Neurosensory Alterations in Retinopathy of Prematurity: A Window to Neurological Impairments Associated to Preterm Birth
Abstract
:1. Introduction
2. ROP in Italy
3. The Impact of ROP in the Central Nervous System
3.1. Neurological Outcomes Associated with ROP
3.2. Neurodegeneration in the Retina of ROP Patients
3.2.1. Photoreceptors
Rods
Cones
The Foveal Pit
3.2.2. Retinal Ganglion Cells
3.2.3. Müller Cells and Astrocytes
4. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlQurashi, M.A. Survival rate of very low birth weight infants over a quarter century (1994–2019): A single-institution experience. J. Neonatal Perinatal. Med. 2021, 14, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Smith, L.E. Retinopathy of prematurity. Angiogenesis 2007, 10, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blencowe, H.; Lawn, J.E.; Vazquez, T.; Fielder, A.; Gilbert, C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr. Res. 2013, 74 (Suppl. S1), 35–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fielder, A.; Blencowe, H.; O’Connor, A.; Gilbert, C. Impact of retinopathy of prematurity on ocular structures and visual functions. Arch. Dis. Child Fetal Neonatal 2015, 100, F179–F184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, S.; Yang, H.; Chan-Ling, T. Vascularization of the human fetal retina: Roles of vasculogenesis and angiogenesis. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1217–1228. [Google Scholar]
- Krock, B.L.; Skuli, N.; Simon, M.C. Hypoxia-induced angiogenesis: Good and evil. Genes Cancer 2011, 2, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.L.; Semenza, G.L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 1993, 268, 21513–21518. [Google Scholar] [CrossRef]
- Stone, J.; Itin, A.; Alon, T.; Pe’er, J.; Gnessin, H.; Chan-Ling, T.; Keshet, E. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 1995, 15, 4738–4747. [Google Scholar] [CrossRef]
- Hellström, A.; Smith, L.E.; Dammann, O. Retinopathy of prematurity. Lancet 2013, 382, 1445–1457. [Google Scholar] [CrossRef] [Green Version]
- Chiang, M.F.; Quinn, G.E.; Fielder, A.R.; Ostmo, S.R.; Paul Chan, R.V.; Berrocal, A.; Binenbaum, G.; Blair, M.; Peter Campbell, J.; Capone, A., Jr.; et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 2021, 128, e51–e68. [Google Scholar] [CrossRef]
- Askie, L.M.; Darlow, B.A.; Finer, N.; Schmidt, B.; Stenson, B.; Tarnow-Mordi, W.; Davis, P.G.; Carlo, W.A.; Brocklehurst, P.; Davies, L.C.; et al. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA 2018, 319, 2190–2201. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.J.; Polin, R.A. Committee on Fetus and Newborn. Oxygen Targeting in Extremely Low Birth Weight Infants. Pediatrics 2016, 138, e20161576. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.E.; Wesolowski, E.; McLellan, A.; Kostyk, S.K.; D’Amato, R.; Sullivan, R.; D’Amore, P.A. Oxygen-induced retinopathy in the mouse. Investig. Ophthalmol. Vis. Sci. 1994, 35, 101–111. [Google Scholar]
- Caprara, C.; Grimm, C. From oxygen to erythropoietin: Relevance of hypoxia for retinal development, health and disease. Prog. Retin. Eye Res. 2012, 31, 89–119. [Google Scholar] [CrossRef]
- Hellström, A.; Hård, A.L. Screening and novel therapies for retinopathy of prematurity—A review. Early Hum. Dev. 2019, 138, 104846. [Google Scholar] [CrossRef] [PubMed]
- Hurley, B.R.; McNamara, J.A.; Fineman, M.S.; Ho, A.C.; Tasman, W.; Kaiser, R.S.; Vander, J.F.; Regillo, C.D.; Brown, G.C. Laser treatment for retinopathy of prematurity: Evolution in treatment technique over 15 years. Retina 2006, 26, S16–S17. [Google Scholar] [CrossRef]
- Kieselbach, G.F.; Ramharter, A.; Baldissera, I.; Kralinger, M.T. Laser photocoagulation for retinopathy of prematurity: Structural and functional outcome. Acta Ophthalmol. Scand. 2006, 84, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Barry, G.P.; Yu, Y.; Ying, G.S.; Tomlinson, L.A.; Lajoie, J.; Fisher, M.; Binenbaum, G. Retinal Detachment after Treatment of Retinopathy of Prematurity with Laser versus Intravitreal Anti-Vascular Endothelial Growth Factor. Ophthalmology 2021, 128, 1188–1196. [Google Scholar] [CrossRef]
- Gundlach, B.S.; Kokhanov, A.; Altendahl, M.; Suh, S.Y.; Fung, S.; Demer, J.; Pineles, S.; Khitri, M.; Chu, A.; Tsui, I. Real-world visual outcomes of laser and anti-VEGF treatments for retinopathy of prematurity. Am. J. Ophthalmol. 2022, 238, 86–96. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Liao, Y.; Zeng, R.; Zeng, P.; Lan, Y. Comparison of efficacy between anti-vascular endothelial growth factor (VEGF) and laser treatment in Type-1 and threshold retinopathy of prematurity (ROP). BMC Ophthalmol. 2018, 18, 19. [Google Scholar] [CrossRef] [Green Version]
- Sankar, M.J.; Sankar, J.; Chandra, P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst. Rev. 2018, 1, CD009734. [Google Scholar] [CrossRef] [PubMed]
- Italian Institute of Statistics. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_INDDEMOG1 (accessed on 21 April 2022).
- Borroni, C.; Carlevaro, C.; Morzenti, S.; De Ponti, E.; Bozzetti, V.; Console, V.; Capobianco, S.; Tagliabue, P.E. Survey on retinopathy of prematurity (ROP) in Italy. Ital. J. Pediatr. 2013, 39, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, E.A.; Flynn, J.T.; Hardy, R.J.; Phelps, D.L.; Phillips, C.L.; Schaffer, D.B.; Tung, B. Incidence and early course of retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology 1991, 98, 1628–1640. [Google Scholar] [CrossRef]
- Good, W.V.; Hardy, R.J.; Dobson, V.; Palmer, E.A.; Phelps, D.L.; Quintos, M.; Tung, B. Early Treatment for Retinopathy of Prematurity Cooperative Group. The incidence and course of retinopathy of prematurity: Findings from the early treatment for retinopathy of prematurity study. Pediatrics 2005, 116, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Bullard, S.R.; Donahue, S.P.; Feman, S.S.; Sinatra, R.B.; Walsh, W.F. The decreasing incidence and severity of retinopathy of prematurity. J. AAPOS 1999, 3, 46–52. [Google Scholar] [CrossRef]
- Database Summaries and VLBW. Quality Management Report Revised March 2011. Burlington, Vermont: Vermont Oxford Network. Available online: https://clinicaltrials.gov/ct2/show/NCT01825499 (accessed on 12 April 2022).
- Austeng, D.; Källen, K.B.; Ewald, U.W.; Jakobsson, P.G.; Holmström, G.E. Incidence of retinopathy of prematurity in infants born before 27 weeks’ gestation in Sweden. Arch. Ophthalmol. 2009, 127, 1315–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choo, M.M.; Martin, F.J.; Theam, L.C.; U-Teng, C. Retinopathy of prematurity in extremely low birth weight infants in Malaysia. J. AAPOS 2009, 13, 446–449. [Google Scholar] [CrossRef]
- Teed, R.G.; Saunders, R.A. Retinopathy of prematurity in extremely premature infants. J. AAPOS 2009, 13, 370–373. [Google Scholar] [CrossRef]
- Manzoni, P.; Memo, L.; Mostert, M.; Gallo, E.; Guardione, R.; Maestri, A.; Saia, O.S.; Opramolla, A.; Calabrese, S.; Tavella, E.; et al. Use of erythropoietin is associated with threshold retinopathy of prematurity (ROP) in preterm ELBW neonates: A retrospective, cohort study from two large tertiary NICUs in Italy. Early Hum. Dev. 2014, 90 (Suppl. S2), S29–S33. [Google Scholar] [CrossRef]
- Dani, C.; Coviello, C.; Panin, F.; Frosini, S.; Costa, S.; Purcaro, V.; Lepore, D.; Vento, G. Incidence and risk factors of retinopathy of prematurity in an Italian cohort of preterm infants. Ital. J. Pediatr. 2021, 47, 64. [Google Scholar] [CrossRef]
- Holmström, G.; Broberger, U.; Thomassen, P. Neonatal risk factors for retinopathy of prematurity—A population-based study. Acta Ophthalmol. Scand. 1998, 76, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.A.; Yo, C.L.; Ling, Y.L.; Ho, L.Y. Incidence, risk factors of retinopathy of prematurity among very low birth weight infants in Singapore. Ann. Acad Med. Singap 2005, 34, 169-78. [Google Scholar] [PubMed]
- Akkoyun, I.; Oto, S.; Yilmaz, G.; Gurakan, B.; Tarcan, A.; Anuk, D.; Akgun, S.; Akova, Y.A. Risk factors in the development of mild and severe retinopathy of prematurity. J. AAPOS 2006, 10, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Yau, G.S.; Lee, J.W.; Tam, V.T.; Liu, C.C.; Yip, S.; Cheng, E.; Chu, B.C.; Yuen, C.Y. Incidence and Risk Factors of Retinopathy of Prematurity From 2 Neonatal Intensive Care Units in a Hong Kong Chinese Population. Asia Pac. J. Ophthalmol. 2016, 5, 185–191. [Google Scholar] [CrossRef]
- Bas, A.Y.; Demirel, N.; Koc, E.; Ulubas Isik, D.; Hirfanoglu, İ.M.; Tunc, T. TR-ROP Study Group. Incidence, risk factors and severity of retinopathy of prematurity in Turkey (TR-ROP study): A prospective, multicentre study in 69 neonatal intensive care units. Br. J. Ophthalmol. 2018, 102, 1711–1716. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.W. Risk factor analysis for the development and progression of retinopathy of prematurity. PLoS ONE 2019, 14, e0219934. [Google Scholar] [CrossRef] [Green Version]
- Mehner, L.C.; Wagner, B.D.; Bol, K.A.; Singh, J.K.; Oliver, S.C.; Patnaik, J.L.; Palestine, A.G.; McCourt, E.A.; Mandava, N.; Wymore, E.M.; et al. Trends in Retinopathy of Prematurity over 12 Years in a Colorado Cohort. Ophthalmic Epidemiol. 2021, 3, 220–226. [Google Scholar] [CrossRef]
- Grottenberg, B.G.; Korseth, K.M.; Follestad, T.; Stensvold, H.J.; Støen, R.; Austeng, D. Stable incidence but regional differences in retinopathy of prematurity in Norway from 2009 to 2017. Acta Ophthalmol. 2021, 99, 299–305. [Google Scholar] [CrossRef]
- Dani, C.; Reali, M.F.; Bertini, G.; Martelli, E.; Pezzati, M.; Rubaltelli, F.F. The role of blood transfusions and iron intake on retinopathy of prematurity. Early Hum. Dev. 2001, 62, 57–63. [Google Scholar] [CrossRef]
- Valieva, O.A.; Strandjord, T.P.; Mayock, D.E.; Juul, S.E. Effects of transfusions in extremely low birth weight infants: A retrospective study. J. Pediatr. 2009, 155, 331–337.e1. [Google Scholar] [CrossRef] [Green Version]
- Keir, A.; Pal, S.; Trivella, M.; Lieberman, L.; Callum, J.; Shehata, N.; Stanworth, S.J. Adverse effects of red blood cell transfusions in neonates: A systematic review and meta-analysis. Transfusion 2016, 56, 2773–2780. [Google Scholar] [CrossRef] [PubMed]
- Ghirardello, S.; Dusi, E.; Cortinovis, I.; Villa, S.; Fumagalli, M.; Agosti, M.; Milani, S.; Mosca, F. Effects of Red Blood Cell Transfusions on the Risk of Developing Complications or Death: An Observational Study of a Cohort of Very Low Birth Weight Infants. Am. J. Perinatol. 2017, 34, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Lust, C.; Vesoulis, Z.; Jackups, R.J.; Liao, S.; Rao, R.; Mathur, A.M. Early red cell transfusion is associated with development of severe retinopathy of prematurity. J. Perinatol. 2019, 39, 393–400. [Google Scholar] [CrossRef]
- Zhu, Z.; Hua, X.; Yu, Y.; Zhu, P.; Hong, K.; Ke, Y. Effect of red blood cell transfusion on the development of retinopathy of prematurity: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0234266. [Google Scholar] [CrossRef]
- Teofili, L.; Papacci, P.; Bartolo, M.; Molisso, A.; Orlando, N.; Pane, L.; Giannantonio, C.; Serrao, F.; Bianchi, M.; Valentini, C.G.; et al. Transfusion-Free Survival Predicts Severe Retinopathy in Preterm Neonates. Front. Pediatr. 2022, 10, 814194. [Google Scholar] [CrossRef] [PubMed]
- Parrozzani, R.; Nacci, E.B.; Bini, S.; Marchione, G.; Salvadori, S.; Nardo, D.; Midena, E. Severe retinopathy of prematurity is associated with early post-natal low platelet count. Sci. Rep. 2021, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Parrozzani, R.; Marchione, G.; Fantin, A.; Frizziero, L.; Salvadori, S.; Nardo, D.; Midena, G. Thrombocytopenia as Type 1 ROP Biomarker: A Longitudinal Study. J. Pers. Med. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Binenbaum, G.; Bell, E.F.; Donohue, P.; Quinn, G.; Shaffer, J.; Tomlinson, L.A.; Ying, G.S.; G-ROP Study Group. Development of modified screening criteria for retinopathy of prematurity: Primary results from the postnatal growth and retinopathy of prematurity study. JAMA Ophthalmol. 2018, 136, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Caruggi, S.; Scaramuzzi, M.; Calevo, M.G.; Priolo, E.; Sposetti, L.; Camicione, P.; Ramenghi, L.A.; Serafino, M. Validation of the postnatal growth and retinopathy of prematurity screening criteria: A retrospective Italian analysis. Eur. J. Ophthalmol. 2021, 32, 1169–1173. [Google Scholar] [CrossRef]
- Garofoli, F.; Barillà, D.; Angelini, M.; Mazzucchelli, I.; De Silvestri, A.; Guagliano, R.; Decembrino, L.; Tzialla, C. Oral vitamin A supplementation for ROP prevention in VLBW preterm infants. Ital. J. Pediatr. 2020, 46, 77. [Google Scholar] [CrossRef]
- Filippi, L.; Cavallaro, G.; Fiorini, P.; Daniotti, M.; Benedetti, V.; Cristofori, G.; Araimo, G.; Ramenghi, L.; La Torre, A.; Fortunato, P.; et al. Study protocol: Safety and efficacy of propranolol in newborns with Retinopathy of Prematurity (PROP-ROP): ISRCTN18523491. BMC Pediatr. 2010, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Cavallaro, G.; Fiorini, P.; Malvagia, S.; Della Bona, M.L.; Giocaliere, E.; Bagnoli, P.; Dal Monte, M.; Mosca, F.; Donzelli, G.; et al. Propranolol concentrations after oral administration in term and preterm neonates. J. Matern. Fetal Neonatal Med. 2013, 26, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Dal Monte, M.; Casini, G.; Daniotti, M.; Sereni, F.; Bagnoli, P. Infantile hemangiomas, retinopathy of prematurity and cancer: A common pathogenetic role of the β-adrenergic system. Med. Res. Rev. 2015, 35, 619–652. [Google Scholar] [CrossRef]
- Ristori, C.; Filippi, L.; Dal Monte, M.; Martini, D.; Cammalleri, M.; Fortunato, P.; Bagnoli, P. Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: Antiangiogenic effects of beta-adrenoreceptor blockade. Investig. Ophthalmol. Vis. Sci. 2011, 52, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Dal Monte, M.; Casini, G.; la Marca, G.; Isacchi, B.; Filippi, L.; Bagnoli, P. Eye drop propranolol administration promotes the recovery of oxygen-induced retinopathy in mice. Exp. Eye Res. 2013, 111, 27–35. [Google Scholar] [CrossRef]
- Filippi, L.; Cavallaro, G.; Berti, E.; Padrini, L.; Araimo, G.; Regiroli, G.; Bozzetti, V.; De Angelis, C.; Tagliabue, P.; Tomasini, B.; et al. Study protocol: Safety and efficacy of propranolol 0.2% eye drops in newborns with a precocious stage of retinopathy of prematurity (DROP-ROP-0.2%): A multicenter, open-label, single arm, phase II trial. BMC Pediatr. 2017, 17, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, L.; Cavallaro, G.; Berti, E.; Padrini, L.; Araimo, G.; Regiroli, G.; Raffaeli, G.; Bozzetti, V.; Tagliabue, P.; Tomasini, B.; et al. Propranolol 0.2% Eye Micro-Drops for Retinopathy of Prematurity: A Prospective Phase IIB Study. Front. Pediatr. 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Filippi, L.; Cammalleri, M.; Amato, R.; Ciantelli, M.; Pini, A.; Bagnoli, P.; Dal Monte, M. Decoupling Oxygen Tension From Retinal Vascularization as a New Perspective for Management of Retinopathy of Prematurity. New Opportunities From β-adrenoceptors. Front. Pharmacol. 2022, 13, 835771. [Google Scholar] [CrossRef]
- Cammalleri, M.; Locri, F.; Catalani, E.; Filippi, L.; Cervia, D.; Dal Monte, M.; Bagnoli, P. The Beta Adrenergic Receptor Blocker Propranolol Counteracts Retinal Dysfunction in a Mouse Model of Oxygen Induced Retinopathy: Restoring the Balance between Apoptosis and Autophagy. Front. Cell Neurosci. 2017, 11, 395. [Google Scholar] [CrossRef]
- Leung, M.P.; Thompson, B.; Black, J.; Dai, S.; Alsweiler, J.M. The effects of preterm birth on visual development. Clin. Exp. Optom. 2018, 101, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Bowl, W.; Lorenz, B.; Stieger, K.; Schweinfurth, S.; Holve, K.; Friedburg, C.; Andrassi-Darida, M. Correlation of central visual function and ROP risk factors in prematures with and without acute ROP at the age of 6-13 years: The Giessen long-term ROP study. Br. J. Ophthalmol. 2016, 100, 1238–1244. [Google Scholar] [CrossRef] [Green Version]
- Moskowitz, A.; Hansen, R.M.; Fulton, A.B. Retinal, visual, and refractive development in retinopathy of prematurity. Eye Brain 2016, 20, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geldof, C.J.; Oosterlaan, J.; Vuijk, P.J.; de Vries, M.J.; Kok, J.H.; van Wassenaer-Leemhuis, A.G. Visual sensory and perceptive functioning in 5-year-old very preterm/very-low-birthweight children. Dev. Med. Child Neurol. 2014, 56, 862–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, O.H.; Nepstad, L.; Standal, O.A.; Elgen, I.; Markestad, T. Visual function in 6 to 7 year-old children born extremely preterm: A population-based study. Acta Ophthalmol. 2012, 90, 422–427. [Google Scholar] [CrossRef]
- Larsson, E.K.; Rydberg, A.C.; Holmström, G.E. A population-based study of the refractive outcome in 10-year-old preterm and full-term children. Arch. Ophthalmol. 2003, 121, 1430–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darlow, B.A.; Elder, M.J.; Kimber, B.; Martin, J.; Horwood, L.J. Vision in former very low birthweight young adults with and without retinopathy of prematurity compared with term born controls: The NZ 1986 VLBW follow-up study. Br. J. Ophthalmol. 2018, 102, 1041–1046. [Google Scholar] [CrossRef]
- Uner, O.E.; Rao, P.; Hubbard, G.B., 3rd. Reactivation of Retinopathy of Prematurity in Adults and Adolescents. Ophthalmol. Retina 2020, 4, 720–727. [Google Scholar] [CrossRef]
- Early Treatment for Retinopathy of Prematurity Cooperative Group; Good, W.V.; Hardy, R.J.; Dobson, V.; Palmer, E.A.; Phelps, D.L.; Tung, B.; Redford, M. Final visual acuity results in the early treatment for retinopathy of prematurity study. Arch. Ophthalmol. 2010, 128, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, S.H.; Schechet, S.A.; Shapiro, M.J.; Blair, M.P. Late visual outcomes in infants treated with primary bevacizumab for type 1 retinopathy of prematurity. J. AAPOS 2020, 24, 149.e1–149.e5. [Google Scholar] [CrossRef]
- Graziosi, A.; Perrotta, M.; Russo, D.; Gasparroni, G.; D’Egidio, C.; Marinelli, B.; Di Marzio, G.; Falconio, G.; Mastropasqua, L.; Li Volti, G.; et al. Oxidative Stress Markers and the Retinopathy of Prematurity. J. Clin. Med. 2020, 9, 2711. [Google Scholar] [CrossRef]
- Holm, M.; Morken, T.S.; Fichorova, R.N.; VanderVeen, D.K.; Allred, E.N.; Dammann, O.; Leviton, A. ELGAN Study Neonatology and Ophthalmology Committees. Systemic Inflammation-Associated Proteins and Retinopathy of Prematurity in Infants Born Before the 28th Week of Gestation. Investig. Ophthalmol. Vis. Sci 2017, 58, 6419–6428. [Google Scholar] [CrossRef] [PubMed]
- Morken, T.S.; Dammann, O.; Skranes, J.; Austeng, D. Retinopathy of prematurity, visual and neurodevelopmental outcome, and imaging of the central nervous system. Semin. Perinatol. 2019, 43, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Drost, F.J.; Keunen, K.; Moeskops, P.; Claessens, N.H.P.; van Kalken, F.; Išgum, I.; Voskuil-Kerkhof, E.S.M.; Groenendaal, F.; de Vries, L.S.; Benders, M.J.N.L.; et al. Severe retinopathy of prematurity is associated with reduced cerebellar and brainstem volumes at term and neurodevelopmental deficits at 2 years. Pediatr. Res. 2018, 83, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Dumpich, M.; Theiss, C. VEGF in the nervous system: An important target for research in neurodevelopmental and regenerative medicine. Neural. Regen. Res. 2015, 10, 1725–1726. [Google Scholar] [PubMed]
- Dyer, A.H.; Vahdatpour, C.; Sanfeliu, A.; Tropea, D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 2016, 325, 89–99. [Google Scholar] [CrossRef]
- Hansen-Pupp, I.; Löfqvist, C.; Polberger, S.; Niklasson, A.; Fellman, V.; Hellström, A.; Ley, D. Influence of insulin-like growth factor I and nutrition during phases of postnatal growth in very preterm infants. Pediatr. Res. 2011, 69, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Arima, M.; Akiyama, M.; Fujiwara, K.; Mori, Y.; Inoue, H.; Seki, E.; Nakama, T.; Tsukamoto, S.; Ochiai, M.; Ohga, S.; et al. Neurodevelopmental outcomes following intravitreal bevacizumab injection in Japanese preterm infants with type 1 retinopathy of prematurity. PLoS ONE 2020, 15, e0230678. [Google Scholar] [CrossRef]
- Farooqi, A.; Hägglöf, B.; Sedin, G.; Serenius, F. Impact at age 11 years of major neonatal morbidities in children born extremely preterm. Pediatrics 2011, 127, e1247–e1257. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.; Roberts, R.S.; Davis, P.G.; Doyle, L.W.; Asztalos, E.V.; Opie, G.; Bairam, A.; Solimano, A.; Arnon, S.; Sauve, R.S. Caffeine for Apnea of Prematurity (CAP) Trial Investigators; Caffeine for Apnea of Prematurity CAP Trial Investigators. Prediction of Late Death or Disability at Age 5 Years Using a Count of 3 Neonatal Morbidities in Very Low Birth Weight Infants. J. Pediatr. 2015, 167, 982–986.e2. [Google Scholar] [CrossRef]
- Schmidt, B.; Davis, P.G.; Asztalos, E.V.; Solimano, A.; Roberts, R.S. Association between severe retinopathy of prematurity and nonvisual disabilities at age 5 years. JAMA 2014, 311, 523–525. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.; Asztalos, E.V.; Roberts, R.S.; Robertson, C.M.; Sauve, R.S.; Whitfield, M.F. Trial of Indomethacin Prophylaxis in Preterms (TIPP) Investigators. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: Results from the trial of indomethacin prophylaxis in preterms. JAMA 2003, 289, 1124–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, L.; Fernell, E.; Broberger, U.; Ek, U.; Gillberg, C. Children with blindness due to retinopathy of prematurity: A population-based study. Perinatal data, neurological and ophthalmological outcome. Dev. Med. Child Neurol. 1998, 40, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Msall, M.E.; Phelps, D.L.; Hardy, R.J.; Dobson, V.; Quinn, G.E.; Summers, C.G.; Tremont, M.R. Cryotherapy for Retinopathy of Prematurity Cooperative Group. Educational and social competencies at 8 years in children with threshold retinopathy of prematurity in the CRYO-ROP multicenter study. Pediatrics 2004, 113, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Msall, M.E.; Phelps, D.L.; DiGaudio, K.M.; Dobson, V.; Tung, B.; McClead, R.E.; Quinn, G.E.; Reynolds, J.D.; Hardy, R.J.; Palmer, E.A. Severity of neonatal retinopathy of prematurity is predictive of neurodevelopmental functional outcome at age 5.5 years. Behalf of the Cryotherapy for Retinopathy of Prematurity Cooperative Group. Pediatrics 2000, 106, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.W.; Foulder-Hughes, L.; Newsham, D.; Clarke, D. Ophthalmic impairment at 7 years of age in children born very preterm. Arch. Dis. Child Fetal Neonatal Ed. 2004, 89, F249–F253. [Google Scholar] [CrossRef]
- Allred, E.N.; Capone, A., Jr.; Fraioli, A.; Dammann, O.; Droste, P.; Duker, J.; Gise, R.; Kuban, K.; Leviton, A.; O’Shea, T.M.; et al. Retinopathy of prematurity and brain damage in the very preterm newborn. J. AAPOS 2014, 18, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Sveinsdóttir, K.; Ley, D.; Hövel, H.; Fellman, V.; Hüppi, P.S.; Smith, L.E.H.; Hellström, A.; Hansen-Pupp, I. Relation of Retinopathy of Prematurity to Brain Volumes at Term Equivalent Age and Developmental Outcome at 2 Years of Corrected Age in Very Preterm Infants. Neonatology 2018, 114, 46–52. [Google Scholar] [CrossRef]
- Glass, T.J.A.; Chau, V.; Gardiner, J.; Foong, J.; Vinall, J.; Zwicker, J.G.; Grunau, R.E.; Synnes, A.; Poskitt, K.J.; Miller, S.P. Severe retinopathy of prematurity predicts delayed white matter maturation and poorer neurodevelopment. Arch. Dis. Child Fetal Neonatal Ed. 2017, 102, F532–F537. [Google Scholar] [CrossRef]
- Beligere, N.; Perumalsamy, V.; Flora, J.H.; Garska, M.J. Neurodevelopmental Disabilities in Children with Retinopathy of Prematurity: A Report from India. Int. J. Ophthalmol. Clin. Res. 2020, 7, 114. [Google Scholar]
- Todd, D.A.; Goyen, T.A.; Smith, J.; Rochefort, M. Developmental outcome in preterm infants <29 weeks gestation with ≤Stage 3 retinopathy of prematurity (ROP): Relationship to severity of ROP. J. Dev. Orig. Health Dis. 2012, 3, 116–122. [Google Scholar] [CrossRef]
- Goyen, T.A.; Todd, D.A.; Veddovi, M.; Wright, A.L.; Flaherty, M.; Kennedy, J. Eye-hand co-ordination skills in very preterm infants <29 weeks gestation at 3 years: Effects of preterm birth and retinopathy of prematurity. Early Hum. Dev. 2006, 82, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, T.; Wright, S.; O’Connor, A.; Fielder, A.; Johnson, A.; Ratib, S.; Tobin, M. Children born weighing less than 1701 g: Visual and cognitive outcomes at 11–14 years. Arch. Dis. Child Fetal Neonatal Ed. 2007, 92, F265–F270. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Park, H.K.; Lee, B.R.; Lee, H.J. Diffusion Tensor Imaging Analysis of White Matter Microstructural Integrity in Infants with Retinopathy of Prematurity. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3024–3033. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Lee, J.Y.; Lee, J.Y.; Lee, Y.J.; Lee, J.M.; Lee, B.R.; Kim, J.; Lee, H.J. Brain White Matter Maturation and Early Developmental Outcomes in Preterm Infants with Retinopathy of Prematurity. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2. [Google Scholar] [CrossRef]
- Altendahl, M.; Sim, M.S.; Kokhanov, A.; Gundlach, B.; Tsui, I.; Chu, A. Severe Retinopathy of Prematurity Is Not Independently Associated with Worse Neurodevelopmental Outcomes in Preterm Neonates. Front. Pediatr. 2021, 9, 679546. [Google Scholar] [CrossRef] [PubMed]
- Song, C.M.; Ahn, J.H.; Hwang, J.K.; Kim, C.R.; Kim, M.J.; Lee, K.M.; Lee, H.J.; Ahn, S.J. Retinopathy of Prematurity and Hearing Impairment in Infants Born with Very-Low-Birth-Weight: Analysis of a Korean Neonatal Network Database. J. Clin. Med. 2021, 10, 4781. [Google Scholar] [CrossRef]
- Fletcher, E.L.; Downie, L.E.; Hatzopoulos, K.; Vessey, K.A.; Ward, M.M.; Chow, C.L.; Pianta, M.J.; Vingrys, A.J.; Kalloniatis, M.; Wilkinson-Berka, J.L. The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy. Doc. Ophthalmol. 2010, 120, 67–86. [Google Scholar] [CrossRef]
- O’Connor, A.R.; Stephenson, T.; Johnson, A.; Tobin, M.J.; Moseley, M.J.; Ratib, S.; Ng, Y.; Fielder, A.R. Long-term ophthalmic outcome of low birth weight children with and without retinopathy of prematurity. Pediatrics 2002, 109, 12–18. [Google Scholar] [CrossRef]
- Pétursdóttir, D.; Holmström, G.; Larsson, E. Visual function is reduced in young adults formerly born prematurely: A population-based study. Br. J. Ophthalmol. 2020, 104, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.M.; Fulton, A.B. Background adaptation in children with a history of mild retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 2000, 41, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Bowl, W.; Lorenz, B.; Stieger, K.; Schweinfurth, S.; Holve, K.; Andrassi-Darida, M. Fundus-Controlled Dark Adaptometry in Young Children Without and With Spontaneously Regressed Retinopathy of Prematurity. Transl. Vis. Sci. Technol. 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Chang, S.; Wu, S.C.; See, L.C.; Chang, S.H.; Yang, M.L.; Wu, W.C. The inner retinal structures of the eyes of children with a history of retinopathy of prematurity. Eye 2018, 32, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, S.; Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 2021, 24, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Hernández, C.; Dal Monte, M.; Simó, R.; Casini, G. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy. J. Diabetes Res. 2016, 2016, 9508541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creel, D.J. Electroretinograms. Handb. Clin. Neurol. 2019, 160, 481–493. [Google Scholar] [CrossRef]
- Fulton, A.B.; Hansen, R.M.; Moskowitz, A.; Akula, J.D. The neurovascular retina in retinopathy of prematurity. Prog. Retin. Eye Res. 2009, 28, 452–482. [Google Scholar] [CrossRef] [Green Version]
- Fulton, A.B.; Hansen, R.M.; Moskowitz, A. The cone electroretinogram in retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 2008, 49, 814–819. [Google Scholar] [CrossRef]
- Fulton, A.B.; Hansen, R.M.; Petersen, R.A.; Vanderveen, D.K. The rod photoreceptors in retinopathy of prematurity: An electroretinographic study. Arch. Ophthalmol. 2001, 119, 499–505. [Google Scholar] [CrossRef]
- Akula, J.D.; Hansen, R.M.; Martinez-Perez, M.E.; Fulton, A.B. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4351–4359. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Akula, J.D.; Falk, C.; Hansen, R.M.; Fulton, A.B. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2639–2647. [Google Scholar] [CrossRef]
- Downie, L.E.; Hatzopoulos, K.M.; Pianta, M.J.; Vingrys, A.J.; Wilkinson-Berka, J.L.; Kalloniatis, M.; Fletcher, E.L. Angiotensin type-1 receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity. J. Comp. Neurol. 2010, 518, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Fulton, A.B.; Reynaud, X.; Hansen, R.M.; Lemere, C.A.; Parker, C.; Williams, T.P. Rod photoreceptors in infant rats with a history of oxygen exposure. Investig. Ophthalmol. Vis. Sci. 1999, 40, 168–174. [Google Scholar]
- Downie, L.E.; Pianta, M.J.; Vingrys, A.J.; Wilkinson-Berka, J.L.; Fletcher, E.L. Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J. Comp. Neurol. 2007, 504, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.C.; Holm, M.; Austeng, D.; Morken, T.S.; Zhou, T.E.; Beaudry-Richard, A.; Sierra, E.M.; Dammann, O.; Chemtob, S. Retinopathy of prematurity: Inflammation, choroidal degeneration, and novel promising therapeutic strategies. J. Neuroinflammation 2017, 14, 165. [Google Scholar] [CrossRef] [Green Version]
- Barnaby, A.M.; Hansen, R.M.; Moskowitz, A.; Fulton, A.B. Development of scotopic visual thresholds in retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4854–4860. [Google Scholar] [CrossRef] [Green Version]
- Perkins, G.A.; Ellisman, M.H.; Fox, D.A. Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: Bioenergetic and functional implications. Mol. Vis. 2003, 9, 60–73. [Google Scholar]
- Altschwager, P.; Moskowitz, A.; Fulton, A.B.; Hansen, R.M. Multifocal ERG Responses in Subjects with a History of Preterm Birth. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2603–2608. [Google Scholar] [CrossRef] [Green Version]
- Hammer, D.X.; Iftimia, N.V.; Ferguson, R.D.; Bigelow, C.E.; Ustun, T.E.; Barnaby, A.M.; Fulton, A.B. Foveal fine structure in retinopathy of prematurity: An adaptive optics Fourier domain optical coherence tomography study. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2061–2070. [Google Scholar] [CrossRef]
- Akerblom, H.; Larsson, E.; Eriksson, U.; Holmström, G. Central macular thickness is correlated with gestational age at birth in prematurely born children. Br. J. Ophthalmol. 2011, 95, 799–803. [Google Scholar] [CrossRef]
- Jabroun, M.N.; AlWattar, B.K.; Fulton, A.B. Optical Coherence Tomography Angiography in Prematurity. Semin. Ophthalmol. 2021, 36, 264–269. [Google Scholar] [CrossRef]
- Gursoy, H.; Bilgec, M.D.; Erol, N.; Basmak, H.; Colak, E. The macular findings on spectral-domain optical coherence tomography in premature infants with or without retinopathy of prematurity. Int. Ophthalmol. 2016, 36, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Spencer, R.; Leffler, J.N.; Birch, E.E. Critical period for foveal fine structure in children with regressed retinopathy of prematurity. Retina 2012, 32, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Yanni, S.E.; Wang, J.; Chan, M.; Carroll, J.; Farsiu, S.; Leffler, J.N.; Spencer, R.; Birch, E.E. Foveal avascular zone and foveal pit formation after preterm birth. Br. J. Ophthalmol. 2012, 96, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Miki, A.; Honda, S.; Inoue, Y.; Yamada, Y.; Nakamura, M. Foveal Depression and Related Factors in Patients with a History of Retinopathy of Prematurity. Ophthalmologica 2018, 240, 106–110. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Beckmann, J.; Mehta, H.; Sadda, S.R.; Chanwimol, K.; Nassisi, M.; Tsui, I.; Marlow, N.; Jain, S. Relationship between Retinal Thickness Profiles and Visual Outcomes in Young Adults Born Extremely Preterm: The EPICure@19 Study. Ophthalmol. 2019, 126, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.C.; Lin, R.I.; Shih, C.P.; Wang, N.K.; Chen, Y.P.; Chao, A.N.; Chen, K.J.; Chen, T.L.; Hwang, Y.S.; Lai, C.C.; et al. Visual acuity, optical components, and macular abnormalities in patients with a history of retinopathy of prematurity. Ophthalmology 2012, 119, 1907–1916. [Google Scholar] [CrossRef]
- Kergoat, H.; Hérard, M.E.; Lemay, M. RGC sensitivity to mild systemic hypoxia. Investig. Ophthalmol. Vis. Sci. 2006, 47, 5423–5427. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Lafleur, J.; Mwaikambo, B.R.; Zhu, T.; Gagnon, C.; Chemtob, S.; Di Polo, A.; Hardy, P. The role of lysophosphatidic acid receptor (LPA1) in the oxygen-induced retinal ganglion cell degeneration. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1290–1298. [Google Scholar] [CrossRef] [Green Version]
- Locri, F.; Cammalleri, M.; Dal Monte, M.; Rusciano, D.; Bagnoli, P. Protective Efficacy of a Dietary Supplement Based on Forskolin, Homotaurine, Spearmint Extract, and Group B Vitamins in a Mouse Model of Optic Nerve Injury. Nutrients 2019, 11, 2931. [Google Scholar] [CrossRef] [Green Version]
- Amato, R.; Rossino, M.G.; Cammalleri, M.; Locri, F.; Pucci, L.; Dal Monte, M.; Casini, G. Lisosan G Protects the Retina from Neurovascular Damage in Experimental Diabetic Retinopathy. Nutrients 2018, 10, 1932. [Google Scholar] [CrossRef] [Green Version]
- Dal Monte, M.; Cammalleri, M.; Locri, F.; Amato, R.; Marsili, S.; Rusciano, D.; Bagnoli, P. Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis. Nutrients 2018, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Locri, F.; Cammalleri, M.; Pini, A.; Dal Monte, M.; Rusciano, D.; Bagnoli, P. Further Evidence on Efficacy of Diet Supplementation with Fatty Acids in Ocular Pathologies: Insights from the EAE Model of Optic Neuritis. Nutrients 2018, 10, 1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, J.K.W.; Wolf, S.A.; Pompoes, I.M.; Joussen, A.M.; Lam, W.C.; Yang, D.; Lo, A.C.Y. Potential Effects of Nutraceuticals in Retinopathy of Prematurity. Life 2021, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Sood, B.G.; Madan, A.; Saha, S.; Schendel, D.; Thorsen, P.; Skogstrand, K.; Hougaard, D.; Shankaran, S.; Carlo, W. Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr. Res. 2010, 67, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartnett, M.E. Vascular endothelial growth factor antagonist therapy for retinopathy of prematurity. Clin. Perinatol. 2014, 41, 925–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tariq, Y.M.; Pai, A.; Li, H.; Afsari, S.; Gole, G.A.; Burlutsky, G.; Mitchell, P. Association of birth parameters with OCT measured macular and retinal nerve fiber layer thickness. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1709–1715. [Google Scholar] [CrossRef]
- Wang, J.; Spencer, R.; Leffler, J.N.; Birch, E.E. Characteristics of peripapillary retinal nerve fiber layer in preterm children. Am. J. Ophthalmol. 2012, 153, 850–855.e1. [Google Scholar] [CrossRef]
- Fieß, A.; Christian, L.; Janz, J.; