGTATGATTTGATGTGGTTGTTGCATGATCGTGGTCTGTGGTGCTGT | 3.51 nM | SPR | [195] | |
DNA, 72 nt | GGCAGGAAGACAAACATATAATTGAGATCGTTTGATGACTTTGTAAGAGTGTGGAATGGTCTGTGGTGCTGT | nd | nd | [197,198,199] | |
CRP1-1 RNA, 104 nt | GGGCGAAUUCGGGACUUCGAUCCGUAGUACCCACCAGGCAUACACCAGCACGCGGAGCCAAGGAAAAAUAGUAAACUAGCACUCAGUGCUCGUAUGCGGAAGCU | 2.25 nM | SPR | [192] | |
RNA, 44 nt | GCCUGUAAGGUGGUCGGUGUGGCGAGUGUGUUAGGAGAGAUUGC | 125 nM | nd | [191] | |
F27K-4 DNA, 60 nt | AGCAGCACAGAGGTCAGATGGCCCCCGAAGTTGCTTAGTCCCTATGCGTGCTACCGTGAA | 22.71 nM | qPCR | [200] | |
>27K-1 DNA, 60 nt | AGCAGCACAGAGGTCAGATGTCTGTAATTTATAGTTCCATCCTATGCGTGCTACCGTGAA | 7.65 nM | qPCR | [200] | |
20N AC > 200 K DNA, 60 nt | AGCAGCACAGAGGTCAGATGAATTACAAATTTGGACTGTTCCTATGCGTGCTACCGTGAA | 8.35 nM | qPCR | [201] | |
20N AC F200K-1 DNA, 60 nt | AGCAGCACAGAGGTCAGATGGCATTGTATCACAGGTACTGCCTATGCGTGCTACCGTGAA | 12.49 nM | qPCR | [201] | |
sOS-AC-20N-1 DNA, 60 nt | AGCAGCACAGAGGTCAGATGGATACCAAGGTCCGCTGGTTCCTATGCGTGCTACCGTGAA | 5.96 nM | qPCR | [201] | |
OS-AC-20N-3 DNA, 60 nt | AGCAGCACAGAGGTCAGATGCGCTTGTGATGGGTGATGGGCCTATGCGTGCTACCGTGAA | 5.70 nM | qPCR | [201] | |
PF20N-RO-MARAS-84-1 DNA, 20 nt | GTTGACGGGCGATTGGTCTT | 23.58 nM | qPCR | [202] | |
TNFα | DNA, 41 nt | GCGCCACTACAGGGGAGCTGCCATTCGAATAGGTGGGCCGC | 8 nM | qPCR | [218] |
VR11, DNA, 25 nt | TGGTGGATGGCGCAGTCGGCGACAA | 7 nM | SPR | [216] | |
T3.11.7, 2′-NH2-RNA, 28 nt | GGAGUAUCUGAUGACAAUUCGGAGCUCC | nd | ELONA | [220] | |
T1-4, DNA, 49 nt | TCCGATCGGTATATCCGTCGGATTTTTTTTTTGGTCACTGCATGTGACC | 67 nM | Cell cytotoxicity assay | [219] | |
T1, DNA, 17 nt | GGTCACTGCATGTGACC | 195 nM | Cell cytotoxicity assay | [219] | |
T4, DNA, 22 nt | TCCGATCGGTATATCCGTCGGA | 142 nM | Cell cytotoxicity assay | [219] | |
S01, DNA, 81 nt | ATCCAGAGTGACGCAGCATGCTTAAGGGGGGGGCGGGTTAAGGGAGTGGGGAGGGAGCTGGTGTGGACACGGTGGCTTAGT | 0.19 nM in buffer 0.27 nM in serum | FACS | [228] | |
B01, DNA, 80 nt | ATCCAGAGTGACGCAGCAGGTTAAGGTGTAGGTCCGGGTGGGGGGGTGGGTTGGGGGACTGGTGGACACGGTGGCTTAGT | 0.35 nM | FACS | [228] | |
DNA, 33 nt | GCGGCCGATAAGGTCTTTCCAAGCGAACGAAAA | nd | nd | [229] |
3. SOMAmers Targeting Cardiac Biomarkers
4. Future Research Directions
- The development of novel aptamers binding to MR-proADM, MR-proANP, Copeptin, sST2, Gal3, GDF8, and GDF15. During aptamer selection, specificity should be addressed using correct negative and counter targets, which should include proteins with similar structures, other biomarkers known to increase in the same disease conditions, and the most abundant proteins in the medium desired for detection, e.g., albumins and globulins for the detection from serum. Selection conditions should maximally imitate the intended aptamer usage;
- The characterization of novel—and some already existing—aptamers. This includes the confirmation of binding, for which using several different methods is desired, the evaluation of cross-specificity, and the study of the influence of the experimental conditions on the aptamer–target binding (pH, buffer composition, temperature);
- The development of sandwich detection assays based on aptamers. For this purpose, the existing aptamers can be systematically paired for the evaluation, and novel aptamers can be isolated using specific selection procedures intended to develop the aptamers recognizing different binding sites of the same target;
- The characterization and validation of aptamer-based assays. LOD and dynamic detection ranges of sensors must allow the detection of biomarkers in clinically relevant ranges. The detection of the targets from real samples is strongly recommended, and the results should be compared with the validated alternative assays. The performance of the aptamer-targeting cardiac biomarkers from different biological fluids (saliva, urine, whole blood) is of specific interest for the development of POC biosensors. The range of analytical targets for the same analysis scheme should be maximally extended, because the universal assay platforms allowing the detection of multiple biomarkers within single or parallel measurements are required both for laboratory instrumental diagnostics and POC devices;
- The implementation of the developed aptamer-based assays to clinical studies, alongside the validated assays. The assays should be carefully characterized with specificity, sensitivity, and accuracy. The cut-off levels for each assay should be examined individually, as their values may differ for different assays in some cases. Moreover, the combination of multiple biomarkers is an increasing trend in diagnostics and prognostics, and especially for the risk stratification of CVDs. Aptamer-based multiple-biomarker detection should be implemented more intensively to respective clinical studies;
- Further medicinal research of salivary CVD biomarkers. The detection from saliva is a very attractive non-invasive method of CVD diagnostics using aptamers, but some pitfalls associated with saliva collection, storage, and analysis exist, which impede the routine use of saliva in clinical practice [19,214,276]. Aptamer-based assays specifically developed to detect cardiac biomarkers from saliva can assure the required sensitivity to measure lower biomarker concentrations in saliva compared to serum, and can thus assist to establish cut-off levels;
- The further development and promotion of aptamer-based POC devices. Such devices should have low cost, convenient and affordable signal read-outs (such as visual or smartphone-assisted detection), and easy result interpretation for the unexperienced end-user. Both diagnostics and risk assessment devices are in demand.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACS | acute coronary syndrome |
ADH | antidiuretic hormone |
ADM | adrenomedullin |
AMI | acute myocardial infarction |
ANP | atrial natriuretic peptide |
AVP | arginine vasopressin |
BNP | B-type natriuretic peptide |
BSA | bovine serum albumin |
CHD | coronary heart disease |
CHF | congestive heart failure |
CK | creatine phosphokinase |
CRP | C-reactive protein |
cTnI | cardiac troponin I |
cTnT | cardiac troponin T |
CV | cyclic voltammetry |
CVDs | cardiovascular diseases |
DNA | deoxyribonucleic acid |
DPV | differential pulse voltammetric |
EIS | electrochemical impedance spectroscopy |
ELISA | enzyme-linked immunosorbent assay |
ELONA | enzyme-linked oligonucleotide assay |
FET | field-effect transistor |
FICA | fluorescence immunochromatographic assay |
GDF15 | growth differentiation factor 15 |
GDF8 | growth differentiation factor 8, myostatin |
HF | heart failure |
hFABP | heart-type fatty acid-binding protein |
HSA | human serum albumin |
IgE | immunoglobulin E |
IL-6 | interleukin-6 |
LOD | limit of detection |
MR-proADM | mid-region-proADM |
Nt | nucleotides |
NT-proBNP | N-terminal proBNP |
POC | point-of-care |
RNA | ribonucleic acid |
SELEX | systematic evolution of ligands by exponential enrichment |
SERS | surface-enhanced Raman spectroscopy |
SOMAmer | slow off-rate modified aptamers |
SPR | surface plasmon resonance |
sST2 | soluble suppression of tumorigenicity 2 |
ST2 | suppression of tumorigenicity 2 |
ST2L | transmembrane suppression of tumorigenicity 2 |
SWV | square wave voltammetry |
TGF-β | transforming growth factor-β |
TNFα | tumor necrosis factor alpha |
WHO | world health organization |
References
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 18 April 2022).
