Immune Checkpoint Blockades in Triple-Negative Breast Cancer: Current State and Molecular Mechanisms of Resistance
Abstract
:1. Introduction
2. Immune Checkpoint Blockade Clinical Trials in TNBC
2.1. Pembrolizumab
2.2. Atezolizumab
2.3. Other PD-1/PD-L1 Inhibitors
2.4. Anti-CTLA-4 Inhibitors
2.5. Combinational Treatments
3. Predictive Biomarkers of Immunotherapy in TNBCs
3.1. Tumor Mutational Burden and Neoantigens
3.2. PD-L1 Expression
3.3. Tumor-Infiltrating Lymphocytes
4. Putative Molecular Mechanisms of Resistance to ICB in TNBCs
4.1. Tumor-Extrinsic Mechanisms of Resistance
4.2. Tumor-Intrinsic Mechanisms of Resistance
5. Conclusions
Intervention | Related Mechanism of Resistance/Mode of Action | Stages of Development |
---|---|---|
Cyclophosphamide | Tumor-extrinsic/activates stem-like CD8+ T cells | Pre-clinical study [63], NCT03164993 (active, atezolizumab + cyclophosphamide + pegylated liposomal doxorubicin), NCT01898117 (recruiting, atezolizumab + carboplatin + cyclophosphamide), NCT03498716 (recruiting, atezolizumab + cyclophosphamide) |
Vinorelbine | Tumor-extrinsic/activates stem-like CD8+ T cells | Pre-clinical study [63], NCT03254654 (completed), NCT02555657 (completed), NCT01104259 (completed) |
Decitabine | Tumor-intrinsic/increases T cell infiltration in MYC-overexpressing TNBC by activating the STING pathway | Pre-clinical study [69], NCT02957968 (recruiting, neoadjuvant pembrolizumab + decitabine) |
Synthetic cyclic dinucleotide | Tumor-intrinsic/activates the STING pathway, promotes CD8+ T cell-mediated anti-tumor immunity | Pre-clinical study [69] |
Trametinib | Tumor-intrinsic/upregulates MHC and PD-L1 expression | Pre-clinical study [71], NCT01467310 (completed), NCT01964924 (completed), NCT02900664 (completed), NCT01155453 (completed), NCT01138085 (completed) |
Selumetinib | Tumor-intrinsic/upregulates MHC and PD-L1 expression | Pre-clinical study [71], NCT02685657 (status unknown), NCT02583542 (status unknown) |
2-fluoro-L-fucose | Tumor-intrinsic/decreases B7H3 glycosylation which sensitizes TNBC cells to anti-PD-L1 therapy | Pre-clinical study [73] |
LINK-A locked nucleic acid | Tumor-intrinsic/stabilizes the peptide loading components and sensitizes tumors to ICB | Pre-clinical study [74] |
Anti-Tenascin-C antibody | Tumor-intrinsic/sensitizes autophagy-deficient TNBC to anti-PD-1/PD-L1 therapy | Pre-clinical study [75] |
Integrin αvβ6-blocking antibody | Tumor-intrinsic/increases CD8+ T cell-mediated cytotoxicity | Pre-clinical study [76] |
hsBCL9CT-24 | Tumor-intrinsic/promotes cytotoxic T cell and dendritic cell infiltration while reducing regulatory T cells | Pre-clinical study [79] |
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Galon, J.; Bruni, D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020, 52, 55–81. [Google Scholar] [CrossRef]
- June, C.H.; O′Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [Green Version]
- Sanmamed, M.F.; Chen, L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 2018, 175, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.; Al-Khadairi, G.; Decock, J. Immune Checkpoint Inhibitors in Triple Negative Breast Cancer Treatment: Promising Future Prospects. Front. Oncol. 2020, 10, 600573. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.P.; Derakhshandeh, R.; Jones, L.; Webb, T.J. Mechanisms of immune evasion in breast cancer. BMC Cancer 2018, 18, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaynor, N.; Crown, J.; Collins, D.M. Immune checkpoint inhibitors: Key trials and an emerging role in breast cancer. Semin. Cancer Biol. 2020, 79, 44–57. [Google Scholar] [CrossRef]
- Disis, M.L.; Stanton, S.E. Triple-negative breast cancer: Immune modulation as the new treatment paradigm. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e25–e30. [Google Scholar] [CrossRef]
