Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity
Abstract
:1. Introduction
2. APAP Hepatotoxicity: A Critical Health Issue
3. Mechanistic Insight of APAP Hepatotoxicity
4. Hepatoprotective Mechanisms of Probiotics
5. Emerging Role of the Gut Microbiota in APAP Hepatotoxicity
6. Protective Roles of Probiotic Strains against APAP Hepatotoxicity
6.1. Enterococcus lactis IITRHR1
6.2. S. salivarius ssp. thermophilus St.sa
6.3. Bacillus Spores
6.4. L. ingluviei ADK10
6.5. L. acidophilus LA14
6.6. L. rhamnosus GG
6.7. L. reuteri K8
6.8. Akkermansia muciniphila
6.9. Laktera Nature: A Probiotic Formulation
7. Role of Postbiotics against Liver Diseases
7.1. 4-Phenylbutyric Acid (PBA)
7.2. 3-Phenylpropionic Acid (PPA)
7.3. Urolithin A
7.4. E. lactis IITRHR1 and L. acidophilus Lysates
7.5. L. fermentum BGHV110 Postbiotic
7.6. Intracellular Fraction of S. thermophilus TISTR 458
8. Future Scopes
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freo, U.; Ruocco, C.; Valerio, A.; Scagnol, I.; Nisoli, E. Paracetamol: A review of guideline recommendations. J. Clin. Med. 2021, 10, 3420. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Braithwaite, I.; McKinlay, C.J.; Dalziel, S.R. Comparison of acetaminophen (paracetamol) with ibuprofen for treatment of fever or pain in children younger than 2 years: A systematic review and meta-analysis. JAMA Netw. Open 2020, 3, e2022398. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.A.; Hashem, K.S.; Alshehri, F.S.; Awad, S.T.; Hassan, M.S. Antioxidant and hepatoprotective efficiency of selenium nanoparticles against acetaminophen-induced hepatic damage. Biol. Trace Elem. Res. 2017, 175, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Bunchorntavakul, C.; Reddy, K.R. Acetaminophen-related hepatotoxicity. Clin. Liver Dis. 2013, 17, 587–607. [Google Scholar] [CrossRef]
- Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-induced hepatotoxicity: A comprehensive update. J. Clin. Transl. Hepatol. 2016, 4, 131–142. [Google Scholar] [CrossRef] [Green Version]
- James, L.P.; Mayeux, P.R.; Hinson, J.A. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 2003, 31, 1499–1506. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Song, Q.; Han, X.; Zhang, Y.; Zhang, Y.; Zhang, X.; Chu, X.; Zhang, F.; Chu, L. Multi-targeted protection of acetaminophen-induced hepatotoxicity in mice by tannic acid. Int. Immunopharmacol. 2017, 47, 95–105. [Google Scholar] [CrossRef]
- Athersuch, T.J.; Antoine, D.J.; Boobis, A.R.; Coen, M.; Daly, A.K.; Possamai, L.; Nicholson, J.K.; Wilson, I.D. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: A perspective. Toxicol. Res. 2018, 7, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Dua, T.K.; Joardar, S.; Chakraborty, P.; Bhowmick, S.; Saha, A.; De Feo, V.; Dewanjee, S. Myricitrin, a glycosyloxyflavone in Myrica esculenta bark ameliorates diabetic nephropathy via improving glycemic status, reducing oxidative stress, and suppressing inflammation. Molecules 2021, 26, 258. [Google Scholar] [CrossRef]
- Yan, M.; Huo, Y.; Yin, S.; Hu, H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 2018, 17, 274–283. [Google Scholar] [CrossRef]
- Beltrán-Olazábal, A.; Martínez-Galán, P.; Castejón-Moreno, R.; García-Moreno, M.E.; García-Muro, C.; Esteban-Zubero, E. Management of acetaminophen toxicity, a review. Iberoam. J. Med. 2019, 1, 22–28. [Google Scholar] [CrossRef]
- Jaeschke, H.; Akakpo, J.Y.; Umbaugh, D.S.; Ramachandran, A. Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicol. Sci. 2020, 174, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, M.; Azcarate-Peril, M.A.; Barnard, A.; Benoit, V.; Grimaldi, R.; Guyonnet, D.; Holscher, H.D.; Hunter, K.; Manurung, S.; Obis, D.; et al. Shaping the future of probiotics and prebiotics. Trends Microbiol. 2021, 29, 667–685. [Google Scholar] [CrossRef]
- Eslamparast, T.; Eghtesad, S.; Hekmatdoost, A.; Poustchi, H. Probiotics and nonalcoholic fatty liver disease. Middle East J. Dig. Dis. 2013, 5, 129. [Google Scholar]
- Meng, X.; Li, S.; Li, Y.; Gan, R.-Y.; Li, H.-B. Gut microbiota’s relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics. Nutrients 2018, 10, 1457. [Google Scholar] [CrossRef] [Green Version]
- Twardowska, A.; Makaro, A.; Binienda, A.; Fichna, J.; Salaga, M. Preventing bacterial translocation in patients with leaky gut syndrome: Nutrition and pharmacological treatment options. Int. J. Mol. Sci. 2022, 23, 3204. [Google Scholar] [CrossRef]
