Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights
Abstract
:1. Introduction
2. Immunity Aspect of Non-HLA Antibodies
3. Types of Non-HLA Ab in Kidney Transplantation
3.1. Angiotensin II Type 1 Receptor Antibodies (AT1R-Ab)
3.2. Anti-Endothelin a Receptor Antibodies
3.3. Anti-Mica Antibodies
3.4. Anti-Perlecan/LG-3 Antibodies
3.5. Anti-Agrin Antibodies
3.6. Anti-Collagen Type Iv, Type Iii, Type I and Anti-Fibronectin Antibodies
3.7. Anti-Vimentin Antibodies
3.8. Anti-H-Y Antibodies
3.9. Anti-ARHGDIB (Rho Guanine Nucleotide Exchange Factor 2) Antibodies
3.10. Anti-PECR (Peroxisomal Trans-2-Enoyl-CoA Reductase) Antibodies
3.11. Anti-PRKCZ (Protein Kinase C Zeta Type) Antibodies
4. Non-HLA Mismatch
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tonelli, M.; Wiebe, N.; Knoll, G.; Bello, A.; Browne, S.; Jadhav, D.; Klarenbach, S.; Gill, J. Systematic Review: Kidney Transplantation Compared With Dialysis in Clinically Relevant Outcomes. Am. J. Transplant. 2011, 11, 2093–2109. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, S.; Aziz, F.; Garg, N.; Panzer, S.E.; Joachim, E.; Muth, B.; Mohamed, M.; Blazel, J.; Zhong, W.; Astor, B.C.; et al. Histopathological characteristics and causes of kidney graft failure in the current era of immunosuppression. World J. Transplant. 2019, 9, 123–133. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Tatapudi, V.; Leffell, M.S.; Zachary, A.A. HLA in transplantation. Nat. Rev. Nephrol. 2018, 14, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Konvalinka, A.; Tinckam, K. Utility of HLA Antibody Testing in Kidney Transplantation. J. Am. Soc. Nephrol. 2015, 26, 1489–1502. [Google Scholar] [CrossRef] [Green Version]
- Opelz, G. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet 2005, 365, 1570–1576. [Google Scholar] [CrossRef]
- Zhang, Q.; Reed, Q.Z.E.F. The importance of non-HLA antibodies in transplantation. Nat. Rev. Nephrol. 2016, 12, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Tait, B.D.; Süsal, C.; Gebel, H.M.; Nickerson, P.W.; Zachary, A.A.; Claas, F.H.; Reed, E.F.; Bray, R.A.; Campbell, P.; Chapman, J.R.; et al. Consensus Guidelines on the Testing and Clinical Management Issues Associated With HLA and Non-HLA Antibodies in Transplantation. Transplantation 2013, 95, 19–47. [Google Scholar] [CrossRef] [Green Version]
- Kamburova, E.G.; Kardol-Hoefnagel, T.; Wisse, B.W.; Joosten, I.; Allebes, W.A.; Van Der Meer, A.; Hilbrands, L.B.; Baas, M.C.; Spierings, E.; Hack, C.E.; et al. Development and Validation of a Multiplex Non-HLA Antibody Assay for the Screening of Kidney Transplant Recipients. Front. Immunol. 2018, 9, 3002. [Google Scholar] [CrossRef] [Green Version]
- Senev, A.; Otten, H.G.; Kamburova, E.G.; Callemeyn, J.; Lerut, E.; Van Sandt, V.; Kuypers, D.; Emonds, M.-P.; Naesens, M. Antibodies against ARHGDIB and ARHGDIB Gene Expression Associate With Kidney Allograft Outcome. Transplantation 2020, 104, 1462–1471. [Google Scholar] [CrossRef]
- Sorohan, B.M.; Ismail, G.; Leca, N.; Tacu, D.; Obrișcă, B.; Constantinescu, I.; Baston, C.; Sinescu, I. Angiotensin II type 1 receptor antibodies in kidney transplantation: An evidence-based comprehensive review. Transplant. Rev. 2020, 34, 100573. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Louis, K.; Philippe, A.; Loupy, A.; Coates, P.T. The emerging field of non-human leukocyte antigen antibodies in transplant medicine and beyond. Kidney Int. 2021, 100, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, H.; Dieudé, M.; Hébert, M.-J. The Emerging Importance of Non-HLA Autoantibodies in Kidney Transplant Complications. J. Am. Soc. Nephrol. 