- Savas, P.; Salgado, R.; Denkert, C.; Sotiriou, C.; Darcy, P.K.; Smyth, M.J.; Loi, S. Clinical relevance of host immunity in breast cancer: From TILs to the clinic. Nat. Rev. Clin. Oncol. 2016, 13, 228–241. [Google Scholar] [CrossRef]
- Safonov, A.; Jiang, T.; Bianchini, G.; Gyorffy, B.; Karn, T.; Hatzis, C.; Pusztai, L. Immune Gene Expression Is Associated with Genomic Aberrations in Breast Cancer. Cancer Res. 2017, 77, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Makhoul, I.; Atiq, M.; Alwbari, A.; Kieber-Emmons, T. Breast Cancer Immunotherapy: An Update. Breast Cancer 2018, 12, 1178223418774802. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Jiang, Z.; Wang, X. A Comprehensive Immunologic Portrait of Triple-Negative Breast Cancer. Transl. Oncol. 2018, 11, 311–329. [Google Scholar] [CrossRef]
- Narang, P.; Chen, M.; Sharma, A.A.; Anderson, K.S.; Wilson, M.A. The neoepitope landscape of breast cancer: Implications for immunotherapy. BMC Cancer 2019, 19, 200. [Google Scholar] [CrossRef] [Green Version]
- Nanda, R.; Chow, L.Q.; Dees, E.C.; Berger, R.; Gupta, S.; Geva, R.; Pusztai, L.; Pathiraja, K.; Aktan, G.; Cheng, J.D.; et al. Pembrolizumab in Patients with Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J. Clin. Oncol. 2016, 34, 2460–2467. [Google Scholar] [CrossRef]
- Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann. Oncol. 2019, 30, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.; Loi, S.; Toppmeyer, D.; Cescon, D.W.; De Laurentiis, M.; Nanda, R.; Winer, E.P.; Mukai, H.; Tamura, K.; Armstrong, A.; et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: Cohort B of the phase II KEYNOTE-086 study. Ann. Oncol. 2019, 30, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Winer, E.P.; Lipatov, O.; Im, S.A.; Goncalves, A.; Munoz-Couselo, E.; Lee, K.S.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 499–511. [Google Scholar] [CrossRef]
- Emens, L.A.; Middleton, G. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol. Res. 2015, 3, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef]
- Nanda, R.; Liu, M.C.; Yau, C.; Shatsky, R.; Pusztai, L.; Wallace, A.; Chien, A.J.; Forero-Torres, A.; Ellis, E.; Han, H.; et al. Effect of Pembrolizumab Plus Neoadjuvant Chemotherapy on Pathologic Complete Response in Women with Early-Stage Breast Cancer: An Analysis of the Ongoing Phase 2 Adaptively Randomized I-SPY2 Trial. JAMA Oncol. 2020, 6, 676–684. [Google Scholar] [CrossRef]
- Schmid, P.; Salgado, R.; Park, Y.H.; Munoz-Couselo, E.; Kim, S.B.; Sohn, J.; Im, S.A.; Foukakis, T.; Kuemmel, S.; Dent, R.; et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: Results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann. Oncol. 2020, 31, 569–581. [Google Scholar] [CrossRef]
- Emens, L.A.; Cruz, C.; Eder, J.P.; Braiteh, F.; Chung, C.; Tolaney, S.M.; Kuter, I.; Nanda, R.; Cassier, P.A.; Delord, J.P.; et al. Long-term Clinical Outcomes and Biomarker Analyses of Atezolizumab Therapy for Patients with Metastatic Triple-Negative Breast Cancer: A Phase 1 Study. JAMA Oncol. 2019, 5, 74–82. [Google Scholar] [CrossRef]
- Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Dieras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020, 21, 44–59. [Google Scholar] [CrossRef]
- Miles, D.; Gligorov, J.; Andre, F.; Cameron, D.; Schneeweiss, A.; Barrios, C.; Xu, B.; Wardley, A.; Kaen, D.; Andrade, L.; et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann. Oncol. 2021, 32, 994–1004. [Google Scholar] [CrossRef]
- Voorwerk, L.; Slagter, M.; Horlings, H.M.; Sikorska, K.; van de Vijver, K.K.; de Maaker, M.; Nederlof, I.; Kluin, R.J.C.; Warren, S.; Ong, S.; et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial. Nat. Med. 2019, 25, 920–928. [Google Scholar] [CrossRef]
- Dirix, L.Y.; Takacs, I.; Jerusalem, G.; Nikolinakos, P.; Arkenau, H.T.; Forero-Torres, A.; Boccia, R.; Lippman, M.E.; Somer, R.; Smakal, M.; et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: A phase 1b JAVELIN Solid Tumor study. Breast Cancer Res. Treat. 2018, 167, 671–686. [Google Scholar] [CrossRef] [Green Version]
- Loibl, S.; Untch, M.; Burchardi, N.; Huober, J.; Sinn, B.V.; Blohmer, J.U.; Grischke, E.M.; Furlanetto, J.; Tesch, H.; Hanusch, C.; et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of GeparNuevo study. Ann. Oncol. 2019, 30, 1279–1288. [Google Scholar] [CrossRef] [Green Version]
- McArthur, H.L.; Diab, A.; Page, D.B.; Yuan, J.; Solomon, S.B.; Sacchini, V.; Comstock, C.; Durack, J.C.; Maybody, M.; Sung, J.; et al. A Pilot Study of Preoperative Single-Dose Ipilimumab and/or Cryoablation in Women with Early-Stage Breast Cancer with Comprehensive Immune Profiling. Clin. Cancer Res. 2016, 22, 5729–5737. [Google Scholar] [CrossRef] [Green Version]
- Sabel, M.S.; Nehs, M.A.; Su, G.; Lowler, K.P.; Ferrara, J.L.; Chang, A.E. Immunologic response to cryoablation of breast cancer. Breast Cancer Res. Treat. 2005, 90, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Vonderheide, R.H.; LoRusso, P.M.; Khalil, M.; Gartner, E.M.; Khaira, D.; Soulieres, D.; Dorazio, P.; Trosko, J.A.; Ruter, J.; Mariani, G.L.; et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin. Cancer Res. 2010, 16, 3485–3494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtin, N.J.; Szabo, C. Therapeutic applications of PARP inhibitors: Anticancer therapy and beyond. Mol. Asp. Med. 2013, 34, 1217–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyraud, F.; Italiano, A. Combined PARP Inhibition and Immune Checkpoint Therapy in Solid Tumors. Cancers 2020, 12, 1502. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Xia, W.; Yamaguchi, H.; Wei, Y.; Chen, M.K.; Hsu, J.M.; Hsu, J.L.; Yu, W.H.; Du, Y.; Lee, H.H.; et al. PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression. Clin. Cancer Res. 2017, 23, 3711–3720. [Google Scholar] [CrossRef] [Green Version]
- Spring, L.M.; Wander, S.A.; Zangardi, M.; Bardia, A. CDK 4/6 Inhibitors in Breast Cancer: Current Controversies and Future Directions. Curr. Oncol. Rep. 2019, 21, 25. [Google Scholar] [CrossRef]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548, 471–475. [Google Scholar] [CrossRef]
- Teo, Z.L.; Versaci, S.; Dushyanthen, S.; Caramia, F.; Savas, P.; Mintoff, C.P.; Zethoven, M.; Virassamy, B.; Luen, S.J.; McArthur, G.A.; et al. Combined CDK4/6 and PI3Kalpha Inhibition Is Synergistic and Immunogenic in Triple-Negative Breast Cancer. Cancer Res. 2017, 77, 6340–6352. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Bu, X.; Wang, H.; Zhu, Y.; Geng, Y.; Nihira, N.T.; Tan, Y.; Ci, Y.; Wu, F.; Dai, X.; et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 2018, 553, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Shenouda, M.M.; Gillgrass, A.; Nham, T.; Hogg, R.; Lee, A.J.; Chew, M.V.; Shafaei, M.; Aarts, C.; Lee, D.A.; Hassell, J.; et al. Ex vivo expanded natural killer cells from breast cancer patients and healthy donors are highly cytotoxic against breast cancer cell lines and patient-derived tumours. Breast Cancer Res. 2017, 19, 76. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci. Rep. 2020, 10, 2815. [Google Scholar] [CrossRef] [Green Version]
- Kistler, M.; Nangia, C.; To, C.; Sender, L.; Lee, J.; Jones, F.; Jafari, O.; Seery, T.; Rabizadeh, S.; Niazi, K.; et al. Abstract P5-04-02: Safety and efficacy from first-in-human immunotherapy combining NK and T cell activation with off-the-shelf high-affinity CD16 NK cell line (haNK) in patients with 2nd-line or greater metastatic triple-negative breast cancer (TNBC). Cancer Res. 2020, 80, P5-04-02. [Google Scholar] [CrossRef]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Gjerstorff, M.F.; Andersen, M.H.; Ditzel, H.J. Oncogenic cancer/testis antigens: Prime candidates for immunotherapy. Oncotarget 2015, 6, 15772–15787. [Google Scholar] [CrossRef] [Green Version]
- Esfandiary, A.; Ghafouri-Fard, S. New York esophageal squamous cell carcinoma-1 and cancer immunotherapy. Immunotherapy 2015, 7, 411–439. [Google Scholar] [CrossRef]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Q.; Zhang, M.; Wang, H.; Wu, L.; Yang, J. Immune-related biomarkers in triple-negative breast cancer. Breast Cancer 2021, 28, 792–805. [Google Scholar] [CrossRef]