- Forsyth, C.B.; Farhadi, A.; Jakate, S.M.; Tang, Y.; Shaikh, M.; Keshavarzian, A. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 2009, 43, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Liu, Y.; Hu, S.; You, Y.; Wen, J.; Li, W.; Wang, Y. Probiotics for alleviating alcoholic liver injury. Gastroenterol. Res. Pract. 2019, 2019, 9097276. [Google Scholar] [CrossRef] [Green Version]
- Patel, F.; Parwani, K.; Patel, D.; Mandal, P. Metformin and probiotics interplay in amelioration of ethanol-induced oxidative stress and inflammatory response in an in vitro and in vivo model of hepatic injury. Mediat. Inflamm. 2021, 2021, 6636152. [Google Scholar] [CrossRef]
- Rishi, P.; Mavi, S.K.; Bharrhan, S.; Shukla, G.; Tewari, R. Protective efficacy of probiotic alone or in conjunction with a prebiotic in Salmonella-induced liver damage. FEMS Microbiol. Ecol. 2009, 69, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Dinić, M.; Lukić, J.; Djokić, J.; Milenković, M.; Strahinić, I.; Golić, N.; Begović, J. Lactobacillus fermentum postbiotic-induced autophagy as potential approach for treatment of acetaminophen hepatotoxicity. Front. Microbiol. 2017, 8, 594. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Singh, R.; Kakkar, P. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem. Toxicol. 2011, 49, 770–779. [Google Scholar] [CrossRef]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef]
- Linares, D.M.; Gómez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front. Microbiol. 2017, 8, 846. [Google Scholar] [CrossRef]
- Taye, Y.; Degu, T.; Fesseha, H.; Mathewos, M. Isolation and identification of lactic acid bacteria from cow milk and milk products. Sci. World J. 2021, 2021, 4697445. [Google Scholar] [CrossRef]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food. Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [Green Version]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A step beyond pre-and probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci. 2019, 20, 4673. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.M. Acetaminophen toxicity: A history of serendipity and unintended consequences. Clin. Liver Dis. 2020, 16, 34. [Google Scholar] [CrossRef]
- Marzilawati, A.-R.; Ngau, Y.-Y.; Mahadeva, S. Low rates of hepatotoxicity among Asian patients with paracetamol overdose: A review of 1024 cases. BMC Pharmacol. Toxicol. 2012, 13, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotundo, L.; Pyrsopoulos, N. Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World J. Hepatol. 2020, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Tittarelli, R.; Pellegrini, M.; Scarpellini, M.; Marinelli, E.; Bruti, V.; Di Luca, N.; Busardò, F.; Zaami, S. Hepatotoxicity of paracetamol and related fatalities. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 95–101. [Google Scholar] [PubMed]
- Schiødt, F.V.; Atillasoy, E.; Shakil, A.O.; Schiff, E.R.; Caldwell, C.; Kowdley, K.V.; Stribling, R.; Crippin, J.S.; Flamm, S.; Somberg, K.A. Etiology and outcome for 295 patients with acute liver failure in the United States. Liver Transpl. Surg. 1999, 5, 29–34. [Google Scholar] [CrossRef]
- Larson, A.M.; Polson, J.; Fontana, R.J.; Davern, T.J.; Lalani, E.; Hynan, L.S.; Reisch, J.S.; Schiødt, F.V.; Ostapowicz, G.; Shakil, A.O. Acetaminophen-induced acute liver failure: Results of a United States multicenter, prospective study. Hepatology 2005, 42, 1364–1372. [Google Scholar] [CrossRef]
- Lee, W.M. Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away? J. Hepatol. 2017, 67, 1324–1331. [Google Scholar] [CrossRef] [Green Version]
- Rubin, J.B.; Hameed, B.; Gottfried, M.; Lee, W.M.; Sarkar, M.; Group, A.L.F.S. Acetaminophen-induced acute liver failure is more common and more severe in women. Clin. Gastroenterol. Hepatol. 2018, 16, 936–946. [Google Scholar] [CrossRef] [Green Version]
- Cairns, R.; Brown, J.A.; Wylie, C.E.; Dawson, A.H.; Isbister, G.K.; Buckley, N.A. Paracetamol poisoning-related hospital admissions and deaths in Australia, 2004–2017. Med. J. Aust. 2019, 211, 218–223. [Google Scholar] [CrossRef]
- Nash, E.; Sabih, A.H.; Chetwood, J.; Wood, G.; Pandya, K.; Yip, T.; Majumdar, A.; McCaughan, G.W.; Strasser, S.I.; Liu, K. Drug-induced liver injury in Australia, 2009–2020: The increasing proportion of non-paracetamol cases linked with herbal and dietary supplements. Med. J. Aust. 2021, 215, 261–268. [Google Scholar] [CrossRef]
- Pholmoo, N.; Bunchorntavakul, C. Characteristics and outcomes of acetaminophen overdose and hepatotoxicity in Thailand. J. Clin. Transl. Hepatol. 2019, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Moles, A.; Torres, S.; Baulies, A.; Garcia-Ruiz, C.; Fernandez-Checa, J.C. Mitochondrial-lysosomal axis in acetaminophen hepatotoxicity. Front. Pharmacol. 2018, 9, 453. [Google Scholar] [CrossRef]