- Szunerits, S.; Mishyn, V.; Grabowska, I.; Boukherroub, R. Electrochemical Cardiovascular Platforms: Current State of the Art and Beyond. Biosens. Bioelectron. 2019, 131, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Crapnell, R.D.; Dempsey, N.C.; Sigley, E.; Tridente, A.; Banks, C.E. Electroanalytical Point-of-Care Detection of Gold Standard and Emerging Cardiac Biomarkers for Stratification and Monitoring in Intensive Care Medicine—A Review. Microchim. Acta 2022, 189, 142. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, M.; Tu, D.; Tong, L.; Sarwar, M.; Bhimaraj, A.; Li, C.; Coté, G.L.; Di Carlo, D. A Review of Biosensor Technologies for Blood Biomarkers toward Monitoring Cardiovascular Diseases at the Point-of-Care. Biosens. Bioelectron. 2021, 171, 112621. [Google Scholar] [CrossRef] [PubMed]
- Shatunova, E.A.; Korolev, M.A.; Omelchenko, V.O.; Kurochkina, Y.D.; Davydova, A.S.; Venyaminova, A.G.; Vorobyeva, M.A. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020, 8, 527. [Google Scholar] [CrossRef]
- Komarova, N.; Kuznetsov, A. Inside the Black Box: What Makes SELEX Better? Molecules 2019, 24, 3598. [Google Scholar] [CrossRef] [Green Version]
- Elskens, J.P.; Elskens, J.M.; Madder, A. Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int. J. Mol. Sci. 2020, 21, 4522. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the Therapeutics and Diagnostics Pipelines. Theranostics 2018, 8, 4016–4032. [Google Scholar] [CrossRef]
- Ilgu, M.; Nilsen-Hamilton, M. Aptamers in Analytics. Analyst 2016, 141, 1551–1568. [Google Scholar] [CrossRef] [Green Version]
- Predki, P.F.; Mattoon, D.; Bangham, R.; Schweitzer, B.; Michaud, G. Protein Microarrays: A New Tool for Profiling Antibody Cross-Reactivity. Hum. Antibodies 2006, 14, 7–15. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.; Gu, H.; Xia, F.; Zuo, X. Recent Development of Sandwich Assay Based on the Nanobiotechnologies for Proteins, Nucleic Acids, Small Molecules, and Ions. Chem. Rev. 2014, 114, 7631–7677. [Google Scholar] [CrossRef]
- Katrukha, I.A. Human Cardiac Troponin Complex. Structure and Functions. Biochemistry 2013, 78, 1447–1465. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A. Clinical and Diagnostic Value of Highly Sensitive Cardiac Troponins in Arterial Hypertension. Vasc. Health Risk Manag. 2021, 17, 431–443. [Google Scholar] [CrossRef]
- Fathil, M.F.M.; Md Arshad, M.K.; Gopinath, S.C.B.; Hashim, U.; Adzhri, R.; Ayub, R.M.; Ruslinda, A.R.; Nuzaihan M.N., M.; Azman, A.H.; Zaki, M.; et al. Diagnostics on Acute Myocardial Infarction: Cardiac Troponin Biomarkers. Biosens. Bioelectron. 2015, 70, 209–220. [Google Scholar] [CrossRef]
- Patil, H.; Vaidya, O.; Bogart, D. A Review of Causes and Systemic Approach to Cardiac Troponin Elevation. Clin. Cardiol. 2011, 34, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Szeitner, Z.; Lautner, G.; Nagy, S.K.; Gyurcsányi, R.E.; Mészáros, T. A Rational Approach for Generating Cardiac Troponin I Selective Spiegelmers. Chem. Commun. 2014, 50, 6801–6804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaulin, A.M.; Karslyan, L.S.; Bazyuk, E.V.; Nurbaltaeva, D.A.; Duplyakov, D.V. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia 2019, 59, 66–75. [Google Scholar] [CrossRef]
- Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S.-K.; Lee, J.; Shin, J.H.; Ban, C. Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction. Anal. Chem. 2015, 87, 9869–9875. [Google Scholar] [CrossRef]
- Lang, M.; Luo, D.; Yang, G.; Mei, Q.; Feng, G.; Yang, Y.; Liu, Z.; Chen, Q.; Wu, L. An Ultrasensitive Electrochemical Sensing Platform for the Detection of CTnI Based on Aptamer Recognition and Signal Amplification Assisted by TdT. RSC Adv. 2020, 10, 36396–36403. [Google Scholar] [CrossRef]
- Liu, D.; Lu, X.; Yang, Y.; Zhai, Y.; Zhang, J.; Li, L. A Novel Fluorescent Aptasensor for the Highly Sensitive and Selective Detection of Cardiac Troponin I Based on a Graphene Oxide Platform. Anal. Bioanal. Chem. 2018, 410, 4285–4291. [Google Scholar] [CrossRef] [PubMed]
- Chekin, F.; Vasilescu, A.; Jijie, R.; Singh, S.K.; Kurungot, S.; Iancu, M.; Badea, G.; Boukherroub, R.; Szunerits, S. Sensitive Electrochemical Detection of Cardiac Troponin I in Serum and Saliva by Nitrogen-Doped Porous Reduced Graphene Oxide Electrode. Sens. Actuators B Chem. 2018, 262, 180–187. [Google Scholar] [CrossRef]
- Vasudevan, M.; Tai, M.J.Y.; Perumal, V.; Gopinath, S.C.B.; Murthe, S.S.; Ovinis, M.; Mohamed, N.M.; Joshi, N. Highly Sensitive and Selective Acute Myocardial Infarction Detection Using Aptamer-tethered MoS 2 Nanoflower and Screen-printed Electrodes. Biotechnol. Appl. Biochem. 2020, 68, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, Z.; Khajehsharifi, H.; Hashemnia, S.; Solati, Z.; Azimpanah, R.; Shahrokhian, S. Evaluation of Molecular Imprinted Polymerized Methylene Blue/Aptamer as a Novel Hybrid Receptor for Cardiac Troponin I (CTnI) Detection at Glassy Carbon Electrodes Modified with New Biosynthesized ZnONPs. Sens. Actuators B Chem. 2020, 320, 128316. [Google Scholar] [CrossRef]
- Qiao, X.; Li, K.; Xu, J.; Cheng, N.; Sheng, Q.; Cao, W.; Yue, T.; Zheng, J. Novel Electrochemical Sensing Platform for Ultrasensitive Detection of Cardiac Troponin I Based on Aptamer-MoS2 Nanoconjugates. Biosens. Bioelectron. 2018, 113, 142–147. [Google Scholar] [CrossRef]
- Lopa, N.S.; Rahman, M.M.; Ahmed, F.; Ryu, T.; Sutradhar, S.C.; Lei, J.; Kim, J.; Kim, D.H.; Lee, Y.H.; Kim, W. Simple, Low-Cost, Sensitive and Label-Free Aptasensor for the Detection of Cardiac Troponin I Based on a Gold Nanoparticles Modified Titanium Foil. Biosens. Bioelectron. 2019, 126, 381–388. [Google Scholar] [CrossRef]
- Zhang, J.; Lakshmipriya, T.; Gopinath, S.C.B. Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer–Gold Conjugates. ACS Omega 2020, 5, 25899–25905. [Google Scholar] [CrossRef]
- Rezaei, Z.; Ranjbar, B. Ultra-Sensitive, Rapid Gold Nanoparticle-Quantum Dot Plexcitonic Self-Assembled Aptamer-Based Nanobiosensor for the Detection of Human Cardiac Troponin I. Eng. Life Sci. 2017, 17, 165–174. [Google Scholar] [CrossRef]
- Kitte, S.A.; Bushira, F.A.; Soreta, T.R. An Impedimetric Aptamer-Based Sensor for Sensitive and Selective Determination of Cardiac Troponin I. J. Iran. Chem. Soc. 2022, 19, 505–511. [Google Scholar] [CrossRef]
- Jo, H.; Her, J.; Lee, H.; Shim, Y.-B.; Ban, C. Highly Sensitive Amperometric Detection of Cardiac Troponin I Using Sandwich Aptamers and Screen-Printed Carbon Electrodes. Talanta 2017, 165, 442–448. [Google Scholar] [CrossRef]
- Kitte, S.A.; Tafese, T.; Xu, C.; Saqib, M.; Li, H.; Jin, Y. Plasmon-Enhanced Quantum Dots Electrochemiluminescence Aptasensor for Selective and Sensitive Detection of Cardiac Troponin I. Talanta 2021, 221, 121674. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Sun, D.; Tong, Y.; Zhong, Y.; Chen, Z. DNA Nanotetrahedron Linked Dual-Aptamer Based Voltammetric Aptasensor for Cardiac Troponin I Using a Magnetic Metal-Organic Framework as a Label. Microchim. Acta 2019, 186, 374. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Youn, H.; Hwang, A.; Lee, H.; Park, J.Y.; Kim, W.; Yoo, Y.; Ban, C.; Kang, T.; Kim, B. Troponin Aptamer on an Atomically Flat Au Nanoplate Platform for Detection of Cardiac Troponin I. Nanomaterials 2020, 10, 1402. [Google Scholar] [CrossRef] [PubMed]
- Tu, D.; Holderby, A.; Coté, G.L. Aptamer-Based Surface-Enhanced Resonance Raman Scattering Assay on a Paper Fluidic Platform for Detection of Cardiac Troponin I. J. Biomed. Opt. 2020, 25, 097001. [Google Scholar] [CrossRef] [PubMed]
- Dorraj, G.S.; Rassaee, M.J.; Latifi, A.M.; Pishgoo, B.; Tavallaei, M. Selection of DNA Aptamers against Human Cardiac Troponin I for Colorimetric Sensor Based Dot Blot Application. J. Biotechnol. 2015, 208, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Lü, X.; Deng, Y. Aptamer-Based Fluorescent Assay for Sensitive Detection of Cardiac Troponin I. J. BEIJING Inst. Technol. 2020, 29, 45–51. [Google Scholar] [CrossRef]
- Hlukhova, H.; Menger, M.; Offenhäusser, A.; Vitusevich, S. Highly Sensitive Aptamer-Based Method for the Detection of Cardiac Biomolecules on Silicon Dioxide Surfaces. MRS Adv. 2018, 3, 1535–1541. [Google Scholar] [CrossRef]
- Sinha, A.; Gopinathan, P.; Chung, Y.-D.; Lin, H.-Y.; Li, K.-H.; Ma, H.-P.; Huang, P.-C.; Shiesh, S.-C.; Lee, G.-B. An Integrated Microfluidic Platform to Perform Uninterrupted SELEX Cycles to Screen Affinity Reagents Specific to Cardiovascular Biomarkers. Biosens. Bioelectron. 2018, 122, 104–112. [Google Scholar] [CrossRef]
- Gopinathan, P.; Sinha, A.; Chung, Y.-D.; Shiesh, S.-C.; Lee, G.-B. Optimization of an Enzyme Linked DNA Aptamer Assay for Cardiac Troponin I Detection: Synchronous Multiple Sample Analysis on an Integrated Microfluidic Platform. Analyst 2019, 144, 4943–4951. [Google Scholar] [CrossRef]
- Cen, Y.; Wang, Z.; Ke, P.; Zhu, W.; Yuan, Z.; Feng, S.; Chen, Y.; Lin, C.; Liu, X.; Li, Y.; et al. Development of a Novel SsDNA Aptamer Targeting Cardiac Troponin I and Its Clinical Applications. Anal. Bioanal. Chem. 2021, 413, 7043–7053. [Google Scholar] [CrossRef]
- Tolnai, Z.J.; András, J.; Szeitner, Z.; Percze, K.; Simon, L.F.; Gyurcsányi, R.E.; Mészáros, T. Spiegelmer-Based Sandwich Assay for Cardiac Troponin I Detection. Int. J. Mol. Sci. 2020, 21, 4963. [Google Scholar] [CrossRef] [PubMed]
- Szeitner, Z.; Doleschall, A.; Varga, M.; Keltai, K.; Révész, K.; Gyurcsányi, R.E.; Mészáros, T. Spiegelmers as Potential Receptors for CTnI Diagnostics. Anal. Methods 2017, 9, 5091–5093. [Google Scholar] [CrossRef]
- Saremi, M.; Amini, A.; Heydari, H. An Aptasensor for Troponin I Based on the Aggregation-Induced Electrochemiluminescence of Nanoparticles Prepared from a Cyclometallated Iridium(III) Complex and Poly(4-Vinylpyridine-Co-Styrene) Deposited on Nitrogen-Doped Graphene. Microchim. Acta 2019, 186, 254. [Google Scholar] [CrossRef] [PubMed]