2016, 28, 400–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reindl-Schwaighofer, R.; Heinzel, A.; Gualdoni, G.A.; Mesnard, L.; Claas, F.H.; Oberbauer, R. Novel insights into non-HLA alloimmunity in kidney transplantation. Transpl. Int. 2019, 33, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, C.L.; Valenzuela, N.M.; Thomas, K.; Reed, E.F. Not All Antibodies Are Created Equal: Factors That Influence Antibody Mediated Rejection. J. Immunol. Res. 2017, 2017, 7903471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Gimferrer, I.; Warner, P.; Nelson, K.; Sibulesky, L.; Bakthavatsalam, R.; Leca, N. Preformed Angiotensin II Type-1 Receptor Antibodies Are Associated With Rejection After Kidney Transplantation: A Single-Center, Cohort Study. Transplant. Proc. 2018, 50, 3467–3472. [Google Scholar] [CrossRef]
- Cuevas, E.; Arreola-Guerra, J.M.; Hernández-Méndez, E.A.; Salcedo, I.; Castelán, N.; Uribe-Uribe, N.O.; Vilatobá, M.; Contreras-Saldívar, A.G.; Sánchez-Cedillo, A.I.; Ramírez, J.B.; et al. Pretransplant angiotensin II type 1-receptor antibodies are a risk factor for earlier detection of de novo HLA donor-specific antibodies. Nephrol. Dial. Transplant. 2016, 31, 1738–1745. [Google Scholar] [CrossRef] [Green Version]
- Philogene, M.C.; Zhou, S.; Lonze, B.; Bagnasco, S.; Alasfar, S.; Montgomery, R.A.; Kraus, E.; Jackson, A.M.; Leffell, M.S.; Zachary, A.A. Pre-transplant Screening for Non-HLA Antibodies: Who should be Tested? Hum. Immunol. 2018, 79, 195–202. [Google Scholar] [CrossRef]
- Kimball, P.M.; Gupta, G.; McDougan, F. Circulating angiotensin type II receptor: Possible marker for antibody mediated rejection after renal transplantation? Hum. Immunol. 2017, 78, 629–633. [Google Scholar] [CrossRef]
- Wallukat, G.; Homuth, V.; Fischer, T.; Lindschau, C.; Horstkamp, B.; Jüpner, A.; Baur, E.; Nissen, E.; Vetter, K.; Neichel, D.; et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Investig. 1999, 103, 945–952. [Google Scholar] [CrossRef]
- Mejia-Vilet, J.M.; López-Hernández, Y.J.; Santander-Vélez, J.I.; Trujeque-Matos, M.; Cruz, C.; Torre, C.A.C.D.L.; Espinosa-Cruz, V.; Espinosa-González, R.; Uribe-Uribe, N.O.; Morales-Buenrostro, L.E. Angiotensin II receptor agonist antibodies are associated with microvascular damage in lupus nephritis. Lupus 2020, 29, 371–378. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Wei, J.; Wang, L.; Jiang, S.; Xu, L.; Qu, L.; Yang, K.; Fu, L.; Buggs, J.; et al. A two-stage bilateral ischemia-reperfusion injury-induced AKI to CKD transition model in mice. Am. J. Physiol. Physiol. 2020, 319, F304–F311. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.A.; Sharfuddin, A.A.; Book, B.L.; Goggins, W.C.; Khalil, A.A.; Mishler, D.P.; Fridell, J.A.; Yaqub, M.S.; Taber, T.E. Pre-transplant angiotensin receptor II type 1 antibodies and risk of post-transplant focal segmental glomerulosclerosis recurrence. Clin. Transplant. 2015, 29, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Dragun, D.; Catar, R.; Philippe, A. Non-HLA antibodies against endothelial targets bridging allo- and autoimmunity. Kidney Int. 2016, 90, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Sorohan, B.M.; Sinescu, I.; Tacu, D.; Bucșa, C.; Țincu, C.; Obrișcă, B.; Berechet, A.; Constantinescu, I.; Mărunțelu, I.; Ismail, G.; et al. Immunosuppression as a Risk Factor for De Novo Angiotensin II Type Receptor Antibodies Development after Kidney Transplantation. J. Clin. Med. 2021, 10, 5390. [Google Scholar] [CrossRef]
- Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [Green Version]
- Tesmer, L.A.; Lundy, S.; Sarkar, S.; Fox, D.A. Th17 cells in human disease. Immunol. Rev. 2008, 223, 87–113. [Google Scholar] [CrossRef]
- Gratwohl, A.; Döhler, B.; Stern, M.; Opelz, G. H-Y as a minor histocompatibility antigen in kidney transplantation: A retrospective cohort study. Lancet 2008, 372, 49–53. [Google Scholar] [CrossRef]