- Jaeschke, H.; Adelusi, O.B.; Akakpo, J.Y.; Nguyen, N.T.; Sanchez-Guerrero, G.; Umbaugh, D.S.; Ding, W.-X.; Ramachandran, A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm. Sin. B 2021, 11, 3740–3755. [Google Scholar] [CrossRef]
- Jaeschke, H.; McGill, M.R.; Ramachandran, A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 2012, 44, 88–106. [Google Scholar] [CrossRef] [Green Version]
- Jaeschke, H.; Ramachandran, A. Acetaminophen-induced apoptosis: Facts versus fiction. J. Clin. Transl. Res. 2020, 6, 36. [Google Scholar] [CrossRef]
- Sahu, R.; Dua, T.K.; Das, S.; De Feo, V.; Dewanjee, S. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem. Toxicol. 2019, 125, 503–519. [Google Scholar] [CrossRef]
- Jaeschke, H.; Duan, L.; Akakpo, J.Y.; Farhood, A.; Ramachandran, A. The role of apoptosis in acetaminophen hepatotoxicity. Food Chem. Toxicol. 2018, 118, 709–718. [Google Scholar] [CrossRef]
- Medala, V.K.; Gollapelli, B.; Dewanjee, S.; Ogunmokun, G.; Kandimalla, R.; Vallamkondu, J. Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in Alzheimer’s disease. J. Neurosci. Res. 2021, 99, 1120–1135. [Google Scholar] [CrossRef]
- Heslop, K.; Rovini, A.; Hunt, E.; Fang, D.; Morris, M.; Christie, C.; Gooz, M.; DeHart, D.; Dang, Y.; Lemasters, J. JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells. Biochem. Pharmacol. 2020, 171, 113728. [Google Scholar] [CrossRef]
- Brojatsch, J.; Lima, H., Jr.; Palliser, D.; Jacobson, L.S.; Muehlbauer, S.M.; Furtado, R.; Goldman, D.L.; Lisanti, M.P.; Chandran, K. Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents. Cell Cycle 2015, 14, 964–972. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Yang, X.; Won, K.-J.; Leone, V.; Hubert, N.; Chang, E.; Chung, E.; Park, J.-S.; Guzman, G.; Lee, H. Phenylpropionc acid produced by gut microbiota alleviates acetaminophen-induced hepatotoxicity. bioRxiv 2020, 811984. [Google Scholar] [CrossRef]
- Ma, X.; McKeen, T.; Zhang, J.; Ding, W.-X. Role and mechanisms of mitophagy in liver diseases. Cells 2020, 9, 837. [Google Scholar] [CrossRef] [Green Version]
- Cao, P.; Sun, J.; Sullivan, M.A.; Huang, X.; Wang, H.; Zhang, Y.; Wang, N.; Wang, K. Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int. J. Biol. Macromol. 2018, 111, 1133–1139. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhang, X.; Zhao, S.; Zou, K.; Xie, J.; Wang, X.; Liu, C.; Wang, J.; Wang, Y. Seabuckthorn berry polysaccharide extracts protect against acetaminophen induced hepatotoxicity in mice via activating the Nrf-2/HO-1-SOD-2 signaling pathway. Phytomedicine 2018, 38, 90–97. [Google Scholar] [CrossRef]
- Sharma, V.; Garg, S.; Aggarwal, S. Probiotics and liver disease. Perm. J. 2013, 17, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Xiu, L.; Zhang, Y.; Du, R.; Wang, X. Probiotic and hepatoprotective activity of lactobacillus isolated from Mongolian camel milk products. Benef. Microbes 2019, 10, 699–710. [Google Scholar] [CrossRef]
- Bruch-Bertani, J.P.; Uribe-Cruz, C.; Pasqualotto, A.; Longo, L.; Ayres, R.; Beskow, C.B.; Barth, A.L.; Lima-Morales, D.; Meurer, F.; Tayguara Silveira Guerreiro, G. Hepatoprotective effect of probiotic Lactobacillus rhamnosus GG through the modulation of gut permeability and inflammasomes in a model of alcoholic liver disease in zebrafish. J. Am. Coll. Nutr. 2020, 39, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Jantararussamee, C.; Rodniem, S.; Taweechotipatr, M.; Showpittapornchai, U.; Pradidarcheep, W. Hepatoprotective effect of probiotic lactic acid bacteria on thioacetamide-induced liver fibrosis in rats. Probiotics Antimicrob. Proteins 2021, 13, 40–50. [Google Scholar] [CrossRef]
- Chávez-Tapia, N.C.; González-Rodríguez, L.; Jeong, M.; López-Ramírez, Y.; Barbero-Becerra, V.; Juárez-Hernández, E.; Romero-Flores, J.L.; Arrese, M.; Méndez-Sánchez, N.; Uribe, M. Current evidence on the use of probiotics in liver diseases. J. Funct. Foods 2015, 17, 137–151. [Google Scholar] [CrossRef]
- Hsieh, P.-S.; Chen, C.-W.; Kuo, Y.-W.; Ho, H.-H. Lactobacillus spp. reduces ethanol-induced liver oxidative stress and inflammation in a mouse model of alcoholic steatohepatitis. Exp. Ther. Med. 2021, 21, 188. [Google Scholar] [CrossRef]