- Negahdary, M.; Behjati-Ardakani, M.; Sattarahmady, N.; Heli, H. An Aptamer-Based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction. J. Biomed. Phys. Eng. 2018, 8, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Krasitskaya, V.V.; Goncharova, N.S.; Biriukov, V.V.; Bashmakova, E.E.; Kabilov, M.R.; Baykov, I.K.; Sokolov, A.E.; Frank, L.A. The Ca2+-Regulated Photoprotein Obelin as a Tool for SELEX Monitoring and DNA Aptamer Affinity Evaluation. Photochem. Photobiol. 2020, 96, 1041–1046. [Google Scholar] [CrossRef]
- Lin, C.; Li, L.; Feng, J.; Zhang, Y.; Lin, X.; Guo, H.; Li, R. Aptamer-Modified Magnetic SERS Substrate for Label-Based Determination of Cardiac Troponin I. Microchim. Acta 2022, 189, 22. [Google Scholar] [CrossRef]
- Han, Z.; Shu, J.; Liang, X.; Cui, H. Label-Free Ratiometric Electrochemiluminescence Aptasensor Based on Nanographene Oxide Wrapped Titanium Dioxide Nanoparticles with Potential-Resolved Electrochemiluminescence. Anal. Chem. 2019, 91, 12260–12267. [Google Scholar] [CrossRef]
- Prajesh, R.; Goyal, V.; Kakkar, S.; Sharma, J.; Alam, M.A.; Maurya, R.K.; Bhalla, V.; Agarwal, A. Polysilicon Field Effect Transistor Biosensor for the Detection of Cardiac Troponin-I (CTnI). J. Electrochem. Soc. 2021, 168, 027501. [Google Scholar] [CrossRef]
- Jiang, S.-H.; Jiang, S.-H.; Fan, T.; Liu, L.-J.; Chen, Y.; Zhang, X.-Q.; Sha, Z.-L.; Liu, Y.-L.; Zhang, J.-K. The Detection of CTnI by The Aptamer Biosensor. Prog. Biochem. Biophys. 2014, 41, 916–920. [Google Scholar] [CrossRef]
- Kazemi Asl, S.; Rahimzadegan, M. Recent Advances in the Fabrication of Nano-Aptasensors for the Detection of Troponin as a Main Biomarker of Acute Myocardial Infarction. Crit. Rev. Anal. Chem. 2021, 1–20. [Google Scholar] [CrossRef]
- Lee, T.; Ahn, J.-H.; Choi, J.; Lee, Y.; Kim, J.-M.; Park, C.; Jang, H.; Kim, T.-H.; Lee, M.-H. Development of the Troponin Detection System Based on the Nanostructure. Micromachines 2019, 10, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Luo, Z.; Lu, J.; Zhang, S.; Che, T.; Chen, Z.; Zhang, L. Electrochemical Dual-Aptamer-Based Biosensor for Nonenzymatic Detection of Cardiac Troponin I by Nanohybrid Electrocatalysts Labeling Combined with DNA Nanotetrahedron Structure. Biosens. Bioelectron. 2019, 134, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Negahdary, M. Aptamers in Nanostructure-Based Electrochemical Biosensors for Cardiac Biomarkers and Cancer Biomarkers: A Review. Biosens. Bioelectron. 2020, 152, 112018. [Google Scholar] [CrossRef] [PubMed]
- Rubini Gimenez, M.; Twerenbold, R.; Reichlin, T.; Wildi, K.; Haaf, P.; Schaefer, M.; Zellweger, C.; Moehring, B.; Stallone, F.; Sou, S.M.; et al. Direct Comparison of High-Sensitivity-Cardiac Troponin I vs. T for the Early Diagnosis of Acute Myocardial Infarction. Eur. Heart J. 2014, 35, 2303–2311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaii-Dizgah, I.; Riahi, E. Salivary High-Sensitivity Cardiac Troponin T Levels in Patients with Acute Myocardial Infarction. Oral Dis. 2013, 19, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Negahdary, M.; Behjati-Ardakani, M.; Heli, H. An Electrochemical Troponin T Aptasensor Based on the Use of a Macroporous Gold Nanostructure. Microchim. Acta 2019, 186, 377. [Google Scholar] [CrossRef] [PubMed]
- Negahdary, M.; Behjati-Ardakani, M.; Heli, H.; Sattarahmady, N. A Cardiac Troponin T Biosensor Based on Aptamer Self-Assembling on Gold. Int. J. Mol. Cell. Med. 2019, 8, 271–283. [Google Scholar] [CrossRef]
- Torrini, F.; Palladino, P.; Brittoli, A.; Baldoneschi, V.; Minunni, M.; Scarano, S. Characterization of Troponin T Binding Aptamers for an Innovative Enzyme-Linked Oligonucleotide Assay (ELONA). Anal. Bioanal. Chem. 2019, 411, 7709–7716. [Google Scholar] [CrossRef]
- Sharma, A.; Jang, J. Flexible Electrical Aptasensor Using Dielectrophoretic Assembly of Graphene Oxide and Its Subsequent Reduction for Cardiac Biomarker Detection. Sci. Rep. 2019, 9, 5970. [Google Scholar] [CrossRef] [Green Version]
- Ara, M.N.; Hyodo, M.; Ohga, N.; Hida, K.; Harashima, H. Development of a Novel DNA Aptamer Ligand Targeting to Primary Cultured Tumor Endothelial Cells by a Cell-Based SELEX Method. PLoS ONE 2012, 7, e50174. [Google Scholar] [CrossRef] [Green Version]
- Ara, M.N.; Hyodo, M.; Ohga, N.; Akiyama, K.; Hida, K.; Hida, Y.; Shinohara, N.; Harashima, H. Identification and Expression of Troponin T, a New Marker on the Surface of Cultured Tumor Endothelial Cells by Aptamer Ligand. Cancer Med. 2014, 3, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, Y.; Sun, L.; Qi, H.; Gao, Q.; Zhang, C. Electrogenerated Chemiluminescence Biosensor Array for the Detection of Multiple AMI Biomarkers. Sens. Actuators B Chem. 2018, 257, 60–67. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Kandpal, M.; Surya, S.G. Characterization and Detection of Cardiac Troponin-T Protein by Using ‘Aptamer’ Mediated Biofunctionalization of ZnO Thin-Film Transistor. Appl. Surf. Sci. 2019, 466, 874–881. [Google Scholar] [CrossRef]
- Surya, S.G.; Majhi, S.M.; Agarwal, D.K.; Lahcen, A.A.; Yuvaraja, S.; Chappanda, K.N.; Salama, K.N. A Label-Free Aptasensor FET Based on Au Nanoparticle Decorated Co3O4 Nanorods and a SWCNT Layer for Detection of Cardiac Troponin T Protein. J. Mater. Chem. B 2020, 8, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Biosensors for Cardiac Biomarkers Detection: A Review. Sens. Actuators B Chem. 2012, 171, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Clinical Chemistry, Immunology and Laboratory Quality Control; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780124078215.
- Lewandrowski, K.; Chen, A.; Januzzi, J. Cardiac Markers for Myocardial Infarction. Pathol. Patterns Rev. 2002, 118, S93–S99. [Google Scholar] [CrossRef]
- Mohamed, R.; Campbell, J.; Cooper-White, J.; Dimeski, G.; Punyadeera, C. The Impact of Saliva Collection and Processing Methods on CRP, IgE, and Myoglobin Immunoassays. Clin. Transl. Med. 2012, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Floriano, P.N.; Christodoulides, N.; Miller, C.S.; Ebersole, J.L.; Spertus, J.; Rose, B.G.; Kinane, D.F.; Novak, M.J.; Steinhubl, S.; Acosta, S.; et al. Use of Saliva-Based Nano-Biochip Tests for Acute Myocardial Infarction at the Point of Care: A Feasibility Study. Clin. Chem. 2009, 55, 1530–1538. [Google Scholar] [CrossRef] [Green Version]
- Abdul Rehman, S.; Khurshid, Z.; Hussain Niazi, F.; Naseem, M.; Al Waddani, H.; Sahibzada, H.; Sannam Khan, R. Role of Salivary Biomarkers in Detection of Cardiovascular Diseases (CVD). Proteomes 2017, 5, 21. [Google Scholar] [CrossRef]
- Rodriíguez-Capote, K.; Balion, C.M.; Hill, S.A.; Cleve, R.; Yang, L.; El Sharif, A. Utility of Urine Myoglobin for the Prediction of Acute Renal Failure in Patients with Suspected Rhabdomyolysis: A Systematic Review. Clin. Chem. 2009, 55, 2190–2197. [Google Scholar] [CrossRef] [Green Version]
- Loun, B.; Astles, R.; Copeland, K.R.; Sedor, F.A. Adaptation of a Quantitative Immunoassay for Urine Myoglobin: Predictor in Detecting Renal Dysfunction. Am. J. Clin. Pathol. 1996, 105, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, A.H.; Laios, I.; Green, S.; Gornet, T.G.; Wong, S.S.; Parmley, L.; Tonnesen, A.S.; Plaisier, B.; Orlando, R. Immunoassays for Serum and Urine Myoglobin: Myoglobin Clearance Assessed as a Risk Factor for Acute Renal Failure. Clin. Chem. 1994, 40, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, W.; Xing, Y.; Yang, X.; Wang, K.; Jiang, R.; Wang, P.; Zhao, Q. Screening of DNA Aptamers against Myoglobin Using a Positive and Negative Selection Units Integrated Microfluidic Chip and Its Biosensing Application. Anal. Chem. 2014, 86, 6572–6579. [Google Scholar] [CrossRef]
- Asl, S.K.; Rahimzadegan, M. The Recent Progress in the Early Diagnosis of Acute Myocardial Infarction Based on Myoglobin Biomarker: Nano-Aptasensors Approaches. J. Pharm. Biomed. Anal. 2022, 211, 114624. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, L.; Yang, X.; Wang, K.; Chen, N.; Zhou, C.; Luo, B.; Du, S. Evaluation of Medicine Effects on the Interaction of Myoglobin and Its Aptamer or Antibody Using Atomic Force Microscopy. Anal. Chem. 2015, 87, 2242–2248. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, F.; Yang, X.; Wang, K.; Wang, H.; Deng, X. Sensitive Point-of-Care Monitoring of Cardiac Biomarker Myoglobin Using Aptamer and Ubiquitous Personal Glucose Meter. Biosens. Bioelectron. 2015, 64, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, Y.; Zou, Q.; Liao, G.; Liu, X.; Zou, L.; Yang, X.; Wang, Q.; Wang, K. Engineering and Application of a Myoglobin Binding Split Aptamer. Anal. Chem. 2020, 92, 14576–14581. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bhardwaj, J.; Jang, J. Label-Free, Highly Sensitive Electrochemical Aptasensors Using Polymer-Modified Reduced Graphene Oxide for Cardiac Biomarker Detection. ACS Omega 2020, 5, 3924–3931. [Google Scholar] [CrossRef]
- Kumar, V.; Shorie, M.; Ganguli, A.K.; Sabherwal, P. Graphene-CNT Nanohybrid Aptasensor for Label Free Detection of Cardiac Biomarker Myoglobin. Biosens. Bioelectron. 2015, 72, 56–60. [Google Scholar] [CrossRef]
- Shorie, M.; Kumar, V.; Kaur, H.; Singh, K.; Tomer, V.K.; Sabherwal, P. Plasmonic DNA Hotspots Made from Tungsten Disulfide Nanosheets and Gold Nanoparticles for Ultrasensitive Aptamer-Based SERS Detection of Myoglobin. Microchim. Acta 2018, 185, 158. [Google Scholar] [CrossRef]
- Kumar, V.; Brent, J.R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A.G.; Lewis, E.A.; Rooney, A.P.; Nguyen, L.; Zhong, X.L.; et al. Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. ACS Appl. Mater. Interfaces 2016, 8, 22860–22868. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ran, F.; Chen, Q.; Luo, D.; Ma, W.; Han, T.; Wang, C.; Wang, C. A Fluorescent Biosensor for Cardiac Biomarker Myoglobin Detection Based on Carbon Dots and Deoxyribonuclease I-Aided Target Recycling Signal Amplification. RSC Adv. 2019, 9, 4463–4468. [Google Scholar] [CrossRef] [Green Version]
- Pur, M.R.K.; Hosseini, M.; Faridbod, F.; Ganjali, M.R. Highly Sensitive Label-Free Electrochemiluminescence Aptasensor for Early Detection of Myoglobin, a Biomarker for Myocardial Infarction. Microchim. Acta 2017, 184, 3529–3537. [Google Scholar] [CrossRef]
