Differential Distribution and Activity Profile of Acylpeptide Hydrolase in the Rat Seminiferous Epithelium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Primary Culture of Sertoli Cells
2.3. Cryosection Immunofluorescence
2.4. Immunocytochemistry
2.5. Fluorescence Imaging
2.6. Homogenization of Tissues and Cells and Protein Quantification
2.7. Immunoblotting
2.8. Exopeptidase Activity
2.9. Obtention of Semi-Purified APEH Fractions
2.10. APEH Endoproteinase Activity Assay
2.11. Statistical Analysis
3. Results
3.1. Localization of APEH in Testis and Epididymis
3.2. Localization of APEH in Germ Cells and Sertoli Cells
3.3. Determination of APEH Exopeptidase and Endoproteinase Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eddy, E.M.; Toshimori, K.; O’Brien, D. Fibrous sheath of mammalian spermatozoa. Microsc. Res. Tech. 2003, 61, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Zhou, Z.; Li, J.; Yin, L.; Yang, H.; Hu, G.; Luo, M.; Chan, H.C.; Zhou, K. Spermatogenesis Study Group. Identification of testis development and spermatogenesis-related genes in human and mouse testes using cDNA arrays. Mol. Hum. Reprod. 2002, 8, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Wu, R.; Liu, B.; Dong, W.; Tu, Z.; Yang, J.; Xu, Z.; Pan, T. Upstream and downstream mechanisms for the promoting effects of IGF-1 on differentiation of spermatogonia to primary spermatocytes. Life Sci. 2014, 101, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S. Spermatogenic stem cell system in the mouse testis. Cold Spring Harb. Symp. Quant. Biol. 2008, 73, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Steger, K.; Klonisch, T.; Gavenis, K.; Behr, R.; Schaller, V.; Drabent, B.; Doenecke, D.; Nieschlag, E.; Bergmann, M.; Weinbauer, G.F. Round spermatids show normal testis-specific H1t but reduced cAMP-responsive element modulator and transition protein 1 expression in men with round-spermatid maturation arrest. J. Androl. 1999, 20, 747–754. [Google Scholar]
- McLaren, A. Germ and somatic cell lineages in the developing gonad. Mol. Cell. Endocrinol. 2000, 163, 3–9. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Mruk, D.D. Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: Novel insights from studies on Eps8 and Arp3. Biochem. J. 2011, 435, 553–562. [Google Scholar] [CrossRef]
- De Felici, M.; Farini, D.; Dolci, S. In or out stemness: Comparing growth factor signaling in mouse embryonic stem cells and primordial germ cells. Curr. Stem Cell Res. Ther. 2009, 4, 87–97. [Google Scholar] [CrossRef]
- Wakayama, T.; Iseki, S. Role of the Spermatogenic-Sertoli Cell Interaction through Cell Adhesion Molecule-1 (CADM1) in Spermatogenesis. Anat. Sci. Int. 2009, 84, 112–121. [Google Scholar] [CrossRef]
- Kopera, I.A.; Bilinska, B.; Cheng, C.Y.; Mruk, D.D. Sertoli-germ cell junctions in the testis: A review of recent data. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1593–1605. [Google Scholar] [CrossRef] [Green Version]
- Sifakis, S.; Mparmpas, M.; Soldin, O.P.; Tsatsakis, A. Pesticide exposure and health related issues in male and female reproductive system. In Pesticides—Formulations, Effects, Fate; Stoytcheva, M., Ed.; IntechOpen: London, UK, 2011; pp. 495–526. [Google Scholar]
- Verderame, M.; Chianese, T.; Rosati, L.; Scudiero, R. Molecular and Histological Effects of Glyphosate on Testicular Tissue of the Lizard Podarcis siculus. Int. J. Mol. Sci. 2022, 23, 4850. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Mileo, A.; Laforgia, V.; De Falco, M.; Rosati, L. Alkyphenol Exposure Alters Steroidogenesis in Male Lizard Podarcis siculus. Animals 2021, 11, 1003. [Google Scholar] [CrossRef] [PubMed]
- García, A.M. Pesticide exposure and women’s health. Am. J. Ind. Med. 2003, 44, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Weselak, M.; Arbuckle, T.E.; Foster, W. Pesticide exposures and developmental outcomes: The epidemiological evidence. J. Toxicol. Environ. Health B Crit. Rev. 2007, 10, 41–80. [Google Scholar] [CrossRef]
- Peiris-John, R.J.; Wickremasinghe, R. Impact of low-level exposure to organophosphates on human reproduction and survival. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 239–245. [Google Scholar] [CrossRef]
- Wyrobek, A.J.; Bruce, W.R. Chemical induction of sperm abnormalities in mice. Proc. Natl. Acad. Sci. USA 1975, 72, 4425–4429. [Google Scholar] [CrossRef] [Green Version]
- Okamura, A.i.; Kamijima, M.; Ohtani, K.; Yamanoshita, O.; Nakamura, D.; Ito, Y.; Miyata, M.; Ueyama, J.; Suzuki, T.; Imai, R.; et al. Broken Sperm, Cytoplasmic droplets and reduced sperm motility are principal markers of decreased sperm quality due to organophosphorus pesticides in rats. J. Occup. Health 2009, 51, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, R.B.; Geremia, R.; Bruce, W.R. Histone synthesis and replacement during spermatogenesis in the mouse. Differentiation 1977, 7, 167–180. [Google Scholar] [CrossRef]
- Honda, A.; Siruntawineti, J.; Baba, T. Role of acrosomal matrix proteases in sperm-zona pellucida interactions. Hum. Reprod. Update 2002, 8, 405–412. [Google Scholar] [CrossRef]
- Buffone, M.G.; Foster, J.A.; Gerton, G.L. The role of the acrosomal matrix in fertilization. Int. J. Dev. Biol. 2008, 52, 511–522. [Google Scholar] [CrossRef]
- Han, C.; Kwon, J.T.; Park, I.; Lee, B.; Jin, S.; Choi, H.; Cho, C. Impaired sperm aggregation in Adam2 and Adam3 null mice. Fertil. Steril. 2010, 93, 2754–2756. [Google Scholar] [CrossRef] [PubMed]
- Igdoura, S.A.; Morales, C.R. Role of sulfated glycoprotein-1 (SGP-1) in the disposal of residual bodies by sertoli cells of the rat. Mol. Reprod. Dev. 1995, 40, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Matsui, H.; Takahashi, T. Expression and localization of prolyl oligopeptidase in mouse testis and its possible involvement in sperm motility. Zool. Sci. 2002, 19, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Ou, C.M.; Lin, S.R.; Lin, H.J.; Luo, C.W.; Chen, Y.H. Exclusive Expression of a Membrane-Bound Spink3-Interacting Serine Protease-Like Protein TESPL in Mouse Testis. J. Cell. Biochem. 2010, 110, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Oakberg, E.F. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am. J. Anat. 1956, 99, 391–413. [Google Scholar] [CrossRef]
- Venditti, M.; Minucci, J. Subcellular localization of prolyl endopeptidase during the first wave of rat spermatogenesis and in rat and human sperm. J. Histochem. Cytochem. 2018, 58, 229–243. [Google Scholar] [CrossRef]
- Richards, P.G.; Johnson, M.K.; Ray, D.E. Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs. Mol. Pharmacol. 2000, 58, 577–583. [Google Scholar] [CrossRef]
- García-Rojo, G.; Gámiz, F.; Ampuero, E.; Rojas-Espina, D.; Sandoval, R.; Rozas, C.; Morales, B.; Wyneken, U.; Pancetti, F. In Vivo Sub-chronic Treatment with Dichlorvos in Young Rats Promotes Synaptic Plasticity and Learning by a Mechanism that Involves Acylpeptide Hydrolase Instead of Acetylcholinesterase Inhibition. Correlation with Endogenous β-Amyloid Levels. Front. Pharmacol. 2017, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Scaloni, A.; Jones, W.M.; Barra, D.; Pospischil, M.; Sassa, S.; Popowicz, A.; Manning, L.R.; Schneewind, O.; Manning, J.M. Acylpeptide hydrolase: Inhibitors and some active site residues of the human enzyme. J. Biol. Chem. 1992, 267, 3811–3818. [Google Scholar] [CrossRef]
- Polgar, L. The prolyl oligopeptidase family. Cell. Mol. Life Sci. 2002, 59, 349–362. [Google Scholar] [CrossRef]
- Fujino, T.; Ishikawa, T.; Michiaki, I.; Beppu, M.; Kikugawa, K. Characterization of membrane-bound serine protease related to degradation of oxidatively damaged erythrocyte membrane proteins. Biochim. Biophys. Acta 1998, 1374, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Kiuchi, Y.; Ando, K.; Hayakawa, M.; Kikugawa, K. Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins. Biochem. Biophys. Res. Commun. 2004, 324, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Bergamo, P.; Luini, A.; Ruvo, M.; Gogliettino, M.; Langella, E.; Saviano, M.; Hegde, R.N.; Sandomenico, A.; Rossi, M. Acylpeptide hydrolase inhibition as targeted strategy to induce proteasomal down-regulation. PLoS ONE 2011, 6, e25888. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, P.; Cocca, E.; Palumbo, R.; Gogliettino, M.; Rossi, M.; Palmieri, G. RedOx status, proteasome and APEH: Insights into anticancer mechanisms of t10,c12-conjugated linoleic acid isomer on A375 melanoma cells. PLoS ONE 2013, 8, e80900. [Google Scholar] [CrossRef] [PubMed]
- Gámiz, F.; Sandoval, R.; Valenzuela, J.; Covarrubias, A.A.; Riccio, A.; Palmieri, G.; Pancetti, F. Inhibition of acylpeptide hydrolase activity differentially modulates the spatial learning and hippocampal synaptic plasticity across the ontogeny of Sprague-Dawley rats. Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte: Coquimbo, Chile, 2022; (manuscript in preparation; to be submitted). [Google Scholar]
- Anway, M.D.; Folmer, J.; Wright, W.W.; Zirkin, B.R. Isolation of Sertoli Cells from Adult Rat Testes: An Approach to Ex Vivo Studies of Sertoli Cell Function. Biol. Reprod. 2003, 68, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Reyna-Jeldes, M.; de la Fuente-Ortega, E.; Cerda, D.; Velázquez-Miranda, E.; Pinto, K.; Vázquez-Cuevas, F.G.; Coddou, C. Purinergic P2Y2 and P2X4 Receptors Are Involved in the Epithelial-Mesenchymal Transition and Metastatic Potential of Gastric Cancer Derived Cell Lines. Pharmaceutics 2021, 13, 1234. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Perrier, J.; Durand, A.; Giardina, T.; Puigserver, A. Catabolism of intracellular N-terminal acetylated proteins: Involvement of acylpeptide hydrolase and acylase. Biochimie 2005, 87, 673–685. [Google Scholar] [CrossRef]
- Gogliettino, M.; Riccio, A.; Balestrieri, M.; Cocca, E.; Facchiano, A.; D’Arco, T.M.; Tesoro, C.; Rossi, M.; Palmieri, G. A novel class of bifunctional acylpeptide hydrolases-potential role in the antioxidant defense systems of the antartic fish Trematomus bernacchii. FEBS J. 2014, 281, 401–415. [Google Scholar] [CrossRef]
- Kueng, P.; Nikolova, Z.; Djonov, V.; Hemphill, A.; Rohrbach, V.; Boehlen, D.; Zuercher, G.; Andres, A.C.; Ziemiecki, A. A Novel Family of Serine/Threonine Kinases Participating in Spermiogenesis. J. Cell Biol. 1997, 139, 1851–1859. [Google Scholar] [CrossRef] [Green Version]
- Shang, P.; Baarends, W.M.; Hoogerbrugge, J.; Ooms, M.P.; van Cappellen, W.A.; de Jong, A.A.W.; Dohle, G.R.; van Eenennaam, H.; Gossen, J.A.; Grootegoed, J.A. Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases. J. Cell Sci. 2009, 123, 331–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Sosnik, J.; Brassard, L.; Reese, M.; Spiridonov, N.A.; Bates, T.C.; Johnson, G.R.; Anguita, J.; Visconti, P.E.; Salicioni, A.M. Expression and localization of five members of the testis-specific serine kinase (Tssk) family in mouse and human sperm and testis. Mol. Hum. Reprod. 2011, 17, 42–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, N.; Rabouille, C.; Watson, R.; Nilsson, T.; Hui, N.; Slusarewicz, P.; Kreis, T.E.; Warren, G. Characterization of a cis-Golgi Matrix Protein, GM130. J. Cell Biol. 1995, 131, 1715–1726. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Liu, J.G.; Zhao, J.; Brundell, E.; Daneholt, B.; Höög, C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis and male fertility. Mol. Cell 2000, 5, 73–83. [Google Scholar] [CrossRef]
- Ishino, T.; Ohtsuki, S.; Homma, K.; Natori, S. cDNA cloning of mouse prolyl endopeptidase and its involvement in DNA synthesis by Swiss 3T3 cells. J. Biochem. 1998, 123, 540–545. [Google Scholar] [CrossRef]
- Hannula, M.J.; Männistö, P.T.; Myöhänen, T.T. Sequential expression, activity and nuclear localization of prolyl oligopeptidase protein in the developing rat brain. Dev. Neurosci. 2010, 33, 38–47. [Google Scholar] [CrossRef]
- Zeng, Z.; Rulten, S.L.; Breslin, C.; Zlatanou, A.; Coulthard, A.; Caldecott, K.W. Acylpeptide hydrolase is a component of the cellular response to DNA damage. DNA Repair. 2017, 58, 52–61. [Google Scholar] [CrossRef]
- Palumbo, R.; Gogliettino, M.; Cocca, E.; Iannitti, R.; Sandomenico, A.; Ruvo, M.; Balestrieri, M.; Rossi, M.; Palmieri, G. APEH inhibition affects osteosarcoma cell viability via downregulation of the proteasome. Int. J. Mol. Sci. 2016, 17, 1614. [Google Scholar] [CrossRef]
- Rivkin, E.; Kierszenbaum, A.L.; Gil, M.; Tres, L.L. Rnf19, a Ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, tether to the acrosome membranes and the Head-Tail coupling apparatus during rat spermatid development. Dev. Dyn. 2009, 238, 1851–1861. [Google Scholar] [CrossRef]
- Sutovsky, P. Sperm proteasome and fertilization. Reproduction 2011, 142, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.; Castillo, J.; Estanyol, J.M.; Ballesca, J.L.; Ramalho-Santos, J.; Oliva, R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell. Proteom. 2002, 12, 330–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zigo, M.; Manaskova-Postlerova, P.; Jonakova, V.; Kerns, K.; Sutovsky, P. Compartmentalization of the proteasome-interacting proteins during sperm capacitation. Sci. Rep. 2019, 9, 12583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, S.; Sutovsky, P. The sperm proteasome during sperm capacitation and fertilization. J. Reprod. Immunol. 2009, 83, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Kerns, K.; Zigo, M.; Drobnis, E.Z.; Sutovsky, M.; Sutovsky, P. Zinc ion flux during mammalian sperm capacitation. Nat. Commun. 2018, 9, 2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covarrubias, A.A.; Pancetti, F.C. Role of acylpeptide hydrolase in acrosomic reaction of rat spermatozoa. Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte: Coquimbo, Chile, 2022; (manuscript in preparation; to be submitted). [Google Scholar]
- Tan, L.; Cho, K.; Kattan, W.E.; Garrido, C.M.; Zhou, Y.; Neupane, P.; Hancock, R.J. Acylpeptide hydrolase is a novel regulator of KRAS plasma membrane localization and function. J. Cell Sci. 2019, 31, jcs232132. [Google Scholar] [CrossRef] [Green Version]
- Sumi, T.; Harada, K. Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors. Sci. Rep. 2020, 10, 14711. [Google Scholar] [CrossRef]
- Lishko, P.V.; Mannowetz, N. CatSper: A unique calcium channel of the sperm flagellum. Curr. Opin. Physiol. 2018, 2, 109–113. [Google Scholar] [CrossRef]
- Guerriero, G.; Trocchia, S.; Abdel-Gawad, F.K.; Ciarcia, G. Roles od reactive oxygen species in the spermatogenesis regulation. Front. Endocrinol. 2014, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; Baker, M.A.; Nixon, B. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian J. Androl. 2015, 17, 633–639. [Google Scholar] [CrossRef]
- Hosios, A.M.; Vander Heiden, M.G. The redox requirements of proliferating mammalian cells. J. Biol. Chem. 2018, 293, 7490–7498. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, M.; Gupta, G.; Setty, B. Changes in carbohydrate metabolism of testicular germ cells during meiosis in the rat. Eur. J. Endocrinol. 1998, 138, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rato, L.; Alves, M.G.; Socorro, S.; Duarte, A.I.; Cavaco, J.E.; Oliveira, P.F. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 2012, 9, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Meroni, S.B.; Galardo, M.N.; Rindone, G.; Gorga, A.; Riera, M.F.; Cigorraga, B. Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation. Front. Endocrinol. 2019, 10, 224. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Covarrubias, A.A.; De la Fuente-Ortega, E.; Rossi, G.; Cocca, E.; Rossi, M.; Palmieri, G.; Pancetti, F.C. Differential Distribution and Activity Profile of Acylpeptide Hydrolase in the Rat Seminiferous Epithelium. Biomedicines 2022, 10, 1591. https://doi.org/10.3390/biomedicines10071591
Covarrubias AA, De la Fuente-Ortega E, Rossi G, Cocca E, Rossi M, Palmieri G, Pancetti FC. Differential Distribution and Activity Profile of Acylpeptide Hydrolase in the Rat Seminiferous Epithelium. Biomedicines. 2022; 10(7):1591. https://doi.org/10.3390/biomedicines10071591
Chicago/Turabian StyleCovarrubias, Alejandra A., Erwin De la Fuente-Ortega, Gabriela Rossi, Ennio Cocca, Mosè Rossi, Gianna Palmieri, and Floria C. Pancetti. 2022. "Differential Distribution and Activity Profile of Acylpeptide Hydrolase in the Rat Seminiferous Epithelium" Biomedicines 10, no. 7: 1591. https://doi.org/10.3390/biomedicines10071591
APA StyleCovarrubias, A. A., De la Fuente-Ortega, E., Rossi, G., Cocca, E., Rossi, M., Palmieri, G., & Pancetti, F. C. (2022). Differential Distribution and Activity Profile of Acylpeptide Hydrolase in the Rat Seminiferous Epithelium. Biomedicines, 10(7), 1591. https://doi.org/10.3390/biomedicines10071591