- Asano, Y.; Daccache, J.; Jain, D.; Ko, K.; Kinloch, A.; Veselits, M.; Wolfgeher, D.; Chang, A.; Josephson, M.; Cunningham, P.; et al. Innate-like self-reactive B cells infiltrate human renal allografts during transplant rejection. Nat. Commun. 2021, 12, 4372. [Google Scholar] [CrossRef]
- Karahan, G.E.; Heidt, S. Innate-like B Cells: Local Drivers of Non-HLA Immunity in Rejecting Kidney Allografts? Transplantation 2022, 106, 234–235. [Google Scholar] [CrossRef]
- Dragun, D.; Müller, D.N.; Bräsen, J.H.; Fritsche, L.; Nieminen-Kelhä, M.; Dechend, R.; Kintscher, U.; Rudolph, B.; Hoebeke, J.; Eckert, D.; et al. Angiotensin II Type 1-Receptor Activating Antibodies in Renal-Allograft Rejection. N. Engl. J. Med. 2005, 352, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Sorohan, B.M.; Ismail, G.; Berechet, A.; Obrișcă, B.; Constantinescu, I.; Mărunțelu, I.; Tacu, D.; Baston, C.; Sinescu, I. The early impact of preformed angiotensin II type 1 receptor antibodies on graft function in a low immunological risk cohort of kidney transplant recipients. Transpl. Immunol. 2021, 66, 101389. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, C.; Viglietti, D.; Bouatou, Y.; Philippe, A.; Pievani, D.; Aubert, O.; Van Huyen, J.-P.D.; Taupin, J.-L.; Glotz, D.; Legendre, C.; et al. Non-HLA agonistic anti-angiotensin II type 1 receptor antibodies induce a distinctive phenotype of antibody-mediated rejection in kidney transplant recipients. Kidney Int. 2019, 96, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Lukitsch, I.; Kehr, J.; Chaykovska, L.; Wallukat, G.; Nieminen-Kelhä, M.; Batuman, V.; Dragun, D.; Gollasch, M. Renal Ischemia and Transplantation Predispose to Vascular Constriction Mediated by Angiotensin II Type 1 Receptor-Activating Antibodies. Transplantation 2012, 94, 8–13. [Google Scholar] [CrossRef]
- Allen, A.M.; Zhuo, J.; Mendelsohn, F.A. Localization and function of angiotensin AT1 receptors. Am. J. Hypertens. 2000, 13, S31–S38. [Google Scholar] [CrossRef] [Green Version]
- Kakinuma, Y.; Fogo, A.; Inagami, T.; Ichikawa, I. Intrarenal localization of angiotensin II type 1 receptor mRNA in the rat. Kidney Int. 1993, 43, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Cameron, V.A.; Mocatta, T.J.; Pilbrow, A.P.; Frampton, C.M.; Troughton, R.W.; Richards, A.M.; Winterbourn, C.C. Angiotensin Type-1 Receptor A1166C Gene Polymorphism Correlates with Oxidative Stress Levels in Human Heart Failure. Hypertension 2006, 47, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Ceolotto, G.; Papparella, I.; Bortoluzzi, A.; Strapazzon, G.; Ragazzo, F.; Bratti, P.; Fabricio, A.; Squarcina, E.; Gion, M.; Palatini, P.; et al. Interplay Between miR-155, AT1R A1166C Polymorphism, and AT1R Expression in Young Untreated Hypertensives. Am. J. Hypertens. 2011, 24, 241–246. [Google Scholar] [CrossRef]
- Dragun, D. Agonistic antibody-triggered stimulation of Angiotensin II type 1 receptor and renal allograft vascular pathology. Nephrol. Dial. Transplant. 2007, 22, 1819–1822. [Google Scholar] [CrossRef]
- Bjerre, A.; Tangeraas, T.; Heidecke, H.; Dragun, D.; Dechend, R.; Staff, A.C. Angiotensin II type 1 receptor antibodies in childhood kidney transplantation. Pediatr. Transplant. 2016, 20, 627–632. [Google Scholar] [CrossRef]
- Pearl, M.H.; Grotts, J.; Rossetti, M.; Zhang, Q.; Gjertson, D.W.; Weng, P.; Elashoff, D.; Reed, E.F.; Chambers, E.T. Cytokine Profiles Associated With Angiotensin II Type 1 Receptor Antibodies. Kidney Int. Rep. 2018, 4, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Parry, G.C.N.; Mackman, N. Transcriptional Regulation of Tissue Factor Expression in Human Endothelial Cells. Arter. Thromb. Vasc. Biol. 1995, 15, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Rasini, E.; Cosentino, M.; Marino, F.; Legnaro, M.; Ferrari, M.; Guasti, L.; Venco, A.; Lecchini, S. Angiotensin II type 1 receptor expression on human leukocyte subsets: A flow cytometric and RT-PCR study. Regul. Pept. 2006, 134, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, S.; Stumpf, M.; Strehlow, K.; Schmid, A.; Schieffer, B.; Böhm, M.; Nickenig, G. Interleukin-6 Induces Oxidative Stress and Endothelial Dysfunction by Overexpression of the Angiotensin II Type 1 Receptor. Circ. Res. 2004, 94, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Günther, J.; Kill, A.; Becker, M.O.; Heidecke, H.; Rademacher, J.; Siegert, E.; Radić, M.; Burmester, G.