- Cabaniss, D. Creatine Kinase. In Clinical Methods: The History, Physical, and Laboratory Examinations; Walker, H., Hall, W., Hurst, J., Eds.; Butterworth Publishers: Boston, MA, USA, 1990; ISBN 040990077X. [Google Scholar]
- Apple, F.S.; Saenger, A.K. The State of Cardiac Troponin Assays: Looking Bright and Moving in the Right Direction. Clin. Chem. 2013, 59, 1014–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, G.; Baweja, P.S. Creatine Kinase–MB. Am. J. Clin. Pathol. 2014, 141, 415–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collinson, P.O.; van Dieijen-Visser, M.P.; Pulkki, K.; Hammerer-Lercher, A.; Suvisaari, J.; Ravkilde, J.; Stavljenic-Rukavina, A.; Baum, H.; Laitinen, P. Evidence-Based Laboratory Medicine: How Well Do Laboratories Follow Recommendations and Guidelines? The Cardiac Marker Guideline Uptake in Europe (CARMAGUE) Study. Clin. Chem. 2012, 58, 305–306. [Google Scholar] [CrossRef]
- Lopes, R.D.; Lokhnygina, Y.; Hasselblad, V.; Newby, K.L.; Yow, E.; Granger, C.B.; Armstrong, P.W.; Hochman, J.S.; Mills, J.S.; Ruzyllo, W.; et al. Methods of Creatine Kinase-MB Analysis to Predict Mortality in Patients with Myocardial Infarction Treated with Reperfusion Therapy. Trials 2013, 14, 123. [Google Scholar] [CrossRef] [Green Version]
- Mirzaii-Dizgah, I.; Hejazi, S.F.; Riahi, E.; Salehi, M.M. Saliva-Based Creatine Kinase MB Measurement as a Potential Point-of-Care Testing for Detection of Myocardial Infarction. Clin. Oral Investig. 2012, 16, 775–779. [Google Scholar] [CrossRef]
- Foley, J.D.; Sneed, J.D.; Steinhubl, S.R.; Kolasa, J.R.; Ebersole, J.L.; Lin, Y.; Kryscio, R.J.; McDevitt, J.T.; Campbell, C.L.; Miller, C.S. Salivary Biomarkers Associated with Myocardial Necrosis: Results from an Alcohol Septal Ablation Model. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 616–623. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.S.; Foley, J.D.; Floriano, P.N.; Christodoulides, N.; Ebersole, J.L.; Campbell, C.L.; Bailey, A.L.; Rose, B.G.; Kinane, D.F.; Novak, M.J.; et al. Utility of Salivary Biomarkers for Demonstrating Acute Myocardial Infarction. J. Dent. Res. 2014, 93, 72S–79S. [Google Scholar] [CrossRef]
- Brandt, D.R.; Gates, R.C.; Eng, K.K.; Forsythe, C.M.; Korom, G.K.; Nitro, A.S.; Koffler, P.A.; Ogunro, E.A. Quantifying the MB Isoenzyme of Creatine Kinase with the Abbott “IMx” Immunoassay Analyzer. Clin. Chem. 1990, 36, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, W.; Waldenström, J. Creatine Kinase B-Subunit Activity in Serum after Immunoinhibition of M-Subunit Activity. Clin. Chem. 1979, 25, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lv, X.; Feng, W.; Li, X.; Li, K.; Deng, Y. Aptamer-Based Fluorometric Lateral Flow Assay for Creatine Kinase MB. Microchim. Acta 2018, 185, 364. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Zhao, X.; Zhang, J.; Peng, Y.; Bai, J.; Li, S.; Han, D.; Ren, S.; Qin, K.; et al. Target-Responsive DNA Hydrogel with Microfluidic Chip Smart Readout for Quantitative Point-of-Care Testing of Creatine Kinase MB. Talanta 2022, 243, 123338. [Google Scholar] [CrossRef]
- Kakoti, A.; Goswami, P. Heart Type Fatty Acid Binding Protein: Structure, Function and Biosensing Applications for Early Detection of Myocardial Infarction. Biosens. Bioelectron. 2013, 43, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Binas, B.; Danneberg, H.; Mcwhir, J.; Mullins, L.; Clark, A.J. Requirement for the Heart-type Fatty Acid Binding Protein in Cardiac Fatty Acid Utilization. FASEB J. 1999, 13, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Alhadi, H.A.; Fox, K.A.A. Do We Need Additional Markers of Myocyte Necrosis: The Potential Value of Heart Fatty-Acid-Binding Protein. QJM 2004, 97, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Kakoti, A.; Goswami, P. Multifaceted Analyses of the Interactions between Human Heart Type Fatty Acid Binding Protein and Its Specific Aptamers. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3289–3299. [Google Scholar] [CrossRef]
- Rezar, R.; Jirak, P.; Gschwandtner, M.; Derler, R.; Felder, T.K.; Haslinger, M.; Kopp, K.; Seelmaier, C.; Granitz, C.; Hoppe, U.C.; et al. Heart-Type Fatty Acid-Binding Protein (H-FABP) and Its Role as a Biomarker in Heart Failure: What Do We Know So Far? J. Clin. Med. 2020, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Hirota, Y.; Sohmiya, K.-I.; Nishimura, S.; Kawamura, K. Serum and Urinary Human Heart Fatty Acid-Binding Protein in Acute Myocardial Infarction. Clin. Biochem. 1991, 24, 195–201. [Google Scholar] [CrossRef]
- Tani, K.; Shirakabe, A.; Kobayashi, N.; Okazaki, H.; Matsushita, M.; Shibata, Y.; Shigihara, S.; Sawatani, T.; Otsuka, Y.; Takayasu, T.; et al. The Prognostic Impact of the Serum Heart-Type Fatty Acid-Binding Protein Level in Patients with Sepsis Who Were Admitted to the Non-Surgical Intensive-Care Unit. Heart Vessels 2021, 36, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.; Shadjou, N.; Eskandani, M.; de la Guardia, M.; Omidinia, E. Electrochemical Nano-Immunosensing of Effective Cardiac Biomarkers for Acute Myocardial Infarction. TrAC Trends Anal. Chem. 2013, 49, 20–30. [Google Scholar] [CrossRef]
- Dahiya, T.; Yadav, S.; Yadav, N.; Mann, A.; Sharma, M.; Rana, J.S. Monitoring of BNP Cardiac Biomarker with Major Emphasis on Biosensing Methods: A Review. Sens. Int. 2021, 2, 100103. [Google Scholar] [CrossRef]
- Clerico, A.; Passino, C.; Franzini, M.; Emdin, M. Cardiac Biomarker Testing in the Clinical Laboratory: Where Do We Stand? General Overview of the Methodology with Special Emphasis on Natriuretic Peptides. Clin. Chim. Acta 2015, 443, 17–24. [Google Scholar] [CrossRef]
- Goryacheva, O.A.; Ponomaryova, T.D.; Drozd, D.D.; Kokorina, A.A.; Rusanova, T.Y.; Mishra, P.K.; Goryacheva, I.Y. Heart Failure Biomarkers BNP and NT-ProBNP Detection Using Optical Labels. TrAC Trends Anal. Chem. 2022, 146, 116477. [Google Scholar] [CrossRef]
- Gachpazan, M.; Mohammadinejad, A.; Saeidinia, A.; Rahimi, H.R.; Ghayour-Mobarhan, M.; Vakilian, F.; Rezayi, M. A Review of Biosensors for the Detection of B-Type Natriuretic Peptide as an Important Cardiovascular Biomarker. Anal. Bioanal. Chem. 2021, 413, 5949–5967. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Mair, J.; Mueller, C.; Huber, K.; Weber, M.; Plebani, M.; Hasin, Y.; Biasucci, L.M.; Giannitsis, E.; Lindahl, B.; et al. Recommendations for the Use of Natriuretic Peptides in Acute Cardiac Care: A Position Statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur. Heart J. 2012, 33, 2001–2006. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, I.; Sharma, N.; Vasilescu, A.; Iancu, M.; Badea, G.; Boukherroub, R.; Ogale, S.; Szunerits, S. Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS Omega 2018, 3, 12010–12018. [Google Scholar] [CrossRef] [Green Version]
- Foo, J.Y.Y.; Wan, Y.; Kostner, K.; Arivalagan, A.; Atherton, J.; Cooper-White, J.; Dimeski, G.; Punyadeera, C. NT-ProBNP Levels in Saliva and Its Clinical Relevance to Heart Failure. PLoS ONE 2012, 7, e48452. [Google Scholar] [CrossRef] [Green Version]
- Joharimoghadam, A.; Tajdini, M.; Bozorgi, A. Salivary B-Type Natriuretic Peptide: A New Method for Heart Failure Diagnosis and Follow-Up. Kardiol. Pol. 2017, 75, 71–77. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Petersen, C.; Salvo, P.; Ghimenti, S.; Franzini, M.; Biagini, D.; Hangouët, M.; Trivella, M.G.; Di Francesco, F.; Paolicchi, A.; et al. Determination and Stability of N-Terminal pro-Brain Natriuretic Peptide in Saliva Samples for Monitoring Heart Failure. Sci. Rep. 2021, 11, 13088. [Google Scholar] [CrossRef]
- Lin, M.-C.; Nawarak, J.; Chen, T.-Y.; Tsai, H.-Y.; Hsieh, J.-F.; Sinchaikul, S.; Chen, S.-T. Rapid Detection of Natriuretic Peptides by a Microfluidic LabChip Analyzer with DNA Aptamers: Application of Natriuretic Peptide Detection. Biomicrofluidics 2009, 3, 034101. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Li, H.; Xiang, Y.; Koh, K.; Hu, X.; Chen, H. Pyridinium Porphyrins and AuNPs Mediated Bionetworks as SPR Signal Amplification Tags for the Ultrasensitive Assay of Brain Natriuretic Peptide. Microchim. Acta 2020, 187, 327. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.R.; Wark, A.W.; Baek, S.H.; Chung, B.H.; Lee, H.J. Ultrasensitive and Ultrawide Range Detection of a Cardiac Biomarker on a Surface Plasmon Resonance Platform. Anal. Chem. 2014, 86, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Tu, A.; Shang, J.; Wang, Y.; Li, D.; Liu, L.; Gan, Z.; Yin, Y.; Zhang, P. Detection of B-Type Natriuretic Peptide by Establishing a Low-Cost and Replicable Fluorescence Resonance Energy Transfer Platform. Microchim. Acta 2020, 187, 331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhu, Z.-Z.; Huang, X.; Hu, X.; Chen, H. Magnetic Gold Nanocomposite and Aptamer Assisted Triple Recognition Electrochemical Immunoassay for Determination of Brain Natriuretic Peptide. Microchim. Acta 2020, 187, 231. [Google Scholar] [CrossRef]
- Bruno, J.G.; Richarte, A.M.; Phillips, T. Preliminary Development of a DNA Aptamer-Magnetic Bead Capture Electrochemiluminescence Sandwich Assay for Brain Natriuretic Peptide. Microchem. J. 2014, 115, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, J.; Chen, Y.; Xue, F.; Teng, J.; Cao, J.; Lu, C.; Chen, W. Magnetic Microparticle-Based SELEX Process for the Identification of Highly Specific Aptamers of Heart Marker--Brain Natriuretic Peptide. Microchim. Acta 2015, 182, 331–339. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, N.; Shen, L.; Yu, L.; Huang, L.-Y.; Wang, A.-J.; Shan, D.; Yuan, P.-X.; Feng, J.-J. The Enhanced Photoelectrochemical Platform Constructed by N-Doped ZnO Nanopolyhedrons and Porphyrin for Ultrasensitive Detection of Brain Natriuretic Peptide. Anal. Chim. Acta 2021, 1183, 338870. [Google Scholar] [CrossRef]
- Sinha, A.; Gopinathan, P.; Chung, Y.-D.; Shiesh, S.-C.; Lee, G.-B. Simultaneous Detection of Multiple NT-ProBNP Clinical Samples Utilizing an Aptamer-Based Sandwich Assay on an Integrated Microfluidic System. Lab Chip 2019, 19, 1676–1685. [Google Scholar] [CrossRef]