- Javadi, L.; Khoshbaten, M.; Safaiyan, A.; Ghavami, M.; Abbasi, M.M.; Gargari, B.P. Pro-and prebiotic effects on oxidative stress and inflammatory markers in non-alcoholic fatty liver disease. Asia Pac. J. Clin. Nutr. 2018, 27, 1031–1039. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, B.; Tang, L.; Zhou, Y.; Wang, Q.; Gong, L.; Ni, J.; Li, W. Probiotic Bacillus Alleviates Oxidative Stress-Induced Liver Injury by Modulating Gut-Liver Axis in a Rat Model. Antioxidants 2022, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as potential antioxidants: A systematic review. J. Agric. Food Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant properties of probiotic bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- González-Sarrías, A.; Espín, J.C.; Tomás-Barberán, F.A. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trend. Food Sci. Technol. 2017, 69, 281–288. [Google Scholar] [CrossRef]
- Schneider, K.M.; Elfers, C.; Ghallab, A.; Schneider, C.V.; Galvez, E.; Mohs, A.; Gui, W.; Candels, L.S.; Wirtz, T.H.; Zuehlke, S.; et al. Intestinal Dysbiosis Amplifies Acetaminophen-Induced Acute Liver Injury. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 909–933. [Google Scholar] [CrossRef]
- Elinav, E.; Henao-Mejia, J.; Strowig, T.; Flavell, R. NLRP6 and dysbiosis: Avoiding the luring attraction of over-simplification. Immunity 2018, 48, 603–604. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-J.; Chlipala, G.; Green, S.; Lee, H.; Jeong, H. Differential gut microbiota modulates the susceptibility to acetaminophen-induced hepatotoxicity. FASEB J. 2018, 31, 668. [Google Scholar] [CrossRef]
- Bone, E.; Tamm, A.; Hill, M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am. J. Clin. Nutr. 1976, 29, 1448–1454. [Google Scholar] [CrossRef]
- Jourová, L.; Vavreckova, M.; Zemanova, N.; Anzenbacher, P.; Langova, K.; Hermanova, P.; Hudcovic, T.; Anzenbacherova, E. Gut microbiome alters the activity of liver cytochromes P450 in mice with sex-dependent differences. Front. Pharmacol. 2020, 11, 01303. [Google Scholar] [CrossRef]
- Gong, S.; Lan, T.; Zeng, L.; Luo, H.; Yang, X.; Li, N.; Chen, X.; Liu, Z.; Li, R.; Win, S.; et al. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J. Hepatol. 2018, 69, 51–59. [Google Scholar] [CrossRef]
- Possamai, L.A.; McPhail, M.J.; Khamri, W.; Wu, B.; Concas, D.; Harrison, M.; Williams, R.; Cox, R.D.; Cox, I.J.; Anstee, Q.M.; et al. The role of intestinal microbiota in murine models of acetaminophen-induced hepatotoxicity. Liver Int. 2015, 35, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Tripathi, A.; Chlipala, G.; Green, S.; Lee, H.; Chang, E.B.; Jeong, H. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice. PLoS ONE 2017, 12, e0182977. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, B.J.; Liu, K.H.; Owens, J.A.; Hunter-Chang, S.; Camacho, M.C.; Eboka, R.U.; Chandrasekharan, B.; Baker, N.F.; Darby, T.M.; Robinson, B.S. Gut-resident lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metab. 2020, 31, 956–968 e955. [Google Scholar] [CrossRef]
- Zheng, N.; Gu, Y.; Hong, Y.; Sheng, L.; Chen, L.; Zhang, F.; Hou, J.; Zhang, W.; Zhang, Z.; Jia, W. Vancomycin pretreatment attenuates acetaminophen-induced liver injury through 2-hydroxybutyric acid. J. Pharm. Anal. 2020, 10, 560–570. [Google Scholar] [CrossRef]
- Kim, J.-K.; Choi, M.S.; Jeong, J.-J.; Lim, S.-M.; Kim, I.S.; Yoo, H.H.; Kim, D.-H. Effect of probiotics on pharmacokinetics of orally administered acetaminophen in mice. Drug Metab. Dispos. 2018, 46, 122–130. [Google Scholar] [CrossRef]
- Barman, P.K.; Mukherjee, R.; Prusty, B.K.; Suklabaidya, S.; Senapati, S.; Ravindran, B. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice. Cell Death Dis. 2016, 7, e2224. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Cui, Q.; Ni, J.; Liu, X.; Zhu, J.; Zhou, T.; Huang, H.; OuYang, K.; Wu, Y.; Yang, Z. Gut Microbiota Mediates the Therapeutic Effect of Monoclonal Anti-TLR4 Antibody on Acetaminophen-Induced Acute Liver Injury in Mice. Microbiol. Spectr. 2022, 10, e0064722. [Google Scholar] [CrossRef]
- Neag, M.A.; Catinean, A.; Muntean, D.M.; Pop, M.R.; Bocsan, C.I.; Botan, E.C.; Buzoianu, A.D. Probiotic Bacillus spores protect against acetaminophen induced acute liver injury in rats. Nutrients 2020, 12, 632. [Google Scholar] [CrossRef] [Green Version]
- Riane, K.; Ouled-Haddar, H.; Alyane, M.; Sifour, M.; Espinosa, C.; Angeles Esteban, M. Assessment of Streptococcus salivarius sp thermophiles antioxidant efficiency and its role in reducing paracetamol hepatotoxicity. Iran J. Biotechnol. 2019, 17, e2061. [Google Scholar] [CrossRef]