- Arora, S.; Velichinskii, R.; Lesh, R.W.; Ali, U.; Kubiak, M.; Bansal, P.; Borghaei, H.; Edelman, M.J.; Boumber, Y. Existing and Emerging Biomarkers for Immune Checkpoint Immunotherapy in Solid Tumors. Adv. Ther. 2019, 36, 2638–2678. [Google Scholar] [CrossRef] [Green Version]
- Sunshine, J.; Taube, J.M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharm. 2015, 23, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Scott, M.; Scorer, P.; Barker, C.; Al-Masri, H. Comparison of patient populations identified by different PD-L1 assays in in triple-negative breast cancer (TNBC). Ann. Oncol. 2019, 30, iii4. [Google Scholar] [CrossRef]
- Rugo, H.S.; Loi, S.; Adams, S.; Schmid, P.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Dieras, V.C.; Winer, E.P.; Kockx, M.; et al. Performance of PD-L1 immunohistochemistry (IHC) assays in unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC): Post-hoc analysis of IMpassion130. Ann. Oncol. 2019, 30, v858–v859. [Google Scholar] [CrossRef]
- Noske, A.; Ammann, J.; Wagner, D.C.; Denkert, C.; Lebeau, A.; Sinn, P.; Kreipe, H.H.; Baretton, G.; Steiger, K.; Kiechle, M.; et al. Reproducibility and concordance of 4 clinically developed programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) assays in triple negative breast cancer (TNBC). Ann. Oncol. 2019, 30, v130–v131. [Google Scholar] [CrossRef]
- Reisenbichler, E.S.; Han, G.; Bellizzi, A.; Bossuyt, V.; Brock, J.; Cole, K.; Fadare, O.; Hameed, O.; Hanley, K.; Harrison, B.T.; et al. Prospective multi-institutional evaluation of pathologist assessment of PD-L1 assays for patient selection in triple negative breast cancer. Mod. Pathol. 2020, 33, 1746–1752. [Google Scholar] [CrossRef]
- Fridman, W.H.; Pages, F.; Sautes-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Z.; Wang, Z.; Wu, P.; Qiu, F.; Huang, J. Prognostic and predictive value of tumor-infiltrating lymphocytes in breast cancer: A systematic review and meta-analysis. Clin. Transl. Oncol. 2016, 18, 497–506. [Google Scholar] [CrossRef]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef]
- Han, G.; Yang, G.; Hao, D.; Lu, Y.; Thein, K.; Simpson, B.S.; Chen, J.; Sun, R.; Alhalabi, O.; Wang, R.; et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat. Commun. 2021, 12, 5606. [Google Scholar] [CrossRef]
- Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie, S.K.; Pastore, A.; Zhang, H.; McLellan, M.; Yau, C.; Kandoth, C.; et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell 2015, 163, 506–519. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, A.J.; Hellmann, M.D. Acquired Resistance to Immune Checkpoint Inhibitors. Cancer Cell 2020, 37, 443–455. [Google Scholar] [CrossRef]
- Sceneay, J.; Goreczny, G.J.; Wilson, K.; Morrow, S.; DeCristo, M.J.; Ubellacker, J.M.; Qin, Y.; Laszewski, T.; Stover, D.G.; Barrera, V.; et al. Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efficacy in Triple-Negative Breast Cancer. Cancer Discov. 2019, 9, 1208–1227. [Google Scholar] [CrossRef]
- Siddiqui, I.; Schaeuble, K.; Chennupati, V.; Fuertes Marraco, S.A.; Calderon-Copete, S.; Pais Ferreira, D.; Carmona, S.J.; Scarpellino, L.; Gfeller, D.; Pradervand, S.; et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity 2019, 50, 195–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, C.S.; Prokhnevska, N.; Master, V.A.; Sanda, M.G.; Carlisle, J.W.; Bilen, M.A.; Cardenas, M.; Wilkinson, S.; Lake, R.; Sowalsky, A.G.; et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 2019, 576, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Falvo, P.; Orecchioni, S.; Hillje, R.; Raveane, A.; Mancuso, P.; Camisaschi, C.; Luzi, L.; Pelicci, P.; Bertolini, F. Cyclophosphamide and Vinorelbine Activate Stem-Like CD8(+) T Cells and Improve Anti-PD-1 Efficacy in Triple-Negative Breast Cancer. Cancer Res. 2021, 81, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Mo, H.; Hu, X.; Gao, R.; Zhao, Y.; Liu, B.; Niu, L.; Sun, X.; Yu, X.; et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 2021, 39, 1578–1593. [Google Scholar] [CrossRef]