- Voors, A.A.; Kremer, D.; Geven, C.; ter Maaten, J.M.; Struck, J.; Bergmann, A.; Pickkers, P.; Metra, M.; Mebazaa, A.; Düngen, H.-D.; et al. Adrenomedullin in Heart Failure: Pathophysiology and Therapeutic Application. Eur. J. Heart Fail. 2019, 21, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Lopes, D.; Menezes Falcão, L. Mid-Regional pro-Adrenomedullin and ST2 in Heart Failure: Contributions to Diagnosis and Prognosis. Rev. Port. Cardiol. 2017, 36, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Kuriyama, N.; Suzuki, Y.; Saito, S.; Tanaka, R.; Iwao, M.; Tanaka, M.; Maki, T.; Itoh, H.; Ihara, M.; et al. Mid-Regional pro-Adrenomedullin Is a Novel Biomarker for Arterial Stiffness as the Criterion for Vascular Failure in a Cross-Sectional Study. Sci. Rep. 2021, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Önal, U.; Valenzuela-Sánchez, F.; Vandana, K.; Rello, J. Mid-Regional Pro-Adrenomedullin (MR-ProADM) as a Biomarker for Sepsis and Septic Shock: Narrative Review. Healthcare 2018, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- Pourafkari, L.; Tajlil, A.; Nader, N.D. Biomarkers in Diagnosing and Treatment of Acute Heart Failure. Biomark. Med. 2019, 13, 1235–1249. [Google Scholar] [CrossRef]
- Lenka, Š.; Špinarová, M.; Goldbergová, M.P.; Špinar, J.; Pařenica, J.; Ludka, O.; Lábr, K.; Malek, F.; Ostadal, P.; Vondrakova, D.; et al. Prognostic Impact of Copeptin and Mid-Regional Pro-Adrenomedullin in Chronic Heart Failure with Regard to Comorbidities. J. Cardiovasc. Dis. Diagn. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Xue, Y.; Taub, P.; Iqbal, N.; Fard, A.; Clopton, P.; Maisel, A. Mid-Region pro-Adrenomedullin Adds Predictive Value to Clinical Predictors and Framingham Risk Score for Long-Term Mortality in Stable Outpatients with Heart Failure. Eur. J. Heart Fail. 2013, 15, 1343–1349. [Google Scholar] [CrossRef]
- Moore, N.; Williams, R.; Mori, M.; Bertolusso, B.; Vernet, G.; Lynch, J.; Philipson, P.; Ledgerwood, T.; Kidd, S.P.; Thomas, C.; et al. Mid-Regional Proadrenomedullin (MR-ProADM), C-Reactive Protein (CRP) and Other Biomarkers in the Early Identification of Disease Progression in Patients with COVID-19 in the Acute NHS Setting. J. Clin. Pathol. 2022, jclinpath-2021-207750. [Google Scholar] [CrossRef]
- Tzikas, S.; Keller, T.; Ojeda, F.M.; Zeller, T.; Wild, P.S.; Lubos, E.; Kunde, J.; Baldus, S.; Bickel, C.; Lackner, K.J.; et al. MR-ProANP and MR-ProADM for Risk Stratification of Patients with Acute Chest Pain. Heart 2013, 99, 388–395. [Google Scholar] [CrossRef]
- Saito, Y. Roles of Atrial Natriuretic Peptide and Its Therapeutic Use. J. Cardiol. 2010, 56, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic Peptides: Their Structures, Receptors, Physiologic Functions and Therapeutic Applications. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 341–366. [Google Scholar]
- Nagai-Okatani, C.; Kangawa, K.; Minamino, N. Three Molecular Forms of Atrial Natriuretic Peptides: Quantitative Analysis and Biological Characterization. J. Pept. Sci. 2017, 23, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Gohar, A.; Rutten, F.H.; Ruijter, H.; Kelder, J.C.; Haehling, S.; Anker, S.D.; Möckel, M.; Hoes, A.W. Mid-regional Pro-atrial Natriuretic Peptide for the Early Detection of Non-acute Heart Failure. Eur. J. Heart Fail. 2019, 21, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Yagmur, E.; Sckaer, J.H.; Koek, G.H.; Weiskirchen, R.; Trautwein, C.; Koch, A.; Tacke, F. Elevated MR-ProANP Plasma Concentrations Are Associated with Sepsis and Predict Mortality in Critically Ill Patients. J. Transl. Med. 2019, 17, 415. [Google Scholar] [CrossRef]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.F.; Kozhuharov, N.; Coats, A.J.S.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology Practical Guidance on the Use of Natriuretic Peptide Concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef] [Green Version]
- Maisel, A.; Mueller, C.; Nowak, R.; Peacock, W.F.; Landsberg, J.W.; Ponikowski, P.; Mockel, M.; Hogan, C.; Wu, A.H.B.; Richards, M.; et al. Mid-Region Pro-Hormone Markers for Diagnosis and Prognosis in Acute Dyspnea. J. Am. Coll. Cardiol. 2010, 55, 2062–2076. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Y.; Zhang, F.; Zhang, C.; Zheng, L.-R.; Yang, J. The Biomarkers for Acute Myocardial Infarction and Heart Failure. Biomed Res. Int. 2020, 2020, 2018035. [Google Scholar] [CrossRef] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Lindberg, S.; Jensen, J.S.; Pedersen, S.H.; Galatius, S.; Goetze, J.P.; Mogelvang, R. MR-ProANP Improves Prediction of Mortality and Cardiovascular Events in Patients with STEMI. Eur. J. Prev. Cardiol. 2015, 22, 693–700. [Google Scholar] [CrossRef]
- Katan, M.; Fluri, F.; Schuetz, P.; Morgenthaler, N.G.; Zweifel, C.; Bingisser, R.; Kappos, L.; Steck, A.; Engelter, S.T.; Müller, B.; et al. Midregional Pro-Atrial Natriuretic Peptide and Outcome in Patients With Acute Ischemic Stroke. J. Am. Coll. Cardiol. 2010, 56, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Bolignano, D.; Cabassi, A.; Fiaccadori, E.; Ghigo, E.; Pasquali, R.; Peracino, A.; Peri, A.; Plebani, M.; Santoro, A.; Settanni, F.; et al. Copeptin (CTproAVP), a New Tool for Understanding the Role of Vasopressin in Pathophysiology. Clin. Chem. Lab. Med. 2014, 52, 1447–1456. [Google Scholar] [CrossRef]
- Chiotoroiu, A.-L.; Buicu, C.-F.; Neagu, C.; Benedek, T. Recent Advances in Biomarker Discovery—from Serum to Imaging-Based Biomarkers for a Complex Assessment of Heart Failure Patients. J. Interdiscip. Med. 2016, 1, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Morgenthaler, N.G.; Struck, J.; Jochberger, S.; Dünser, M.W. Copeptin: Clinical Use of a New Biomarker. Trends Endocrinol. Metab. 2008, 19, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Acher, R.; Chauvet, J.; Rouille, Y. Dynamic Processing of Neuropeptides. J. Mol. Neurosci. 2002, 18, 223–228. [Google Scholar] [CrossRef]
- Reichlin, T.; Hochholzer, W.; Stelzig, C.; Laule, K.; Freidank, H.; Morgenthaler, N.G.; Bergmann, A.; Potocki, M.; Noveanu, M.; Breidthardt, T.; et al. Incremental Value of Copeptin for Rapid Rule Out of Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2009, 54, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Pop, C.; Crişan, G.C.; Loghin, F.; Mogoşan, C.I. Advances in the Detection and Quantification of Candidate and Established Biomarkers in Heart Failure. Rom. Rev. Lab. Med. 2013, 21, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Morgenthaler, N.G. Assay for the Measurement of Copeptin, a Stable Peptide Derived from the Precursor of Vasopressin. Clin. Chem. 2006, 52, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Haghighatbin, M.A.; Shen, W.; Cui, H. Functionalized Polydopamine Nanospheres with Chemiluminescence and Immunoactivity for Label-Free Copeptin Immunosensing. ACS Appl. Nano Mater. 2020, 3, 4681–4689. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Chen, J.-S.; Zhou, F.; Liu, Q.-C.; Chen, G.; Zhang, J.-M. Detection of Copeptin in Peripheral Blood of Patients with Aneurysmal Subarachnoid Hemorrhage. Crit. Care 2011, 15, R288. [Google Scholar] [CrossRef] [Green Version]
- Staub, D.; Morgenthaler, N.G.; Buser, C.; Breidthardt, T.; Potocki, M.; Noveanu, M.; Reichlin, T.; Bergmann, A.; Mueller, C. Use of Copeptin in the Detection of Myocardial Ischemia. Clin. Chim. Acta 2009, 399, 69–73. [Google Scholar] [CrossRef]
- Struck, J.; Morgenthaler, N.G.; Bergmann, A. Copeptin, a Stable Peptide Derived from the Vasopressin Precursor, Is Elevated in Serum of Sepsis Patients. Peptides 2005, 26, 2500–2504. [Google Scholar] [CrossRef]
- Jochberger, S.; Morgenthaler, N.G.; Mayr, V.D.; Luckner, G.; Wenzel, V.; Ulmer, H.; Schwarz, S.; Hasibeder, W.R.; Friesenecker, B.E.; Dünser, M.W. Copeptin and Arginine Vasopressin Concentrations in Critically Ill Patients. J. Clin. Endocrinol. Metab. 2006, 91, 4381–4386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, K.P.; Liu, X.H.; Schumacher, T.N.; Lin, H.Y.; Ausiello, D.A.; Kim, P.S.; Bartel, D.P. Bioactive and Nuclease-Resistant L-DNA Ligand of Vasopressin. Proc. Natl. Acad. Sci. USA 1997, 94, 11285–11290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, R.J.; Hammacher, A.; Smith, D.K.; Matthews, J.M.; Ward, L.D. Interleukin-6: Structure-Function Relationships. Protein Sci. 1997, 6, 929–955. [Google Scholar] [CrossRef] [PubMed]
- Lotz, M. Interleukin-6: A Comprehensive Review. In Cancer Treatment and Research; Springer: Boston, MA, USA, 1995; pp. 209–233. [Google Scholar]
- Haegeman, G.; Content, J.; Volckaert, G.; Derynck, R.; Tavernier, J.; Fiers, W. Structural Analysis of the Sequence Coding for an Inducible 26-KDa Protein in Human Fibroblasts. Eur. J. Biochem. 1986, 159, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Uciechowski, P.; Dempke, W.C.M. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology 2020, 98, 131–137. [Google Scholar] [CrossRef]
- Abeywardena, M.; Leifert, W.; Warnes, K.; Varghese, J.; Head, R. Cardiovascular Biology of Interleukin-6. Curr. Pharm. Des. 2009, 15, 1809–1821. [Google Scholar] [CrossRef] [Green Version]
- Kanda, T.; Takahashi, T. Interleukin-6 and Cardiovascular Diseases. Jpn. Heart J. 2004, 45, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Deswal, A.; Petersen, N.J.; Feldman, A.M.; Young, J.B.; White, B.G.; Mann, D.L. Cytokines and Cytokine Receptors in Advanced Heart Failure. Circulation 2001, 103, 2055–2059. [Google Scholar] [CrossRef] [Green Version]
- Geppert, A.; Dorninger, A.; Delle-Karth, G.; Zorn, G.; Heinz, G.; Huber, K. Plasma Concentrations of Interleukin-6, Organ Failure, Vasopressor Support, and Successful Coronary Revascularization in Predicting 30-Day Mortality of Patients with Cardiogenic Shock Complicating Acute Myocardial Infarction. Crit. Care Med. 2006, 34, 2035–2042. [Google Scholar] [CrossRef]