-R.; Dragun, D.; Riemekasten, G. Angiotensin receptor type 1 and endothelin receptor type A on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res. Ther. 2014, 16, R65. [Google Scholar] [CrossRef] [Green Version]
- González-Almada, A.; Arreola-Guerra, J.M.; López-Sánchez, J.A.; Cuevas, E.; Vilatoba, M.; Contreras, A.G.; Morales-Buenrostro, L.E.; Alberu, J.; Uribe-Uribe, N.O. Pretransplant angiotensin II type 1-receptor antibodies point to an increase in renal graft sub-intimal fibrosis in living—Donor kidney transplant recipients. Transpl. Immunol. 2018, 54, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Reed, E.F. Effect of Antibodies on Endothelium. Am. J. Transplant. 2009, 9, 2459–2465. [Google Scholar] [CrossRef]
- Betjes, M.G.; Sablik, K.A.; Litjens, N.H.; Otten, H.G.; de Weerd, A.E. ARHGDIB and AT1R autoantibodies are differentially related to the development and presence of chronic antibody-mediated rejection and fibrosis in kidney allografts. Hum. Immunol. 2021, 82, 89–96. [Google Scholar] [CrossRef]
- Simonson, M.S. Endothelins: Multifunctional renal peptides. Physiol. Rev. 1993, 73, 375–411. [Google Scholar] [CrossRef]
- Maguire, J.J.; Davenport, A.P. Endothelin Receptors and Their Antagonists. Semin. Nephrol. 2015, 35, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Philogene, M.C.; Johnson, T.; Vaught, A.J.; Zakaria, S.; Fedarko, N. Antibodies against Angiotensin II Type 1 and Endothelin A Receptors: Relevance and pathogenicity. Hum. Immunol. 2019, 80, 561–567. [Google Scholar] [CrossRef]
- Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Łukasik, U.; Aung, T.; Khor, C.C.; Kocki, J.; Żarnowski, T. Plasma endothelin-1 and single nucleotide polymorphisms of endothelin-1 and endothelin type A receptor genes as risk factors for normal tension glaucoma. Mol. Vis. 2016, 22, 1256–1266. [Google Scholar] [PubMed]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Krajewska, M.; Mazanowska, O.; Kamińska, D.; Bartoszek, D.; Żabińska, M.; Myszka-Kozłowska, M.; Nowakowska, B.; et al. The impact of non-HLA antibodies directed against endothelin-1 type A receptors (ETAR) on early renal transplant outcomes. Transpl. Immunol. 2014, 30, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Kamińska, D.; Zmonarski, S.; Mazanowska, O.; Krajewska, M.; Bartoszek, D.; Żabińska, M.; Myszka-Kozłowska, M.; et al. Non-HLA Antibodies: Angiotensin II Type 1 Receptor (Anti-AT1R) and Endothelin-1 Type A Receptor (Anti-ETAR) Are Associated with Renal Allograft Injury and Graft Loss. Transplant. Proc. 2014, 46, 2618–2621. [Google Scholar] [CrossRef] [PubMed]
- Pearl, M.H.; Chen, L.; ElChaki, R.; Elashoff, D.; Gjertson, D.W.; Rossetti, M.; Weng, P.L.; Zhang, Q.; Reed, E.F.; Chambers, E.T. Endothelin Type A Receptor Antibodies Are Associated With Angiotensin II Type 1 Receptor Antibodies, Vascular Inflammation, and Decline in Renal Function in Pediatric Kidney Transplantation. Kidney Int. Rep. 2020, 5, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Nowańska, K.; Wiśnicki, K.; Kuriata-Kordek, M.; Krajewska, M.; Banasik, M. The role of endothelin II type A receptor (ETAR) in transplant injury. Transpl. Immunol. 2021, 70, 101505. [Google Scholar] [CrossRef] [PubMed]