- Kim, I.S.; Gao, Y.; Welte, T.; Wang, H.; Liu, J.; Janghorban, M.; Sheng, K.; Niu, Y.; Goldstein, A.; Zhao, N.; et al. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 2019, 21, 1113–1126. [Google Scholar] [CrossRef]
- Bao, X.; Shi, R.; Zhao, T.; Wang, Y.; Anastasov, N.; Rosemann, M.; Fang, W. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol. Immunother. 2021, 70, 189–202. [Google Scholar] [CrossRef]
- Costa, A.; Kieffer, Y.; Scholer-Dahirel, A.; Pelon, F.; Bourachot, B.; Cardon, M.; Sirven, P.; Magagna, I.; Fuhrmann, L.; Bernard, C.; et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell 2018, 33, 463–479. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Ma, D.; Zhao, S.; Suo, C.; Shi, J.; Xue, M.Z.; Ruan, M.; Wang, H.; Zhao, J.; Li, Q.; et al. Multi-Omics Profiling Reveals Distinct Microenvironment Characterization and Suggests Immune Escape Mechanisms of Triple-Negative Breast Cancer. Clin. Cancer Res. 2019, 25, 5002–5014. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Xiao, Y.; Wei, J.L.; Xu, X.E.; Jin, X.; Hu, X.; Li, D.Q.; Jiang, Y.Z.; Shao, Z.M. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J. Immunother. Cancer 2021, 9, e002528. [Google Scholar] [CrossRef]
- Corrales, L.; Glickman, L.H.; McWhirter, S.M.; Kanne, D.B.; Sivick, K.E.; Katibah, G.E.; Woo, S.R.; Lemmens, E.; Banda, T.; Leong, J.J.; et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015, 11, 1018–1030. [Google Scholar] [CrossRef] [Green Version]
- Loi, S.; Dushyanthen, S.; Beavis, P.A.; Salgado, R.; Denkert, C.; Savas, P.; Combs, S.; Rimm, D.L.; Giltnane, J.M.; Estrada, M.V.; et al. RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors. Clin. Cancer Res. 2016, 22, 1499–1509. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zhou, Z.; Li, H.; Xue, Y.; Lu, X.; Bahar, I.; Kepp, O.; Hung, M.C.; Kroemer, G.; Wan, Y. Pharmacologic Suppression of B7-H4 Glycosylation Restores Antitumor Immunity in Immune-Cold Breast Cancers. Cancer Discov. 2020, 10, 1872–1893. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, H.L.; Li, Z.L.; Du, T.; Chen, Y.H.; Wang, Y.; Ni, H.H.; Zhang, K.M.; Mai, J.; Hu, B.X.; et al. FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat. Commun. 2021, 12, 2672. [Google Scholar] [CrossRef]
- Hu, Q.; Ye, Y.; Chan, L.C.; Li, Y.; Liang, K.; Lin, A.; Egranov, S.D.; Zhang, Y.; Xia, W.; Gong, J.; et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat. Immunol. 2019, 20, 835–851. [Google Scholar] [CrossRef]
- Li, Z.L.; Zhang, H.L.; Huang, Y.; Huang, J.H.; Sun, P.; Zhou, N.N.; Chen, Y.H.; Mai, J.; Wang, Y.; Yu, Y.; et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat. Commun. 2020, 11, 3806. [Google Scholar] [CrossRef]
- Bagati, A.; Kumar, S.; Jiang, P.; Pyrdol, J.; Zou, A.E.; Godicelj, A.; Mathewson, N.D.; Cartwright, A.N.R.; Cejas, P.; Brown, M.; et al. Integrin alphavbeta6-TGFbeta-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 2021, 39, 54–67. [Google Scholar] [CrossRef]
- Araujo, J.M.; Gomez, A.C.; Aguilar, A.; Salgado, R.; Balko, J.M.; Bravo, L.; Doimi, F.; Bretel, D.; Morante, Z.; Flores, C.; et al. Effect of CCL5 expression in the recruitment of immune cells in triple negative breast cancer. Sci. Rep. 2018, 8, 4899. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Vasilatos, S.N.; Chen, L.; Wu, H.; Cao, Z.; Fu, Y.; Huang, M.; Vlad, A.M.; Lu, B.; Oesterreich, S.; et al. Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene 2019, 38, 390–405. [Google Scholar] [CrossRef]
- Wang, X.; Feng, M.; Xiao, T.; Guo, B.; Liu, D.; Liu, C.; Pei, J.; Liu, Q.; Xiao, Y.; Rosin-Arbesfeld, R.; et al. BCL9/BCL9L promotes tumorigenicity through immune-dependent and independent mechanisms in triple negative breast cancer. Oncogene 2021, 40, 2982–2997. [Google Scholar] [CrossRef]