- Sharma, S.; Chaturvedi, J.; Chaudhari, B.P.; Singh, R.L.; Kakkar, P. Probiotic Enterococcus lactis IITRHR1 protects against acetaminophen-induced hepatotoxicity. Nutrition 2012, 28, 173–181. [Google Scholar] [CrossRef]
- Xia, J.; Lv, L.; Liu, B.; Wang, S.; Zhang, S.; Wu, Z.; Yang, L.; Bian, X.; Wang, Q.; Wang, K. Akkermansia muciniphila ameliorates acetaminophen-induced liver injury by regulating gut microbial composition and metabolism. Microbiol. Spectr. 2022, 10, e01596-21. [Google Scholar] [CrossRef]
- Elshaghabee, F.M.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef] [Green Version]
- Mandal, A.; Paul, T.; Roy, S.; Mandal, S.; Pradhan, S.; Das, K.; Mondal, K.C.; Nandi, D.K. Therapeutic potential of Lactobacillus ingluviei ADK10, a newly established probiotic organism against acetaminophen induced uremic rats. Biologia 2013, 68, 1072–1078. [Google Scholar] [CrossRef]
- Mandal, A.; Paul, T.; Roy, S.; Mandal, S.; Pradhan, S.; Mondal, K.C.; Nandi, D.K. Effect of newly isolated Lactobacillus ingluviei ADK10, from chicken intestinal tract on acetaminophen induced oxidative stress in Wistar rats. Indian J. Exp. Biol. 2013, 51, 174–180. [Google Scholar]
- Stahl, B.; Barrangou, R. Complete genome sequence of probiotic strain Lactobacillus acidophilus La-14. Genome Announc. 2013, 1, e00376-13. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Yao, C.; Yan, R.; Jiang, H.; Wang, Q.; Wang, K.; Ren, S.; Jiang, S.; Xia, J.; Li, S. Lactobacillus acidophilus LA14 alleviates liver injury. mSystems 2021, 6, e00384-21. [Google Scholar] [CrossRef]
- Mondal, M.; Hossain, M.M.; Hasan, M.R.; Tarun, M.T.I.; Islam, M.A.F.; Choudhuri, M.; Islam, M.T.; Mubarak, M.S. Hepatoprotective and antioxidant capacity of Mallotus repandus ethyl acetate stem extract against D-galactosamine-induced hepatotoxicity in rats. ACS Omega 2020, 5, 6523–6531. [Google Scholar] [CrossRef] [Green Version]
- Kehayova, G.; Georgieva, M.; Georgiev, K. Hepatoprotective effect of probiotic, containing Lactobacillus bulgaricus DWT1, in acute paracetamol-induced liver damage in rats. World J. Pharm. Res. 2018, 7, 35–42. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Yi, R.; Mu, J.; Zhao, X.; Yang, Z. Hepatoprotective effects of Lactobacillus on carbon tetrachloride-induced acute liver injury in mice. Int. J. Mol. Sci. 2018, 19, 2212. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.B.; Rahigude, A.B.; Parab, P.B.; Engineer, A.S.; Dhakephalkar, P.K.; Apte, K.G. A study to evaluate the hepatoprotective activity of prebiotics, probiotics, and synbiotic in CCl4 induced hepatotoxicity in rats. J. Appl. Pharm. Sci. 2021, 11, 141–153. [Google Scholar] [CrossRef]
- Liu, J.; Fu, Y.; Zhang, H.; Wang, J.; Zhu, J.; Wang, Y.; Guo, Y.; Wang, G.; Xu, T.; Chu, M. The hepatoprotective effect of the probiotic Clostridium butyricum against carbon tetrachloride-induced acute liver damage in mice. Food Funct. 2017, 8, 4042–4052. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Huo, Y.; Zhang, Q.; Chen, S.; Lv, H.; Peng, L.; Wei, H.; Wan, C. Protective effect of Lactiplantibacillus plantarum 1201 combined with Galactooligosaccharide on carbon tetrachloride-induced acute liver injury in mice. Nutrients 2021, 13, 4441. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Lv, L.; Fang, D.; Wu, W.; Hu, C.; Xu, L.; Chen, Y.; Guo, J.; Hu, X.; Li, A. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 prevents CCl4-induced liver cirrhosis by protecting the intestinal barrier in rats. Sci. Rep. 2017, 7, 6927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Yan, R.; Wang, K.; Wang, Q.; Chen, X.; Chen, L.; Li, L.; Lv, L. Lactobacillus reuteri DSM 17938 alleviates d-galactosamine-induced liver failure in rats. Biomed. Pharmacother. 2021, 133, 111000. [Google Scholar] [CrossRef]
- Osman, N.; Adawi, D.; Ahrné, S.; Jeppsson, B.; Molin, G. Endotoxin-and D-galactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry. Dig. Liver Dis. 2007, 39, 849–856. [Google Scholar] [CrossRef]
- Wang, K.; Lv, L.; Yan, R.; Wang, Q.; Jiang, H.; Wu, W.; Li, Y.; Ye, J.; Wu, J.; Yang, L. Bifidobacterium longum R0175 protects rats against d-galactosamine-induced acute liver failure. mSphere 2020, 5, e00791-19. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Lv, L.; Jiang, H.; Wang, K.; Yan, R.; Li, Y.; Ye, J.; Wu, J.; Wang, Q.; Bian, X. Lactobacillus helveticus R0052 alleviates liver injury by modulating gut microbiome and metabolome in D-galactosamine-treated rats. Appl. Microbiol. Biotechnol. 2019, 103, 9673–9686. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Xie, J.; Zhang, Y.; Wang, J.; Sun, X.; Zhang, H. Protective effects of probiotic Lactobacillus casei Zhang against endotoxin-and d-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities. Int. Immunopharmacol. 2013, 15, 30–37. [Google Scholar] [CrossRef]