- Catar, R.A.; Wischnewski, O.; Chen, L.; Heidecke, H.; Rutz, C.; Schülein, R.; Dragun, D.; Philippe, A.; Kusch, A. Non-HLA antibodies targeting angiotensin II Type 1 receptor and endothelin-1 Type A receptors induce endothelial injury via β2-arrestin link to mTOR pathway. Kidney Int. 2021, 101, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, A.K.; Mehra, N.K. Major Histocompatibility Complex Class I Chain-Related A (MICA) Molecules: Relevance in Solid Organ Transplantation. Front. Immunol. 2017, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Carapito, R.; Bahram, S. Genetics, genomics, and evolutionary biology of NKG2D ligands. Immunol. Rev. 2015, 267, 88–116. [Google Scholar] [CrossRef]
- Zou, Y.; Stastny, P.; Süsal, C.; Döhler, B.; Opelz, G. Antibodies against MICA Antigens and Kidney-Transplant Rejection. New Engl. J. Med. 2007, 357, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.T.; Stephens, H.A.; Fernando, R.; Karasu, A.; Harber, M.; Howie, A.J.; Powis, S.; Zou, Y.; Stastny, P.; Madrigal, A.; et al. Major histocompatibility complex class I-related chain A allele mismatching, antibodies, and rejection in renal transplantation. Hum. Immunol. 2011, 72, 827–834. [Google Scholar] [CrossRef]
- Sánchez-Zapardiel, E.; Castro-Panete, M.J.; Castillo-Rama, M.; Morales, P.; Lora-Pablos, D.; Valero-Hervás, D.; Ruiz-García, R.; Apaza, J.; Talayero, P.; Andrés, A.; et al. Harmful Effect of Preformed Anti-MICA Antibodies on Renal Allograft Evolution in Early Posttransplantation Period. Transplantation 2013, 96, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, A.; Gupta, N.; Siddiqui, J.A.; Margoob, A.; Bhowmik, D.; Guleria, S.; Mehra, N.K. Post Transplant Development of MICA and Anti-HLA Antibodies is Associated with Acute Rejection Episodes and Renal Allograft Loss. Hum. Immunol. 2007, 68, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Carapito, R.; Aouadi, I.; Verniquet, M.; Untrau, M.; Pichot, A.; Beaudrey, T.; Bassand, X.; Meyer, S.; Faucher, L.; Posson, J.; et al. The MHC class I MICA gene is a histocompatibility antigen in kidney transplantation. Nat. Med. 2022, 28, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.; Tsai, E.W.; Zhang, Q.; Wallace, W.D.; Reed, E.F.; Ettenger, R.B. Acute rejection associated with donor-specific anti-MICA antibody in a highly sensitized pediatric renal transplant recipient. Pediatr. Transplant. 2010, 15, E1–E7. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Larrañaga, M.; López-Hoyos, M.; Renaldo, A.; San Segundo, D. Non-HLA Abs in Solid Organ Transplantation. Transplantology 2020, 1, 24–41. [Google Scholar] [CrossRef]
- Lemy, A.; Andrien, M.; Wissing, K.M.; Ryhahi, K.; Vandersarren, A.; Racapé, J.; Heylen, C.; Ghisdal, L.; Broeders, E.; Vereerstraeten, P.; et al. Major Histocompatibility Complex Class 1 Chain-Related Antigen A Antibodies: Sensitizing Events and Impact on Renal Graft Outcomes. Transplantation 2010, 90, 168–174. [Google Scholar] [CrossRef]
- Dieudé, M.; Cardinal, H.; Hébert, M.-J. Injury derived autoimmunity: Anti-perlecan/LG3 antibodies in transplantation. Hum. Immunol. 2019, 80, 608–613. [Google Scholar] [CrossRef]
- Soulez, M.; Pilon, E.-A.; Dieudé, M.; Cardinal, H.; Brassard, N.; Qi, S.; Wu, S.-J.; Durocher, Y.; Madore, F.; Perreault, C.; et al. The Perlecan Fragment LG3 Is a Novel Regulator of Obliterative Remodeling Associated With Allograft Vascular Rejection. Circ. Res. 2012, 110, 94–104. [Google Scholar] [CrossRef] [Green Version]
- O’Riordan, E.; Orlova, T.N.; Mendelev, N.; Patschan, D.; Kemp, R.; Chander, P.N.; Hu, R.; Hao, G.; Gross, S.S.; Iozzo, R.V.; et al. Urinary proteomic analysis of chronic allograft nephropathy. Proteom. Clin. Appl. 2008, 2, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Cardinal, H.; Dieudé, M.; Brassard, N.; Qi, S.; Patey, N.; Soulez, M.; Beillevaire, D.; Echeverry, F.; Daniel, C.; Durocher, Y.; et al. Antiperlecan Antibodies Are Novel Accelerators of Immune-Mediated Vascular Injury. Am. J. Transplant. 2013, 13, 861–874. [Google Scholar] [CrossRef]