- Wang, X.; Tokheim, C.; Gu, S.S.; Wang, B.; Tang, Q.; Li, Y.; Traugh, N.; Zeng, Z.; Zhang, Y.; Li, Z.; et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 2021, 184, 5357–5374. [Google Scholar] [CrossRef]
- Li, W.; Tanikawa, T.; Kryczek, I.; Xia, H.; Li, G.; Wu, K.; Wei, S.; Zhao, L.; Vatan, L.; Wen, B.; et al. Aerobic Glycolysis Controls Myeloid-Derived Suppressor Cells and Tumor Immunity via a Specific CEBPB Isoform in Triple-Negative Breast Cancer. Cell Metab. 2018, 28, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.W.; Sceneay, J.; Lima, L.G.; Wong, C.S.; Becker, M.; Krumeich, S.; Lobb, R.J.; Castillo, V.; Wong, K.N.; Ellis, S.; et al. The Biodistribution and Immune Suppressive Effects of Breast Cancer-Derived Exosomes. Cancer Res. 2016, 76, 6816–6827. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Chatterjee, A.; Jana, S.; Dey, S.; Roy, H.; Das, M.K.; Alam, J.; Adhikary, A.; Chowdhury, A.; Biswas, A.; et al. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis 2021, 42, 38–47. [Google Scholar] [CrossRef]
- Yang, S.J.; Wang, D.D.; Zhong, S.L.; Chen, W.Q.; Wang, F.L.; Zhang, J.; Xu, W.X.; Xu, D.; Zhang, Q.; Li, J.; et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/beta-catenin (cyclin D1) axis. Cell Death Dis. 2021, 12, 420. [Google Scholar] [CrossRef]
- Lim, S.O.; Li, C.W.; Xia, W.; Lee, H.H.; Chang, S.S.; Shen, J.; Hsu, J.L.; Raftery, D.; Djukovic, D.; Gu, H.; et al. EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape. Cancer Res. 2016, 76, 1284–1296. [Google Scholar] [CrossRef] [Green Version]
- Noonepalle, S.K.; Gu, F.; Lee, E.J.; Choi, J.H.; Han, Q.; Kim, J.; Ouzounova, M.; Shull, A.Y.; Pei, L.; Hsu, P.Y.; et al. Promoter Methylation Modulates Indoleamine 2,3-Dioxygenase 1 Induction by Activated T Cells in Human Breast Cancers. Cancer Immunol. Res. 2017, 5, 330–344. [Google Scholar] [CrossRef] [Green Version]
- Holmgaard, R.B.; Zamarin, D.; Munn, D.H.; Wolchok, J.D.; Allison, J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 2013, 210, 1389–1402. [Google Scholar] [CrossRef]
NCT Number | Other IDs/Acronyms | Status | Interventions |
---|---|---|---|
NCT02768701 | LCCC 1525 | Active, not recruiting | Pembrolizumab + Cyclophosphamide |
NCT03121352 | CASE6115 | Active, not recruiting | Carboplatin + Nab-paclitaxel + Pembrolizumab |
NCT03567720 | OMS-I141, KEYNOTE-890, MK3475-890 | Recruiting | Tavokinogene telseplasmid + Pembrolizumab + Immunopulse + Nab-paclitaxel |
NCT04191135 | 7339-009, 2019-001892-35, MK-7339-009, KEYLYNK-009, 195082 | Active, not recruiting | Pembrolizumab + Carboplatin + Gemcitabine |
NCT02734290 | 16-001 | Active, not recruiting | Pembrolizumab + Paclitaxel, Pembrolizumab + Capecitabine |
NCT03639948 | NeoPACT, IIT-2017-NeoPACT | Recruiting | Carboplatin + Docetaxel + Pembrolizumab + Pegfilgrastim |
NCT05174832 | COMPLEMENT | Not yet recruiting | Cisplatin + Nab-paclitaxel + Pembrolizumab, Cisplatin + Nab-paclitaxel + Pembrolizumab + Olaparib |
NCT02513472 | ENHANCE-1 | Completed | Eribulin Mesylate + Pembrolizumab |
NCT02622074 | 3475-173, 2015-002405-11, MK-3475-173, KEYNOTE-173 | Completed | Pembrolizumab + Nab-paclitaxel + Anthracycline (doxorubicin) + Cyclophosphamide, Pembrolizumab + Nab-paclitaxel + Anthracycline (doxorubicin) + Cyclophosphamide + Carboplatin, Pembrolizumab + Anthracycline (doxorubicin) + Cyclophosphamide + Paclitaxel |
NCT02755272 | BR-076, 16-1013 | Recruiting | Pembrolizumab + Carboplatin + Gemcitabine, Carboplatin + Gemcitabine |
NCT02819518 | 3475-355, 2016-001432-35, 163422, MK-3475-355, KEYNOTE-355 | Active, not recruiting | Pembrolizumab + Nab-paclitaxel, Pembrolizumab + Paclitaxel, Pembrolizumab + Gemcitabine + Carboplatin, Pembrolizumab + Nab-paclitaxel + Paclitaxel + Gemcitabine + Carboplatin, Nab-paclitaxel + Paclitaxel + Gemcitabine + Carboplatin + Normale Saline Solution |