- Gan, Y.; Tong, J.; Zhou, X.; Long, X.; Pan, Y.; Liu, W.; Zhao, X. Hepatoprotective Effect of Lactobacillus plantarum HFY09 on Ethanol-Induced Liver Injury in Mice. Front. Nutr. 2021, 8, 684588. [Google Scholar] [CrossRef]
- Grander, C.; Adolph, T.E.; Wieser, V.; Lowe, P.; Wrzosek, L.; Gyongyosi, B.; Ward, D.V.; Grabherr, F.; Gerner, R.R.; Pfister, A. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018, 67, 891–901. [Google Scholar] [CrossRef]
- Jiang, X.-W.; Li, Y.-T.; Ye, J.-Z.; Lv, L.-X.; Yang, L.-Y.; Bian, X.-Y.; Wu, W.-R.; Wu, J.-J.; Shi, D.; Wang, Q. New strain of Pediococcus pentosaceus alleviates ethanol-induced liver injury by modulating the gut microbiota and short-chain fatty acid metabolism. World J. Gastroenterol. 2020, 26, 6224–6240. [Google Scholar] [CrossRef]
- Tsai, Y.-S.; Lin, S.-W.; Chen, Y.-L.; Chen, C.-C. Effect of probiotics Lactobacillus paracasei GKS6, L. plantarum GKM3, and L. rhamnosus GKLC1 on alleviating alcohol-induced alcoholic liver disease in a mouse model. Nutr. Res. Pract. 2020, 14, 299–308. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.; Garcia-Varela, R.; Garcia, H.; Mata-Haro, V.; González-Córdova, A.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Zavoshti, H.F.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect. 2020, 10, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, M.; Neyrinck, A.M.; Olivares, M.; Rodriguez, J.; de Rocca Serra, A.; Roumain, M.; Bindels, L.B.; Cani, P.D.; Evenepoel, P.; Muccioli, G.G. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. 2018, 32, 6681–6693. [Google Scholar] [CrossRef] [Green Version]
- Hendrikx, T.; Schnabl, B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J. Intern. Med. 2019, 286, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.-H.; Xin, F.-Z.; Xue, Y.; Hu, Z.; Han, Y.; Ma, F.; Zhou, D.; Liu, X.-L.; Cui, A.; Liu, Z. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp. Mol. Med. 2019, 51, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 2019, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Kusaczuk, M.; Bartoszewicz, M.; Cechowska-Pasko, M. Phenylbutyric acid: Simple structure-multiple effects. Curr. Pharm. Des. 2015, 21, 2147–2166. [Google Scholar] [CrossRef]
- Chen, J.; Vitetta, L. The role of butyrate in attenuating pathobiont-induced hyperinflammation. Immune Netw. 2020, 20, e15. [Google Scholar] [CrossRef]
- Shimizu, D.; Ishitsuka, Y.; Miyata, K.; Tomishima, Y.; Kondo, Y.; Irikura, M.; Iwawaki, T.; Oike, Y.; Irie, T. Protection afforded by pre-or post-treatment with 4-phenylbutyrate against liver injury induced by acetaminophen overdose in mice. Pharmacol. Res. 2014, 87, 26–41. [Google Scholar] [CrossRef]
- Kusama, H.; Kon, K.; Ikejima, K.; Arai, K.; Aoyama, T.; Uchiyama, A.; Yamashina, S.; Watanabe, S. Sodium 4-phenylbutyric acid prevents murine acetaminophen hepatotoxicity by minimizing endoplasmic reticulum stress. J. Gastroenterol. 2017, 52, 611–622. [Google Scholar] [CrossRef]
- Bialonska, D.; Kasimsetty, S.G.; Khan, S.I.; Ferreira, D. Urolithins, intestinal microbial metabolites of pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay. J. Agric. Food Chem. 2009, 57, 10181–10186. [Google Scholar] [CrossRef]
- Gao, Z.; Yi, W.; Tang, J.; Sun, Y.; Huang, J.; Lan, T.; Dai, X.; Xu, S.; Jin, Z.-G.; Wu, X. Urolithin A protects against acetaminophen-induced liver injury in mice via sustained activation of Nrf2. Int. J. Biol. Sci. 2022, 18, 2146–2162. [Google Scholar] [CrossRef]
- Authaipibul, O.; Porasuphatana, S. Effects of Probiotics and Synbiotics on the prevention of Paracetamol-induced hepatotoxicity in HepG2 cells. Thai J. Toxicol. 2020, 35, 14–29. [Google Scholar]
Sl No. | Microorganisms | Animals | Observations | References |
---|---|---|---|---|
1. | Gut microbiota | Male BALB/C and BALB/C germ-free mice | Diurnal variation is linked to gut microbiota and has a major impact on APAP hepatotoxicity. Gut microbiota-derived 1-phenyl-1,2-propanedione endorses APAP hepatotoxicity to some extent by depleting GSH levels resulting in augmented oxidative stress and JNK activation. Treatment of Saccharomyces cerevisiae attenuates APAP hepatotoxicity by reducing 1-phenyl-1,2-propanedione production. | [70] |
2. | Gut microbiota | C57BL/6 mice and germ-free C57BL/6 mice | Germ-free mice exhibit better tolerability in APAP overdose than non-germ-free mice | [76] |