- Yang, B.; Dieudé, M.; Hamelin, K.; Hénault-Rondeau, M.; Patey, N.; Turgeon, J.; Lan, S.; Pomerleau, L.; Quesnel, M.; Peng, J.; et al. Anti-LG3 Antibodies Aggravate Renal Ischemia-Reperfusion Injury and Long-Term Renal Allograft Dysfunction. Am. J. Transplant. 2016, 16, 3416–3429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilon, E.A.; Dieudé, M.; Qi, S.; Hamelin, K.; Pomerleau, L.; Beillevaire, D.; Durocher, Y.; Zutter, M.; Coutu, D.; Perreault, C.; et al. The Perlecan Fragment LG3 Regulates Homing of Mesenchymal Stem Cells and Neointima Formation During Vascular Rejection. Am. J. Transplant. 2015, 15, 1205–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padet, L.; Dieudé, M.; Karakeussian-Rimbaud, A.; Yang, B.; Turgeon, J.; Cailhier, J.-F.; Cardinal, H.; Hébert, M.-J. New insights into immune mechanisms of antiperlecan/LG3 antibody production: Importance of T cells and innate B1 cells. Am. J. Transplant. 2018, 19, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Groffen, A.J.; Ruegg, M.A.; Dijkman, H.; Van De Velden, T.J.; Buskens, C.A.; Van Den Born, J.; Assmann, K.J.; Monnens, L.A.; Veerkamp, J.H.; Van Den Heuvel, L.P. Agrin Is a Major Heparan Sulfate Proteoglycan in the Human Glomerular Basement Membrane. J. Histochem. Cytochem. 1998, 46, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.; Li, H.-X.; Liu, Y.; Ying, Z.-W.; Guo, J.-J.; Cao, C.-Y.; Wang, J.; Li, Y.-F.; Yang, H.-R. The Reference Intervals for Serum C-Terminal Agrin Fragment in Healthy Individuals and as a Biomarker for Renal Function in Kidney Transplant Recipients. J. Clin. Lab. Anal. 2016, 31, e22059. [Google Scholar] [CrossRef]
- Steubl, D.; Hettwer, S.; Vrijbloed, W.; Dahinden, P.; Wolf, P.; Luppa, P.; Wagner, C.A.; Renders, L.; Heemann, U.; Roos, M. C-Terminal Agrin Fragment—A New Fast Biomarker for Kidney Function in Renal Transplant Recipients. Am. J. Nephrol. 2013, 38, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Steubl, D.; Vogel, A.; Hettwer, S.; Tholen, S.; Luppa, P.B.; Rondak, I.-C.; Renders, L.; Heemann, U.; Roos, M. Early postoperative C-terminal agrin fragment (CAF) serum levels predict graft loss and proteinuria in renal transplant recipients. Clin. Chem. Lab. Med. 2016, 54. [Google Scholar] [CrossRef]
- Joosten, S.A.; Sijpkens, Y.W.; van Ham, V.; Trouw, L.A.; van der Vlag, J.; Heuvel, B.V.D.; van Kooten, C.; Paul, L.C. Antibody Response Against the Glomerular Basement Membrane Protein Agrin in Patients with Transplant Glomerulopathy. Am. J. Transplant. 2005, 5, 383–393. [Google Scholar] [CrossRef]
- Angaswamy, N.; Klein, C.; Tiriveedhi, V.; Gaut, J.; Anwar, S.; Rossi, A.; Phelan, D.; Wellen, J.R.; Shenoy, S.; Chapman, W.C.; et al. Immune Responses to Collagen-IV and Fibronectin in Renal Transplant Recipients With Transplant Glomerulopathy. Am. J. Transplant. 2014, 14, 685–693. [Google Scholar] [CrossRef]
- Park, S.; Yang, S.-H.; Kim, J.; Cho, S.; Yang, J.; Min, S.-I.; Ha, J.; Jeong, C.W.; Bhoo, S.H.; Kim, Y.C.; et al. Clinical Significances of Anti-Collagen Type I and Type III Antibodies in Antibody-Mediated Rejection. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2022, 35, 10099. [Google Scholar] [CrossRef]