NCT03752723 | GX-I7-CA-006 | Recruiting | GX-I7 + Pembrolizumab + Cyclophosphamide, GX-I7 + Pembrolizumab |
NCT03036488 | 3475-522, 2016-004740-11, 173567, MK-3475-522, KEYNOTE-522 | Active, not recruiting | Pembrolizumab + Carboplatin + Paclitaxel + Doxorubicin + Epirubicin + Cyclophosphamide + Granulocyte colony stimulating factor, Carboplatin + Paclitaxel + Doxorubicin + Epirubicin + Cyclophosphamide + Placebo + Granulocyte colony stimulating factor |
NCT05112536 | G1T28-212 | Recruiting | Trilaciclib + Cylophosphamide + Doxorubicin + Paclitaxel + Carboplatin (Investigator discretion) + Pembrolizumab (Investigator discretion) |
NCT03289819 | NIB, IFG-NIB-01, 2016-003102-14, U1111-1188-3915 | Completed | Pembrolizumab + Nab-paclitaxel + Epirubicin + Cyclophosphamide |
NCT04443348 | 20-157 | Recruiting | Pembrolizumab + Paclitaxel + Carboplatin + Cyclophosphamide + Doxorubicin + Capecitabine, Radiation Therapy Boost + Pembrolizumab + Paclitaxel + Carboplatin + Cyclophosphamide + Doxorubicin + Capecitabine |
NCT04265872 | 020-008 | Recruiting | Bortezomib + Pembrolizumab + Cisplatin |
NCT03396445 | 5890-001, MK-5890-001 | Recruiting | MK-5890, MK-5890 + Pembrolizumab, MK-5890 + Pembrolizumab + Pemetrexed + Carboplatin, MK-5890 + Pembrolizumab + Nab-paclitaxel |
NCT05093387 | NU 19B07, NCI-2021-09317, STU00212682 | Not yet recruiting | Carboplatin + Pembrolizumab + Transferrin Receptor-Targeted Liposomal p53 cDNA |
NCT03044730 | NU 16B08, STU00203215 | Active, not recruiting | Capecitabine + Pembrolizumab |
NCT02648477 | 15295, NCI-2015-02194 | Active, not recruiting | Doxorubicin Hydrochloride + Pembrolizumab, Anastrozole + Exemestane + Letrozole + Pembrolizumab |
NCT05007106 | 7684A-005, MK-7684A-005, jRCT2031210335, 2021-001700-15 | Recruiting | Pembrolizumab/Vibostolimab Co-Formulation, Pembrolizumab, Pembrolizumab/Vibostolimab Co-Formulation + Lenvatinib, Pembrolizumab/Vibostolimab Co-Formulation + 5-Fluorouracil + Cisplatin, Pembrolizumab/Vibostolimab Co-Formulation + Paclitaxel |
NCT03213041 | NU 16B14, NCI-2017-00330 | Recruiting | Carboplatin + Pembrolizumab |
NCT04060342 | KEYNOTE-A36, GB1275-1101 | Active, not recruiting | GB1275, GB1275 + Pembrolizumab, GB1275 + Nab-paclitaxel + Gemcitabine |
NCT02957968 | MCC-15-11083, NCI-2016-01980 | Recruiting | Doxorubicin + Cyclophosphamide + Paclitaxel + Carboplatin + Decitabine + Pembrolizumab |
NCT05177796 | 2020-0715, TN-IBC | Not yet recruiting | Panitumumab + Pembrolizumab + Paclitaxel + Carboplatin + Doxorubicin Hydrochloride + Cyclophosphamide |
NCT05069935 | FT538-102 | Not yet recruiting | FT538 + Cyclophosphamide + Fludarabine + either avelumab, atezolizumab, nivolumab, or pembrolizumab |
NCT04954599 | TUMAGNOSTIC, 2021-000423-12, 694812 | Not yet recruiting | CP-506, CP-506 + Carboplatin, CP-506 + Immune checkpoint inhibitor |
NCT04148911 | EL1SSAR, MO39874, 2019-002488-91 | Recruiting | Atezolizumab + Nab-Paclitaxel |
NCT03125902 | MO39196, 2016-004024-29, IMpassion131 | Active, not recruiting | Atezolizumab + Paclitaxel, Placebo + Paclitaxel |
NCT02425891 | WO29522, 2014-005490-37 | Completed | Atezolizumab + Paclitaxel, Placebo + Paclitaxel |
NCT03164993 | ALICE, ML39079_ALICE | Recruiting | Pegylated liposomal doxorubicin + Cyclophosphamide + Atezolizumab, Pegylated liposomal doxorubicin + Cyclophosphamide + Placebo |
NCT03498716 | IMpassion030, WO39391, 2016-003695-47, BIG 16-05, AFT-27, ALEXANDRA | Recruiting | Atezolizumab + Paclitaxel + Dose-dense Doxorubicin or dose-dense Epirubicin + Cyclophosphamide, Paclitaxel + Dose-dense Doxorubicin or dose-dense Epirubicin + Cyclophosphamide |
NCT04584112 | CO42177, 2020-000531-47 | Active, not recruiting | Tiragolumab + Atezolizumab + Nab-paclitaxel, Tiragolumab + Atezolizumab + Nab-paclitaxel + Carboplatin + Doxorubicin + Cyclophosphamide + Granulocyte colony-stimulating factor (G-CSF) + Granulocyte-macrophage colony-stimulating factor (GM-CSF), Tiragolumab + Atezolizumab + Nab-paclitaxel + Doxorubicin + Cyclophosphamide + G-CSF + GM-CSF |
NCT04739670 | BELLA, 19/002 | Not yet recruiting | Atezolizumab + Bevacizumab + Gemcitabine + Carboplatin |
NCT04177108 | CO41101, 2019-000810-12 | Active, not recruiting | Atezolizumab + Ipatasertib + Paclitaxel, Placebo for Atezolizumab + Ipatasertib + Paclitaxel, Placebo for Atezolizumab + Placebo for Ipatasertib + Paclitaxel, Atezolizumab + Paclitaxel + Placebo for Ipatasertib |
NCT03197935 | IMpassion031, WO39392, 2016-004734-22 | Active, not recruiting | Atezolizumab + Nab-paclitaxel + Doxorubicin + Cyclophosphamide + Filgrastim + Pegfilgrastim, Placebo + Nab-paclitaxel + Doxorubicin + Cyclophosphamide + Filgrastim + Pegfilgrastim |
NCT03371017 | IMpassion132, MO39193, 2016-005119-42 | Recruiting | Atezolizumab + Gemcitabine + Capecitabine + Carboplatin, Placebo + Gemcitabine + Capecitabine + Carboplatin |
NCT04770272 | neoMono, Phaon1 | Recruiting | Atezolizumab + Carboplatin + Paclitaxel + Epirubicin + Cyclophosphamide |
NCT02530489 | 2014-1043, NCI-2015-01537, 2014-1043 | Active, not recruiting | Atezolizumab + Nab-paclitaxel |
NCT03206203 | VICC BRE 15136, NCI-2017-01150 | Active, not recruiting | Atezolizumab + Carboplatin |
NCT03756298 | ATOX-2018 | Recruiting | Atezolizumab + Capecitabine, Capecitabine |
NCT04408118 | ATRACTIB, MedOPP150, 2019-001503-20 | Recruiting | Atezolizumab + Paclitaxel + Bevacizumab |
NCT01898117 | Triple-B | Recruiting | Carboplatin/Cyclophosphamide, Carboplatin/Cyclophosphamide + Atezolizumab, Paclitaxel, Paclitaxel + Atezolizumab |
NCT02322814 | M13TNB, 2013-001484-23, NL44403.031.13 | Completed | Drug: Cobimetinib|Drug: Paclitaxel|Drug: Placebo|Drug: Atezolizumab|Drug: Nab-Paclitaxel |
NCT02883062 | NCI-2016-01301, NCI-2016-01301, 201706104, 10013 | Active, not recruiting | Carboplatin + Paclitaxel, Atezolizumab + Carboplatin + Paclitaxel |
NCT03800836 | CO40151, 2017-001957-15 | Active, not recruiting | Ipatasertib + Paclitaxel + Atezolizumab, Ipatasertib + Nab-paclitaxel + Atezolizumab, Ipatasertib + Atezolizumab, Ipatasertib + Paclitaxel + Atezolizumab + Doxorubicin and Cyclophosphamide |
NCT04849364 | PERSEVERE, HCRN BRE18-334 | Recruiting | Capecitabine + Talazoparib + Atezolizumab + Inavolisib |
NCT03961698 | MARIO-3, IPI-549-03 | Recruiting | IPI-549 + Atezolizumab + Nab-paclitaxel |
NCT04639245 | RG1007463, NCI-2020-06602, 10420 | Recruiting | Atezolizumab + Cyclophosphamide + Fludarabine + MAGE-A1-specific T Cell Receptor-transduced Autologous T-cells + PD1 Inhibitor |
NCT03424005 | Morpheus-TNBC, CO40115, 2017-002038-21 | Recruiting | Atezolizumab + Nab-paclitaxel, Atezolizumab + Tocilizumab + Nab-paclitaxel, Atezolizumab + Sacituzumab Govitecan, Capecitabine, Atezolizumab + Ipatasertib, Atezolizumab + SGN-LIV1A, Atezolizumab + Bevacizumab + Selicrelumab, Atezolizumab + Chemotherapy (Gemcitabine + Carboplatin or Eribulin) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Choi, J.-M.; Lee, K.-m. Immune Checkpoint Blockades in Triple-Negative Breast Cancer: Current State and Molecular Mechanisms of Resistance. Biomedicines 2022, 10, 1130. https://doi.org/10.3390/biomedicines10051130
Kim H, Choi J-M, Lee K-m. Immune Checkpoint Blockades in Triple-Negative Breast Cancer: Current State and Molecular Mechanisms of Resistance. Biomedicines. 2022; 10(5):1130. https://doi.org/10.3390/biomedicines10051130
Chicago/Turabian StyleKim, Hyungjoo, Je-Min Choi, and Kyung-min Lee. 2022. "Immune Checkpoint Blockades in Triple-Negative Breast Cancer: Current State and Molecular Mechanisms of Resistance" Biomedicines 10, no. 5: 1130. https://doi.org/10.3390/biomedicines10051130
APA StyleKim, H., Choi, J. -M., & Lee, K. -m. (2022). Immune Checkpoint Blockades in Triple-Negative Breast Cancer: Current State and Molecular Mechanisms of Resistance. Biomedicines, 10(5), 1130. https://doi.org/10.3390/biomedicines10051130