- Khozeymeh, F.; Mortazavi, M.; Khalighinejad, N.; Akhavankhaleghi, M.; Alikhani, M. Salivary Levels of Interleukin-6 and Tumor Necrosis Factor-α in Patients Undergoing Hemodialysis. Dent. Res. J. 2016, 13, 69. [Google Scholar] [CrossRef]
- Aleksandra Nielsen, A.; Nederby Nielsen, J.; Schmedes, A.; Brandslund, I.; Hey, H. Saliva Interleukin-6 in Patients with Inflammatory Bowel Disease. Scand. J. Gastroenterol. 2005, 40, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.A.; Ahmed, A.S.; Durand, R.; Tran, S.D. Saliva as a Diagnostic Tool for Oral and Systemic Diseases. J. Oral Biol. Craniofacial Res. 2016, 6, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, K.; Rao, V.; Hanberg, J.; Mahoney, D.; Chunara, Z.; Thomas, D.; Hodson, D.; Tarleton, C.; Chen, M.; Jacoby, D.; et al. Inflammation and Cardio-Renal Interactions in Heart Failure: A Potential Role for Interleukin-6. J. Card. Fail. 2017, 23, S25. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Jeoung, Y.H.; Lee, S.J.; Choi, I.; Pyun, K.H.; Lee, Y. In Vitro Selection of DNA Aptamers Binding to the Recombinant Human Interleukin-6. Mol. Cells 1995, 5, 555–562. [Google Scholar]
- Tertis, M.; Leva, P.I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Impedimetric Aptasensor for the Label-Free and Selective Detection of Interleukin-6 for Colorectal Cancer Screening. Biosens. Bioelectron. 2019, 137, 123–132. [Google Scholar] [CrossRef]
- Spiridonova, V.A.; Novikova, T.M.; Snigirev, O.V. Obtaining DNA Aptamers to Human Interleukin-6 for Biomagnetic Immunoassay Nanosensors. Moscow Univ. Phys. Bull. 2016, 71, 135–138. [Google Scholar] [CrossRef]
- Tertiş, M.; Ciui, B.; Suciu, M.; Săndulescu, R.; Cristea, C. Label-Free Electrochemical Aptasensor Based on Gold and Polypyrrole Nanoparticles for Interleukin 6 Detection. Electrochim. Acta 2017, 258, 1208–1218. [Google Scholar] [CrossRef]
- Chen, N.; Yang, H.; Li, Q.; Song, L.; Gopinath, S.C.B.; Wu, D. An Interdigitated Aptasensor to Detect Interleukin-6 for Diagnosing Rheumatoid Arthritis in Serum. Biotechnol. Appl. Biochem. 2020, 68, 1479–1485. [Google Scholar] [CrossRef]
- Rhinehardt, K.L.; Vance, S.A.; Mohan, R.V.; Sandros, M.; Srinivas, G. Molecular Modeling and SPRi Investigations of Interleukin 6 (IL6) Protein and DNA Aptamers. J. Biomol. Struct. Dyn. 2018, 36, 1934–1947. [Google Scholar] [CrossRef]
- Muhammad, M.; Shao, C.; Huang, Q. Aptamer-Functionalized Au Nanoparticles Array as the Effective SERS Biosensor for Label-Free Detection of Interleukin-6 in Serum. Sens. Actuators B Chem. 2021, 334, 129607. [Google Scholar] [CrossRef]
- Giorgi-Coll, S.; Marín, M.J.; Sule, O.; Hutchinson, P.J.; Carpenter, K.L.H. Aptamer-Modified Gold Nanoparticles for Rapid Aggregation-Based Detection of Inflammation: An Optical Assay for Interleukin-6. Microchim. Acta 2020, 187, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, A.K.; Norwood, N.; Marks, H.L.; Schechinger, M.; Jackson, G.W.; Graham, D.; Coté, G.L. Aptamer Conjugated Silver Nanoparticles for the Detection of Interleukin 6; Vo-Dinh, T., Lakowicz, J.R., Eds.; SPIE: San Francisco, CA, USA, 2016; p. 972412. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, F.; Loeian, S.; Panchapakesan, B. Ultrasensitive Label-Free Sensing of IL-6 Based on PASE Functionalized Carbon Nanotube Micro-Arrays with RNA-Aptamers as Molecular Recognition Elements. Biosensors 2017, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.I.; Song, E. Detection of an IL-6 Biomarker Using a GFET Platform Developed with a Facile Organic Solvent-Free Aptamer Immobilization Approach. Sensors 2021, 21, 1335. [Google Scholar] [CrossRef]
- Hammacher, A.; Ward, L.D.; Simpson, R.J.; Weinstock, J.; Treutlein, H.; Yasukawa, K. Structure-Function Analysis of Human IL-6: Identification of Two Distinct Regions That Are Important for Receptor Binding. Protein Sci. 1994, 3, 2280–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Hirota, M.; Waugh, S.M.; Murakami, I.; Suzuki, T.; Muraguchi, M.; Shibamori, M.; Ishikawa, Y.; Jarvis, T.C.; Carter, J.D.; et al. Chemically Modified DNA Aptamers Bind Interleukin-6 with High Affinity and Inhibit Signaling by Blocking Its Interaction with Interleukin-6 Receptor. J. Biol. Chem. 2014, 289, 8706–8719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelinas, A.D.; Davies, D.R.; Edwards, T.E.; Rohloff, J.C.; Carter, J.D.; Zhang, C.; Gupta, S.; Ishikawa, Y.; Hirota, M.; Nakaishi, Y.; et al. Crystal Structure of Interleukin-6 in Complex with a Modified Nucleic Acid Ligand. J. Biol. Chem. 2014, 289, 8720–8734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Sheriff, A.; Kayser, S.; Brunner, P.; Vogt, B. C-Reactive Protein Triggers Cell Death in Ischemic Cells. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Avan, A.; Tavakoly Sany, S.B.; Ghayour-Mobarhan, M.; Rahimi, H.R.; Tajfard, M.; Ferns, G. Serum C-reactive Protein in the Prediction of Cardiovascular Diseases: Overview of the Latest Clinical Studies and Public Health Practice. J. Cell. Physiol. 2018, 233, 8508–8525. [Google Scholar] [CrossRef]
- Castro, A.R.; Silva, S.O.; Soares, S.C. The Use of High Sensitivity C-Reactive Protein in Cardiovascular Disease Detection. J. Pharm. Pharm. Sci. 2018, 21, 496–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohrabi, H.; kholafazad Kordasht, H.; Pashazadeh-Panahi, P.; Nezhad-Mokhtari, P.; Hashemzaei, M.; Majidi, M.R.; Mosafer, J.; Oroojalian, F.; Mokhtarzadeh, A.; de la Guardia, M. Recent Advances of Electrochemical and Optical Biosensors for Detection of C-Reactive Protein as a Major Inflammatory Biomarker. Microchem. J. 2020, 158, 105287. [Google Scholar] [CrossRef]
- Pay, J.B.; Shaw, A.M. Towards Salivary C-Reactive Protein as a Viable Biomarker of Systemic Inflammation. Clin. Biochem. 2019, 68, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, S. Association of Urine Levels of C-Reactive Protein with Clinical Outcomes in Patients with Pneumonia: A Pilot Study. J. Respir. Infect. 2019, 3, 2. [Google Scholar] [CrossRef]
- Oh, T.K.; Song, I.-A.; Lee, J.H. Clinical Usefulness of C-Reactive Protein to Albumin Ratio in Predicting 30-Day Mortality in Critically Ill Patients: A Retrospective Analysis. Sci. Rep. 2018, 8, 14977. [Google Scholar] [CrossRef]
- Bini, A.; Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Development of an Optical RNA-Based Aptasensor for C-Reactive Protein. Anal. Bioanal. Chem. 2008, 390, 1077–1086. [Google Scholar] [CrossRef]
- Orito, N.; Umekage, S.; Sato, K.; Kawauchi, S.; Tanaka, H.; Sakai, E.; Tanaka, T.; Kikuchi, Y. High-Affinity RNA Aptamers to C-Reactive Protein (CRP): Newly Developed Pre-Elution Methods for Aptamer Selection. J. Phys. Conf. Ser. 2012, 352, 012042. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Wang, K.; Wang, Q.; Wang, P.; Lin, M.; Chen, N.; Tan, Y. DNA Aptamer-Based Surface Plasmon Resonance Sensing of Human C-Reactive Protein. RSC Adv. 2014, 4, 30934–30937. [Google Scholar] [CrossRef]
- Wu, B.; Jiang, R.; Wang, Q.; Huang, J.; Yang, X.; Wang, K.; Li, W.; Chen, N.; Li, Q. Detection of C-Reactive Protein Using Nanoparticle-Enhanced Surface Plasmon Resonance Using an Aptamer-Antibody Sandwich Assay. Chem. Commun. 2016, 52, 3568–3571. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-J.; Lin, H.-I.; Shiesh, S.-C.; Lee, G.-B. Integrated Microfluidic System for Rapid Screening of CRP Aptamers Utilizing Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Biosens. Bioelectron. 2010, 25, 1761–1766. [Google Scholar] [CrossRef]
- Lee, W.-B.; Chen, Y.-H.; Lin, H.-I.; Shiesh, S.-C.; Lee, G.-B. An Integrated Microfluidic System for Fast, Automatic Detection of C-Reactive Protein. Sensors Actuators B Chem. 2011, 157, 710–721. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, D.; Ren, F.; Ran, F.; Chen, W.; Zhang, B.; Wang, C.; Chen, H.; Wei, J.; Chen, Q. Ultrasensitive Fluorescent Aptasensor for CRP Detection Based on the RNase H Assisted DNA Recycling Signal Amplification Strategy. RSC Adv. 2019, 9, 11960–11967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubiate, P.; Zamarreño, C.R.; Sánchez, P.; Matias, I.R.; Arregui, F.J. High Sensitive and Selective C-Reactive Protein Detection by Means of Lossy Mode Resonance Based Optical Fiber Devices. Biosens. Bioelectron. 2017, 93, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dong, P.; Sun, Z.; Sun, C.; Bu, H.; Han, J.; Chen, S.; Xie, G. NH 2 -Ni-MOF Electrocatalysts with Tunable Size/Morphology for Ultrasensitive C-Reactive Protein Detection via an Aptamer Binding Induced DNA Walker–antibody Sandwich Assay. J. Mater. Chem. B 2018, 6, 2426–2431. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-C.; Hong, C.-Y. Magnetic-Assisted Rapid Aptamer Selection (MARAS) for Generating High-Affinity DNA Aptamer Using Rotating Magnetic Fields. ACS Comb. Sci. 2014, 16, 321–327. [Google Scholar] [CrossRef]
- Lai, J.-C.; Hong, C.-Y. A Novel Protocol for Generating High-Affinity SsDNA Aptamers by Using Alternating Magnetic Fields. J. Mater. Chem. B 2014, 2, 4114–4121. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.-M.; Lai, J.-C.; Horng, H.-E.; Liu, T.-C.; Hong, C.-Y. Generation of Aptamers from A Primer-Free Randomized SsDNA Library Using Magnetic-Assisted Rapid Aptamer Selection. Sci. Rep. 2017, 7, 45478. [Google Scholar] [CrossRef] [Green Version]
- Vance, S.A.; Sandros, M.G. Zeptomole Detection of C-Reactive Protein in Serum by a Nanoparticle Amplified Surface Plasmon Resonance Imaging Aptasensor. Sci. Rep. 2015, 4, 5129. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Seo, Y.; Jo, Y.; Son, J.; Choi, J. Aptamer-Conjugated Live Human Immune Cell Based Biosensors for the Accurate Detection of C-Reactive Protein. Sci. Rep. 2016, 6, 34778. [Google Scholar] [CrossRef] [Green Version]
- Eid, C.; Palko, J.W.; Katilius, E.; Santiago, J.G. Rapid Slow Off-Rate Modified Aptamer (SOMAmer)-Based Detection of C-Reactive Protein Using Isotachophoresis and an Ionic Spacer. Anal. Chem. 2015, 87, 6736–6743. [Google Scholar] [CrossRef]
- Minagawa, H.; Kataoka, Y.; Fujita, H.; Kuwahara, M.; Horii, K.; Shiratori, I.; Waga, I. Modified DNA Aptamers for C-Reactive Protein and Lactate Dehydrogenase-5 with Sub-Nanomolar Affinities. Int. J. Mol. Sci. 2020, 21, 2683. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.-Q.; Xie, J.; Rao, L.-M.; Kan, Y.-J.; Luo, P.; Qing, L.-S. Advances in Aptamer-Based Sensing Assays for C-Reactive Protein. Anal. Bioanal. Chem. 2022, 414, 867–884. [Google Scholar] [CrossRef] [PubMed]
- António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A.L. A Simple Aptamer-Based Colorimetric Assay for Rapid Detection of C-Reactive Protein Using Gold Nanoparticles. Talanta 2020, 214, 120868. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.-C.; Chu, C.-H.; Chang, W.-H.; Wang, Y.-L.; Lee, G.-B. Dual-Aptamer Assay for C-Reactive Protein Detection by Using Field-Effect Transistors on an Integrated Microfluidic System. In Proceedings of the 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, 17–20 April 2016; pp. 583–586. [Google Scholar]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef]
- Beutler, B.; Cerami, A. The Biology of Cachectin/TNF—A Primary Mediator of the Host Response. Annu. Rev. Immunol. 1989, 7, 625–655. [Google Scholar] [CrossRef]
- Zhang, H.; Park, Y.; Wu, J.; Chen, X.P.; Lee, S.; Yang, J.; Dellsperger, K.C.; Zhang, C. Role of TNF-α in Vascular Dysfunction. Clin. Sci. 2009, 116, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Collier, P.; Watson, C.J.; Voon, V.; Phelan, D.; Jan, A.; Mak, G.; Martos, R.; Baugh, J.A.; Ledwidge, M.T.; McDonald, K.M. Can Emerging Biomarkers of Myocardial Remodelling Identify Asymptomatic Hypertensive Patients at Risk for Diastolic Dysfunction and Diastolic Heart Failure? Eur. J. Heart Fail. 2011, 13, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Rammos, A.; Bechlioulis, A.; Kalogeras, P.; Tripoliti, E.E.; Goletsis, Y.; Kalivi, A.; Blathra, E.; Salvo, P.; Trivella, M.G.; Lomonaco, T.; et al. Salivary Biomarkers for Diagnosis and Therapy Monitoring in Patients with Heart Failure. A Systematic Review. Diagnostics 2021, 11, 824. [Google Scholar] [CrossRef]
- Sirera, R.; Salvador, A.; Roldán, I.; Talens, R.; González-Molina, A.; Rivera, M. Quantification of Proinflammatory Cytokines in the Urine of Congestive Heart Failure Patients. Its Relationship with Plasma Levels. Eur. J. Heart Fail. 2003, 5, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Orava, E.W.; Jarvik, N.; Shek, Y.L.; Sidhu, S.S.; Gariépy, J. A Short DNA Aptamer That Recognizes TNFα and Blocks Its Activity in Vitro. ACS Chem. Biol. 2013, 8, 170–178. [Google Scholar] [CrossRef]
- Kim, J.; Park, H.; Saravanakumar, G.; Kim, W.J. Polymer/Aptamer-Integrated Gold Nanoconstruct Suppresses the Inflammatory Process by Scavenging ROS and Capturing Pro-Inflammatory Cytokine TNF-α. ACS Appl. Mater. Interfaces 2021, 13, 9390–9401. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-Y.; Wang, J.-W.; Huang, B.-T.; Lin, E.P.-Y.; Yang, P.-C. A Novel TNF-α-Targeting Aptamer for TNF-α-Mediated Acute Lung Injury and Acute Liver Failure. Theranostics 2019, 9, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, K.; Ganji, A.; Sankian, M. Designing a New Dimerized Anti Human TNF-α Aptamer with Blocking Activity. Biotechnol. Prog. 2020, 36, e2969. [Google Scholar] [CrossRef]
- Yan, X.; Gao, X.; Zhang, Z. Isolation and Characterization of 2′-Amino-Modified RNA Aptamers for Human TNFα. Genomics. Proteom. Bioinform. 2004, 2, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Hosseini Ghalehno, M.; Mirzaei, M.; Torkzadeh-Mahani, M. Electrochemical Aptasensor for Tumor Necrosis Factor α Using Aptamer–antibody Sandwich Structure and Cobalt Hexacyanoferrate for Signal Amplification. J. Iran. Chem. Soc. 2019, 16, 1783–1791. [Google Scholar] [CrossRef]
- Ghalehno, M.H.; Mirzaei, M.; Torkzadeh-Mahani, M. Aptamer-Based Determination of Tumor Necrosis Factor α Using a Screen-Printed Graphite Electrode Modified with Gold Hexacyanoferrate. Microchim. Acta 2018, 185, 165. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, Z.; Li, Y.; Zhu, Y.; Wang, X.; De Moraes, C.G.; Pan, Y.; Zhao, X.; Lin, Q. Measurement of Cytokine Biomarkers Using an Aptamer-Based Affinity Graphene Nanosensor on a Flexible Substrate toward Wearable Applications. Nanoscale 2018, 10, 21681–21688. [Google Scholar] [CrossRef]
- Ghosh, S.; Datta, D.; Chaudhry, S.; Dutta, M.; Stroscio, M.A. Rapid Detection of Tumor Necrosis Factor-Alpha Using Quantum Dot-Based Optical Aptasensor. IEEE Trans. Nanobioscience 2018, 17, 417–423. [Google Scholar] [CrossRef]
- Gao, S.; Cheng, Y.; Zhang, S.; Zheng, X.; Wu, J. A Biolayer Interferometry-Based, Aptamer–antibody Receptor Pair Biosensor for Real-Time, Sensitive, and Specific Detection of the Disease Biomarker TNF-α. Chem. Eng. J. 2022, 433, 133268. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Revzin, A. An Aptasensor for Electrochemical Detection of Tumor Necrosis Factor in Human Blood. Analyst 2013, 138, 4321. [Google Scholar] [CrossRef]
- Liu, Y.; Kwa, T.; Revzin, A. Simultaneous Detection of Cell-Secreted TNF-α and IFN-γ Using Micropatterned Aptamer-Modified Electrodes. Biomaterials 2012, 33, 7347–7355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yu, J.; Yang, Q.; McDermott, J.; Scott, A.; Vukovich, M.; Lagrois, R.; Gong, Q.; Greenleaf, W.; Eisenstein, M.; et al. Multiparameter Particle Display (MPPD): A Quantitative Screening Method for the Discovery of Highly Specific Aptamers. Angew. Chemie Int. Ed. 2017, 56, 744–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, F.; Jiang, D.; Xiang, G.; Liu, C.; Yang, J.; Pu, X. Hybridization Chain Reaction and Target Recycling Enhanced Tumor Necrosis Factor Alpha Aptasensor with Host-Guest Interaction for Signal Probe Collection. Sens. Actuators B Chem. 2016, 231, 680–687. [Google Scholar] [CrossRef]
- Suthahar, N.; Meijers, W.C.; Silljé, H.H.W.; Ho, J.E.; Liu, F.-T.; de Boer, R.A. Galectin-3 Activation and Inhibition in Heart Failure and Cardiovascular Disease: An Update. Theranostics 2018, 8, 593–609. [Google Scholar] [CrossRef] [PubMed]
- Christenson, R.H.; Duh, S.-H.; Wu, A.H.B.; Smith, A.; Abel, G.; DeFilippi, C.R.; Wang, S.; Adourian, A.; Adiletto, C.; Gardiner, P. Multi-Center Determination of Galectin-3 Assay Performance Characteristics. Clin. Biochem. 2010, 43, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Gruson, D.; Mancini, M.; Ahn, S.A.; Rousseau, M.F. Galectin-3 Testing: Validity of a Novel Automated Assay in Heart Failure Patients with Reduced Ejection Fraction. Clin. Chim. Acta 2014, 429, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Gruson, D.; Mancini, M.; Ahn, S.A.; Rousseau, M.F. Measurement of Galectin-3 with the ARCHITECT Assay: Clinical Validity and Cost-Effectiveness in Patients with Heart Failure. Clin. Biochem. 2014, 47, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A.; Olobatoke, A.; Vanhecke, T.E. Galectin-3: A Novel Blood Test for the Evaluation and Management of Patients With Heart Failure. Rev. Cardiovasc. Med. 2011, 12, 200–210. [Google Scholar] [CrossRef]
- Giamdzhian, K.A.; Kukes, V.G. The Role of Galectin-3 in the Diagnosis and Control of the Effectiveness of Pharmacotherapy of Chronic Heart Failure. CardioSomatics 2017, 8, 5–10. [Google Scholar] [CrossRef]
- Zhong, X.; Qian, X.; Chen, G.; Song, X. The Role of Galectin-3 in Heart Failure and Cardiovascular Disease. Clin. Exp. Pharmacol. Physiol. 2019, 46, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Ip, C.; Luk, K.S.; Yuen, V.L.C.; Chiang, L.; Chan, C.K.; Ho, K.; Gong, M.; Lee, T.T.L.; Leung, K.S.K.; Roever, L.; et al. Soluble Suppression of Tumorigenicity 2 (SST2) for Predicting Disease Severity or Mortality Outcomes in Cardiovascular Diseases: A Systematic Review and Meta-Analysis. IJC Heart Vasc. 2021, 37, 100887. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Duan, L.; Cai, Y.; Hao, B.; Chen, J.; Li, H.; Liu, H. Prognostic Value of Soluble Suppression of Tumorigenesis-2 (SST2) for Cardiovascular Events in Coronary Artery Disease Patients with and without Diabetes Mellitus. Cardiovasc. Diabetol. 2021, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Soyfoo, M.S.; Nicaise, C. Pathophysiologic Role of Interleukin-33/ST2 in Sjögren’s Syndrome. Autoimmun. Rev. 2021, 20, 102756. [Google Scholar] [CrossRef]
- Emdin, M.; Aimo, A.; Vergaro, G.; Bayes-Genis, A.; Lupón, J.; Latini, R.; Meessen, J.; Anand, I.S.; Cohn, J.N.; Gravning, J.; et al. SST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High-Sensitivity Troponin T. J. Am. Coll. Cardiol. 2018, 72, 2309–2320. [Google Scholar] [CrossRef] [PubMed]
- Altara, R.; Ghali, R.; Mallat, Z.; Cataliotti, A.; Booz, G.W.; Zouein, F.A. Conflicting Vascular and Metabolic Impact of the IL-33/SST2 Axis. Cardiovasc. Res. 2018, 114, 1578–1594. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, M.L.; Morrow, D.A.; Cannon, C.P.; Jarolim, P.; Desai, N.R.; Sherwood, M.W.; Murphy, S.A.; Gerszten, R.E.; Sabatine, M.S. Multimarker Risk Stratification in Patients With Acute Myocardial Infarction. J. Am. Heart Assoc. 2016, 5, e002586. [Google Scholar] [CrossRef] [Green Version]
- Aleksova, A.; Paldino, A.; Beltrami, A.; Padoan, L.; Iacoviello, M.; Sinagra, G.; Emdin, M.; Maisel, A. Cardiac Biomarkers in the Emergency Department: The Role of Soluble ST2 (SST2) in Acute Heart Failure and Acute Coronary Syndrome—There Is Meat on the Bone. J. Clin. Med. 2019, 8, 270. [Google Scholar] [CrossRef] [Green Version]
- Chow, S.L.; Maisel, A.S.; Anand, I.; Bozkurt, B.; de Boer, R.A.; Felker, G.M.; Fonarow, G.C.; Greenberg, B.; Januzzi, J.L.; Kiernan, M.S.; et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e1054–e1091. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Mebazaa, A.; Di Somma, S. ST2 and Prognosis in Acutely Decompensated Heart Failure: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115, 26B–31B. [Google Scholar] [CrossRef]
- Aimo, A.; Vergaro, G.; Passino, C.; Ripoli, A.; Ky, B.; Miller, W.L.; Bayes-Genis, A.; Anand, I.; Januzzi, J.L.; Emdin, M. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure. JACC Heart Fail. 2017, 5, 280–286. [Google Scholar] [CrossRef]
- Gentile, F.; Aimo, A.; Jannuzzi, J.L.; Richards, M.; Lam, C.S.; De Boer, R.A.; Meems, L.M.; Latini, R.; Staszewsky, L.; Anand, I.S.; et al. 41 Circulating Levels and Prognostic Cut-Offs of SST2, High-Sensitivity Troponin T, and NT-ProBNP in Women vs. Men with Chronic Heart Failure. Eur. Heart J. Suppl. 2021, 23, suab139-017. [Google Scholar] [CrossRef]
- You, M.; Lin, M.; Gong, Y.; Wang, S.; Li, A.; Ji, L.; Zhao, H.; Ling, K.; Wen, T.; Huang, Y.; et al. Household Fluorescent Lateral Flow Strip Platform for Sensitive and Quantitative Prognosis of Heart Failure Using Dual-Color Upconversion Nanoparticles. ACS Nano 2017, 11, 6261–6270. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Jaffe, A.S. Soluble ST2—Analytical Considerations. Am. J. Cardiol. 2015, 115, 8B–21B. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, A.; Auger-Messier, M.; Molkentin, J.D.; Heineke, J. Myostatin from the Heart: Local and Systemic Actions in Cardiac Failure and Muscle Wasting. Am. J. Physiol. Circ. Physiol. 2011, 300, H1973–H1982. [Google Scholar] [CrossRef]
- Butcher, J.T.; Ali, M.I.; Ma, M.W.; McCarthy, C.G.; Islam, B.N.; Fox, L.G.; Mintz, J.D.; Larion, S.; Fulton, D.J.; Stepp, D.W. Effect of Myostatin Deletion on Cardiac and Microvascular Function. Physiol. Rep. 2017, 5, e13525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, I.; Bish, L.T.; Kamalakkannan, G.; Petrilli, C.M.; Oz, M.C.; Naka, Y.; Lee Sweeney, H.; Maybaum, S. Myostatin Activation in Patients with Advanced Heart Failure and after Mechanical Unloading. Eur. J. Heart Fail. 2010, 12, 444–453. [Google Scholar] [CrossRef]
- Sharma, M.; Kambadur, R.; Matthews, K.G.; Somers, W.G.; Devlin, G.P.; Conaglen, J.V.; Fowke, P.J.; Bass, J.J. Myostatin, a Transforming Growth Factor-Beta Superfamily Member, Is Expressed in Heart Muscle and Is Upregulated in Cardiomyocytes after Infarct. J. Cell. Physiol. 1999, 180, 1–9. [Google Scholar] [CrossRef]
- Meloux, A.; Rochette, L.; Maza, M.; Bichat, F.; Tribouillard, L.; Cottin, Y.; Zeller, M.; Vergely, C. Growth Differentiation Factor-8 (GDF8)/Myostatin Is a Predictor of Troponin I Peak and a Marker of Clinical Severity after Acute Myocardial Infarction. J. Clin. Med. 2019, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Gruson, D.; Ahn, S.A.; Ketelslegers, J.-M.; Rousseau, M.F. Increased Plasma Myostatin in Heart Failure. Eur. J. Heart Fail. 2011, 13, 734–736. [Google Scholar] [CrossRef]
- Chen, P.; Liu, Z.; Luo, Y.; Chen, L.; Li, S.; Pan, Y.; Lei, X.; Wu, D.; Xu, D. Predictive Value of Serum Myostatin for the Severity and Clinical Outcome of Heart Failure. Eur. J. Intern. Med. 2019, 64, 33–40. [Google Scholar] [CrossRef]
- Wirtz, T.H.; Loosen, S.H.; Buendgens, L.; Kurt, B.; Abu Jhaisha, S.; Hohlstein, P.; Brozat, J.F.; Weiskirchen, R.; Luedde, T.; Tacke, F.; et al. Low Myostatin Serum Levels Are Associated with Poor Outcome in Critically Ill Patients. Diagnostics 2020, 10, 574. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.S.; Ferguson, T.S.; Wilks, R.J.; Phillips, D.I.; Osmond, C.; Samms-Vaughan, M.; Forrester, T.E.; Boyne, M.S. Early-Life Factors Are Associated with Nocturnal Cortisol and Glucose Effectiveness in Afro-Caribbean Young Adults. Clin. Endocrinol. 2015, 82, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Gagliano-Jucá, T.; Pencina, K.M.; Krishnan, S.; Li, Z.; Tracy, R.P.; Jasuja, R.; Bhasin, S. Age Trends in Growth and Differentiation Factor-11 and Myostatin Levels in Healthy Men, and Differential Response to Testosterone, Measured Using Liquid Chromatography–Tandem Mass Spectrometry. J. Gerontol. Ser. A 2022, 77, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Egerman, M.A.; Cadena, S.M.; Gilbert, J.A.; Meyer, A.; Nelson, H.N.; Swalley, S.E.; Mallozzi, C.; Jacobi, C.; Jennings, L.L.; Clay, I.; et al. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab. 2015, 22, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, U.A.; Green, L.S.; Rice, T.P.; Olivas, E.; Janjic, N.; Katilius, E. Targeting Unique Epitopes on Highly Similar Proteins GDF-11 and GDF-8 with Modified DNA Aptamers. Biochemistry 2019, 58, 4632–4640. [Google Scholar] [CrossRef]
- Lockhart, S.M.; Saudek, V.; O’Rahilly, S. GDF15: A Hormone Conveying Somatic Distress to the Brain. Endocr. Rev. 2020, 41, bnaa007. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Day, E.A.; Townsend, L.K.; Djordjevic, D.; Jørgensen, S.B.; Steinberg, G.R. GDF15: Emerging Biology and Therapeutic Applications for Obesity and Cardiometabolic Disease. Nat. Rev. Endocrinol. 2021, 17, 592–607. [Google Scholar] [CrossRef]
- Assadi, A.; Zahabi, A.; Hart, R.A. GDF15, an Update of the Physiological and Pathological Roles It Plays: A Review. Pflügers Arch. Eur. J. Physiol. 2020, 472, 1535–1546. [Google Scholar] [CrossRef]
- Emmerson, P.J.; Duffin, K.L.; Chintharlapalli, S.; Wu, X. GDF15 and Growth Control. Front. Physiol. 2018, 9, 1712. [Google Scholar] [CrossRef] [Green Version]
- Rathnayake, N.; Buhlin, K.; Kjellström, B.; Klinge, B.; Löwbeer, C.; Norhammar, A.; Rydén, L.; Sorsa, T.; Tervahartiala, T.; Gustafsson, A. Saliva and Plasma Levels of Cardiac-Related Biomarkers in Post-Myocardial Infarction Patients. J. Clin. Periodontol. 2017, 44, 692–699. [Google Scholar] [CrossRef]
- Thorsteinsdottir, H.; Salvador, C.L.; Mjøen, G.; Lie, A.; Sugulle, M.; Tøndel, C.; Brun, A.; Almaas, R.; Bjerre, A. Growth Differentiation Factor 15 in Children with Chronic Kidney Disease and after Renal Transplantation. Dis. Markers 2020, 2020, 6162892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Gomez, M.V.; Pizarro-Sanchez, S.; Gracia-Iguacel, C.; Cano, S.; Cannata-Ortiz, P.; Sanchez-Rodriguez, J.; Sanz, A.B.; Sanchez-Niño, M.D.; Ortiz, A. Urinary Growth Differentiation Factor-15 (GDF15) Levels as a Biomarker of Adverse Outcomes and Biopsy Findings in Chronic Kidney Disease. J. Nephrol. 2021, 34, 1819–1832. [Google Scholar] [CrossRef] [PubMed]
- Simonson, M.S.; Tiktin, M.; Debanne, S.M.; Rahman, M.; Berger, B.; Hricik, D.; Ismail-Beigi, F. The Renal Transcriptome of Db/Db Mice Identifies Putative Urinary Biomarker Proteins in Patients with Type 2 Diabetes: A Pilot Study. Am. J. Physiol. Physiol. 2012, 302, F820–F829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adela, R.; Banerjee, S.K. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J. Diabetes Res. 2015, 2015, 490842. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Daya, N.; Ndumele, C.E.; Matsushita, K.; Hoogeveen, R.C.; Ballantyne, C.M.; Coresh, J.; Shah, A.M.; Selvin, E. Diabetes, GDF-15 and Incident Heart Failure: The Atherosclerosis Risk in Communities Study. Diabetologia 2022, 1–9. [Google Scholar] [CrossRef]
- Kraemer, S.; Vaught, J.D.; Bock, C.; Gold, L.; Katilius, E.; Keeney, T.R.; Kim, N.; Saccomano, N.A.; Wilcox, S.K.; Zichi, D.; et al. From SOMAmer-Based Biomarker Discovery to Diagnostic and Clinical Applications: A SOMAmer-Based, Streamlined Multiplex Proteomic Assay. PLoS ONE 2011, 6, e26332. [Google Scholar] [CrossRef] [Green Version]
- Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.N.; Carter, J.; Dalby, A.B.; Eaton, B.E.; Fitzwater, T.; et al. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. Nat. Preced. 2010, 5, e15004. [Google Scholar] [CrossRef]
- Kukova, L.Z.; Mansour, S.G.; Coca, S.G.; de Fontnouvelle, C.A.; Thiessen-Philbrook, H.R.; Shlipak, M.G.; El-Khoury, J.M.; Parikh, C.R. Comparison of Urine and Plasma Biomarker Concentrations Measured by Aptamer-Based versus Immunoassay Methods in Cardiac Surgery Patients. J. Appl. Lab. Med. 2019, 4, 331–342. [Google Scholar] [CrossRef]
- Duo, J.; Chiriac, C.; Huang, R.Y.-C.; Mehl, J.; Chen, G.; Tymiak, A.; Sabbatini, P.; Pillutla, R.; Zhang, Y. Slow Off-Rate Modified Aptamer (SOMAmer) as a Novel Reagent in Immunoassay Development for Accurate Soluble Glypican-3 Quantification in Clinical Samples. Anal. Chem. 2018, 90, 5162–5170. [Google Scholar] [CrossRef]
- Michishige, F.; Kanno, K.; Yoshinaga, S.; Hinode, D.; Takehisa, Y.; Yasuoka, S. Effect of Saliva Collection Method on the Concentration of Protein Components in Saliva. J. Med. Investig. 2006, 53, 140–146. [Google Scholar] [CrossRef] [Green Version]
Biomarker | Aptamer | Aptasensing in Relevant Concentration Range | Dual-Aptamer-Based Sandwich Detection | Aptasensing in Biological Fluids | |||
---|---|---|---|---|---|---|---|
Serum | Whole Blood | Saliva | Urine | ||||
cTnI | DNA, L-DNA | + | Tro4 + Tro6 Apt 3 + Apt 6 B10 + C6 (L-DNA) TnAp2t3 + TnAp10 | + | + | + | + |
cTnT | DNA | + | Apt.1 + Apt.2 | + | − | + | + |
Myoglobin | DNA | + | Split aptamer Myo40-7-27 | + | − | + | + |
CK-MB | DNA | + | C.Apt.21 + C.Apt.30 | + | − | − | − |
HFABP | DNA | − | N13 + N53 | − | − | − | − |
BNP | DNA | + | 25c + 2F, poor selectivity | + | + | − | − |
NT-proBNP | DNA | + | − | + | − | − | − |
MR-proADM | − | − | − | − | − | − | − |
MR-proANP | − | − | − | − | − | − | − |
Copeptin | − | − | − | − | − | − | − |
IL-6 | DNA | + | IL62 + IL63 ATW0077 + ATW0082/ATW0082, mouse IL-6-specific | + | − | − | − |
CRP | DNA, RNA | + | + No aptamer sequences available | + | + | − | + |
TNFα | DNA, RNA | + | − | + | + | − | − |
Gal-3 | − | − | − | − | − | − | − |
sST2 | − | − | − | − | − | − | − |
GDF8 | − | − | − | − | − | − | − |
GDF15 | − | − | − | − | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komarova, N.; Panova, O.; Titov, A.; Kuznetsov, A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022, 10, 1085. https://doi.org/10.3390/biomedicines10051085
Komarova N, Panova O, Titov A, Kuznetsov A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines. 2022; 10(5):1085. https://doi.org/10.3390/biomedicines10051085
Chicago/Turabian StyleKomarova, Natalia, Olga Panova, Alexey Titov, and Alexander Kuznetsov. 2022. "Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review" Biomedicines 10, no. 5: 1085. https://doi.org/10.3390/biomedicines10051085
APA StyleKomarova, N., Panova, O., Titov, A., & Kuznetsov, A. (2022). Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines, 10(5), 1085. https://doi.org/10.3390/biomedicines10051085