- Divanyan, T.; Acosta, E.; Patel, D.; Constantino, D.; Lopez-Soler, R.I. Anti-vimentin antibodies in transplant and disease. Hum. Immunol. 2019, 80, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, C.; Shaw, J.; Gibson, I.W.; Wiebe, C.; Rush, D.; Nickerson, P.W.; Ho, J. Early Antibody-Mediated Kidney Transplant Rejection Associated With Anti-Vimentin Antibodies: A Case Report. Am. J. Kidney Dis. 2020, 75, 138–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, V.; Shenton, B.; Jaques, B.; Turner, D.; Talbot, D.; Gupta, A.; Chapman, C.; Matthews, C.; Cavanagh, G. Vimentin Antibodies: A Non-HLA Antibody as a Potential Risk Factor in Renal Transplantation. Transplant. Proc. 2005, 37, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Soler, R.; Borgia, J.; Kanangat, S.; Fhied, C.; Conti, D.; Constantino, D.; Ata, A.; Chan, R.; Wang, Z. Anti-vimentin Antibodies Present at the Time of Transplantation May Predict Early Development of Interstitial Fibrosis/Tubular Atrophy. Transplant. Proc. 2016, 48, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, M.; Maw, T.T.; Santos, R.D.; Shenoy, S.; Wellen, J.; Mohanakumar, T. Immunoglobulin isotype switching of antibodies to vimentin is associated with development of transplant glomerulopathy following human renal transplantation. Transpl. Immunol. 2017, 45, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lu, Y.; Luo, G.; Song, J.; Tu, Z.; Li, Y. C4d Deposition Is Correlated with the Level of Antivimentin Antibody in Rat Kidneys Undergoing Chronic Allograft Nephropathy. Transplant. Proc. 2008, 40, 2786–2789. [Google Scholar] [CrossRef]
- Tan, J.C.; Wadia, P.P.; Coram, M.; Grumet, F.C.; Kambham, N.; Miller, K.; Pereira, S.; Vayntrub, T.; Miklos, D.B. H-Y Antibody Development Associates with Acute Rejection in Female Patients With Male Kidney Transplants. Transplantation 2008, 86, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Gill, J.S. H-Y Incompatibility Predicts Short-Term Outcomes for Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2009, 20, 2025–2033. [Google Scholar] [CrossRef]
- Kamburova, E.G.; Gruijters, M.L.; Kardol-Hoefnagel, T.; Wisse, B.W.; Joosten, I.; Allebes, W.A.; Van Der Meer, A.; Hilbrands, L.B.; Baas, M.C.; Spierings, E.; et al. Antibodies againstARHGDIBare associated with long-term kidney graft loss. Am. J. Transplant. 2019, 19, 3335–3344. [Google Scholar] [CrossRef] [Green Version]
- Gloerich, J.; Ruiter, J.; Brink, D.V.D.; Ofman, R.; Ferdinandusse, S.; Wanders, R. Peroxisomal trans-2-enoyl-CoA reductase is involved in phytol degradation. FEBS Lett. 2006, 580, 2092–2096. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Uhler, M.D.; Hajra, A.K. Molecular Cloning and Expression of Mammalian Peroxisomaltrans-2-Enoyl-coenzyme A Reductase cDNAs. J. Biol. Chem. 2000, 275, 24333–24340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinavahi, R.; George, A.; Tretin, A.; Akalin, E.; Ames, S.; Bromberg, J.S.; DeBoccardo, G.; DiPaola, N.; Lerner, S.M.; Mehrotra, A.; et al. Antibodies Reactive to Non-HLA Antigens in Transplant Glomerulopathy. J. Am. Soc. Nephrol. 2011, 22, 1168–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, S.M.; Li, L.; Sigdel, T.K.; Wadia, P.P.; Miklos, D.B.; Butte, A.J.; Sarwal, M.M. Protein microarrays identify antibodies to protein kinase Cζ that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int. 2009, 76, 1277–1283. [Google Scholar] [CrossRef] [Green Version]
- Padanilam, B.J. Induction and subcellular localization of protein kinase C isozymes following renal ischemia. Kidney Int. 2001, 59, 1789–1797. [Google Scholar] [CrossRef] [Green Version]
- Jethwani, P.; Rao, A.; Bow, L.; Menon, M.C. Donor-Recipient Non-HLA Variants, Mismatches and Renal Allograft Outcomes: Evolving Paradigms. Front. Immunol. 2022, 13, 822353. [Google Scholar] [CrossRef] [PubMed]
- Mesnard, L.; Muthukumar, T.; Burbach, M.; Li, C.; Shang, H.; Dadhania, D.; Lee, J.R.; Sharma, V.K.; Xiang, J.; Suberbielle, C.; et al. Exome Sequencing and Prediction of Long-Term Kidney Allograft Function. PLoS Comput. Biol. 2016, 12, e1005088. [Google Scholar] [CrossRef] [Green Version]