3. | Gut microbiota | BALB/C and BALB/C germ-free and specific-pathogen-free mice | Specific-pathogen-free mice are more susceptible to APAP hepatotoxicity than germ-free mice that exhibit lower expressions of CYP-1A2 and CYP-3A4 enzymes. | [69] |
4. | Gut microbiota | C3H/HeH and C3H/HeH germ-free mice | Intestinal microbiota does not reveal any significant difference in susceptibility to APAP hepatotoxicity. However, germ-free mice showed lower hepatotoxicity than non-germ-free mice, which may be associated with decreased TLR4/LPS signaling. | [71] |
5. | Gut microbiota (dysbiotic gut) | C57BL/6J and dysbiotic Nlrp6 deficient mice | Increase APAP hepatotoxicity in dysbiotic mice compared to wild-type mice. | [65,66] |
6. | Gut microbiota with the abundance of Mucispirillum sp., Turicibacter sp. and Ruminococcus sp. | C57BL/6 mice | Increase APAP hepatotoxicity | [67] |
7. | Gut microbiota (α-diversity) | Male C57BL/6 mice | Fructose supplement increases the α-diversity of the gut microbiome resulting in suppression of APAP hepatotoxicity. This altered gut microbiota with the abundance of Anaerostipes sp. suppresses CYP-1A2 and CYP-3A4 enzymes and activates GSH. | [72] |
8. | Gut microbiota with low Firmicutes/Bacteroidetes ratio and high Proteobacteria proportion, as well as the abundance of Roseburia sp., Lactobacillus sp., and Akkermansia sp. and lower Firmicutes/Bacteroidetes ratio | Male C57BL/6 mice | Monoclonal anti-TLR4 antibody treatment altered the composition of gut microbiota. Fecal transplantation microbiota derived from anti-TLR4 antibody-treated mice exhibited better tolerance against acute APAP hepatotoxicity. | [77] |
Sl No. | Probiotic Strains | Experimental Models | Treatments | Observations | Remarks | References |
---|---|---|---|---|---|---|
1. | E. lactis IITRHR1 | Male Wistar rats | 109 CFU/day, p.o. for 7 days followed by APAP (1 g/kg, p.o.) for 14 days. | Blood parameters: AST ↓, ALT ↓, ALP ↓. Liver parameters: hepatocellular necrosis ↓, lipid peroxidation ↓, protein oxidation ↑, reducing potential ↑, SOD ↑, CAT ↑, GPx ↑, GST ↑, GSH/GSSG ↑, Bax ↓, Bcl-2 ↑, cytochrome C ↓, caspase 9 ↓, caspase 3 ↓, DNA fragmentation ↓ | The specific mechanism of action was not revealed. Inadequate data to reveal the exact nature of cell death caused by APAP. | [80] |
2. | S. salivarius ssp thermophilus St.sa | Female Wistar rats | 109 CFU/day, p.o. for 7 days followed by a single dose of APAP (200 mg/kg, p.o.) on day 7. | Blood parameters: AST ↓, ALT ↓, ALP ↓. Liver parameters: lipid peroxidation ↓, SOD ↑, CAT ↑, GSH ↑. | Preliminary report, the specific mechanism of action was not revealed. | [79] |
3. | Bacillus spore blend comprising B. licheniformis, B. indicus, B. subtilis, B. clausii, and B. coagulans spores | Male Charles River Wistar white rats | 109 CFU/day, p.o. for 12 days followed by a single dose of APAP (2 g/kg, p.o.) on day 11. | Blood parameters: AST ↓, ALT ↓, TNF-α ↓, IL-1β ↓, ZO-1 ↓, total antioxidant capacity ↑. | Preliminary report, the specific mechanism of action was not revealed. | [78] |
4. | L. ingluviei ADK10 | Male Wistars rats | 109 CFU/day, p.o. for 7 days and co-treatment of APAP (500 mg/kg, i.p.) for 7 days. | Blood and liver parameters: lipid peroxidation ↓, SOD ↑, CAT ↑, GSH ↑. | Preliminary report, the specific mechanism of action was not revealed. | [84] |
5. | L. acidophilus LA14 | Male C57BL/6J mice | 6 × 108 CFU/day, p.o. followed by a single dose of APAP (300 mg/kg, p.o.) on day 7. | Blood parameters: Total protein ↑, AST ↓, cholinesterase ↓, total bile acids ↓, total bilirubin ↓, IL-1α ↓. Liver parameters: hemorrhage ↓, nuclear shrinkage ↓, inflammatory cell infiltration ↓. | The specific mechanism of hepatoprotective action was revealed in another model resembling APAP hepatotoxicity. | [86] |
6. | L. rhamnosus GG | C57BL/6 Mice | 2 × 108 CFU/day for 14 days followed by a single dose of APAP (300 mg/kg, p.o.) on day 14. | Blood parameters: AST ↓. Liver parameters: hepatocellular necrosis ↓, GSH/GSSG ↑, Nrf-2 ↑, NQO1↑, HO-1 ↑, GCLC ↑. | Metabolic byproduct of bacteria 5-methoxyindoleacetic acid activates Nrf-2 and its downstream antioxidants. | [73] |
7. | A. muciniphila | Male Specific pathogen-free C57BL/6 mice | 3 × 109 CFU/day for 2 weeks followed by a single dose of APAP (300 mg/kg, i.p.) on day 15. | Blood parameters: AST ↓, ALT ↓. Liver parameters: hepatocellular necrosis ↓, GSH/GSSG ↑, SOD ↑, IL-1β ↓ IL-2 ↓, IL-6 ↓, TNF-α ↓, phospho-PI3K ↑, phospho-Akt ↑, phospho-ERK ↓, phospho-JNK ↓, Bax ↓, Bcl-2 ↑, DNA fragmentation ↓ | The specific mechanism of action was not revealed. Inadequate data to reveal the exact nature of cell death caused by APAP. | [81] |