- Pineda, S.; Sigdel, T.K.; Chen, J.; Jackson, A.M.; Sirota, M.; Sarwal, M.M. Novel Non-Histocompatibility Antigen Mismatched Variants Improve the Ability to Predict Antibody-Mediated Rejection Risk in Kidney Transplant. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Reindl-Schwaighofer, R.; Heinzel, A.; Kainz, A.; van Setten, J.; Jelencsics, K.; Hu, K.; Loza, B.-L.; Kammer, M.; Heinze, G.; Hruba, P.; et al. Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: Genome-wide analysis in a prospective cohort. Lancet 2019, 393, 910–917. [Google Scholar] [CrossRef]
- Zhang, Z.; Menon, M.C.; Zhang, W.; Stahl, E.; Loza, B.-L.; Rosales, I.A.; Yi, Z.; Banu, K.; Garzon, F.; Sun, Z.; et al. Genome-wide non-HLA donor-recipient genetic differences influence renal allograft survival via early allograft fibrosis. Kidney Int. 2020, 98, 758–768. [Google Scholar] [CrossRef]
- Mayer, K.A.; Budde, K.; Jilma, B.; Doberer, K.; Bohmig, G. Emerging drugs for antibody-mediated rejection after kidney transplantation: A focus on phase II & III trials. Expert Opin. Emerg. Drugs 2022. just-accepted. [Google Scholar] [CrossRef]
- Chadban, S.J.; Ahn, C.; Axelrod, D.A.; Foster, B.J.; Kasiske, B.L.; Kher, V.; Kumar, D.; Oberbauer, R.; Pascual, J.; Pilmore, H.L.; et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation 2020, 104, S11–S103. [Google Scholar] [CrossRef] [PubMed]
- Schinstock, C.A.; Mannon, R.B.; Budde, K.; Chong, A.S.; Haas, M.; Knechtle, S.; Lefaucheur, C.; Montgomery, R.A.; Nickerson, P.; Tullius, S.G.; et al. Recommended Treatment for Antibody-mediated Rejection After Kidney Transplantation: The 2019 Expert Consensus From the Transplantion Society Working Group. Transplantation 2020, 104, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Kardol-Hoefnagel, T.; Otten, H.G. A Comprehensive Overview of the Clinical Relevance and Treatment Options for Antibody-mediated Rejection Associated with Non-HLA Antibodies. Transplantation 2020, 105, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
Antibody Type | Autoantibody/Alloantibody | Mechanism of Injury |
---|---|---|
Anti-AT1R-Ab | Autoantibody | Complement independent |
Anti-ETAR-Ab | Autoantibody | Complement independent |
Anti-MICA-Ab | Autoantibody and Alloantibody | Complement dependent |
Anti-perlecan-Ab | Autoantibody | Complement dependent |
Anti-agrin-Ab | Autoantibody | Complement dependent |
Anti-collagen type IV, III and I-Ab | Autoantibody | - |
Anti-fibronectin-Ab | Autoantibody | - |
Anti-vimentin-Ab | Autoantibody | Complement dependent |
Anti-H-Y-Ab | Alloantibody | Complement dependent |
Anti-ARHGDIB-Ab | Autoantibody | Complement dependent |
Anti-PECR-Ab | Autoantibody | Complement dependent |
Anti-PRKCZ-Ab | Autoantibody | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorohan, B.M.; Baston, C.; Tacu, D.; Bucșa, C.; Țincu, C.; Vizireanu, P.; Sinescu, I.; Constantinescu, I. Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights. Biomedicines 2022, 10, 1506. https://doi.org/10.3390/biomedicines10071506
Sorohan BM, Baston C, Tacu D, Bucșa C, Țincu C, Vizireanu P, Sinescu I, Constantinescu I. Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights. Biomedicines. 2022; 10(7):1506. https://doi.org/10.3390/biomedicines10071506
Chicago/Turabian StyleSorohan, Bogdan Marian, Cătălin Baston, Dorina Tacu, Cristina Bucșa, Corina Țincu, Paula Vizireanu, Ioanel Sinescu, and Ileana Constantinescu. 2022. "Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights" Biomedicines 10, no. 7: 1506. https://doi.org/10.3390/biomedicines10071506
APA StyleSorohan, B. M., Baston, C., Tacu, D., Bucșa, C., Țincu, C., Vizireanu, P., Sinescu, I., & Constantinescu, I. (2022). Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights. Biomedicines, 10(7), 1506. https://doi.org/10.3390/biomedicines10071506