8. | Laktera nature, a probiotic formulation comprising L. Bulgaricus DWT1, L. helveticus DWT2, L. lactis DWT3, and S. thermophilus DWT4, 5, 6, 7, 8 | Male Wistar rats | 800 and 1600 mg/kg, p.o. for 2 weeks followed by a single dose of APAP (1.2 g/kg) | Blood parameters: ALT ↓, AST ↓, ALP ↓, γ-glutamyl transferase ↓. Liver parameters: hepatocellular necrosis ↓ | The specific mechanism of action was not revealed. | [81] |
Sl No. | Postbiotics | Experimental Models | Treatments | Observations | Remarks | References |
---|---|---|---|---|---|---|
1. | 4-Phenylbutyric acid | C57BL/6J mice | 100 and 200 mg/kg, i.p. 1 h before APAP (400 mg/kg, i.p.) treatment 100 and 200 mg/kg, i.p. 1 or 2 h after APAP (400 mg/kg, i.p.) treatment. | Blood parameters: ALT ↓, ammonia ↓. Liver parameters: hepatocellular necrosis ↓, nitrotyrosine ↓, DNA fragmentation ↓, Xbp1 splicing ↓, phospho-JNK ↓. Blood parameters: ALT ↓, ammonia ↓. Liver parameters: hepatocellular necrosis ↓, nitrotyrosine ↓, DNA fragmentation ↓, Xbp1 splicing unchanged, phospho-JNK unchanged. | The specific mechanism of action was not revealed. | [111,112] |
C57BL/6J mice | 120 mg/kg, i.p. 4 doses at an interval of 3 h starting at 0.5 h after APAP (450 mg/kg, i.p.) treatment up to 12 h. | Blood parameters: ALT ↓, AST ↓. Liver parameters: ATF6 cleavage ↓, phospho-JNK ↓, BiP ↓, Xbp1 splicing ↓, CHOP ↓, Bax activation ↓, oxidative stress ↓, hepatocellular necrosis ↓. | The specific mechanism of action was not revealed. | |||
2. | 3-Phenylpropionic acid | Male or female C57BL/6 mice | 0.4% in drinking water for 4 weeks followed by a dose of APAP (300 mg/kg, i.p.) | Liver parameter: CYP2E1 ↓. | 3-Phenylpropionic acid acts as a substrate of CYP2E1 and inhibits its catalytic activity. | [50] |
3. | Urolithin A | Male C57BL/6J mice | 50, 100, 150, or 300 mg/kg, i.p. along with APAP (500 mg/kg, i.p.) | Blood parameters: ALT ↓, AST ↓. Liver parameters: hepatocellular necrosis ↓, Nrf-2 ↑, HO-1 ↑, NQO1 ↑, mitophagy ↑, Drp1 ↓, Parkin ↑, optineurin ↑. | The protective mechanism is Nrf-2 activation. | [114] |
4. | E. lactis IITRHR1 and L. acidophilus lysates | Isolated rat hepatocytes | Pre-, co-, and post-treatment of individual lysate to cells exposed to APAP at IC50 concentration. | ROS ↓, nitric oxide ↓, lipid peroxidation ↓, GSH ↑, SOD ↑, Bax translocation ↓, Bcl-2 ↑, mitochondrial membrane permeabilization ↓, cytosolic cytochrome C release ↓, caspase 3 activation ↓, DNA fragmentation ↓, chromatin condensation ↓. | The effect of pre-, co-, and post-treatment exhibited variable effects. The nature of cell death is questionable. | [22] |
5. | L. fermentum BGHV110 postbiotic | HepG2 cells | 3 mg/mL co-treatment for 16 h with APAP (50 mM) | Hepatocyte death ↓, autophagy ↑, LC3-II/LC3-I ratio ↑, BECN1 ↑, p62/SQSTM1 degradation ↑, PINK1mRNA↑, p62/SQSTM1 mRNA ↑. | The protective mechanism is the activation of PINK1-dependent autophagy | [21] |
6. | Intracellular fraction of S. thermophilus TISTR 458 | HepG2 cells | Co-treatment with APAP (25 mM) | Hepatocyte death ↓, oxygen radical absorbance capacity ↑, SOD ↑, GSH ↑. | Intracellular fraction prepared after incubating the bacteria with 1% prebiotics (inulin or fructooligosaccharide) improves therapeutic efficacy | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewanjee, S.; Dua, T.K.; Paul, P.; Dey, A.; Vallamkondu, J.; Samanta, S.; Kandimalla, R.; De Feo, V. Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity. Biomedicines 2022, 10, 1498. https://doi.org/10.3390/biomedicines10071498
Dewanjee S, Dua TK, Paul P, Dey A, Vallamkondu J, Samanta S, Kandimalla R, De Feo V. Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity. Biomedicines. 2022; 10(7):1498. https://doi.org/10.3390/biomedicines10071498
Chicago/Turabian StyleDewanjee, Saikat, Tarun K. Dua, Paramita Paul, Abhijit Dey, Jayalakshmi Vallamkondu, Sonalinandini Samanta, Ramesh Kandimalla, and Vincenzo De Feo. 2022. "Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity" Biomedicines 10, no. 7: 1498. https://doi.org/10.3390/biomedicines10071498
APA StyleDewanjee, S., Dua, T. K., Paul, P., Dey, A., Vallamkondu, J., Samanta, S., Kandimalla, R., & De Feo, V. (2022). Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity. Biomedicines, 10(7), 1498. https://doi.org/10.3390/biomedicines10071498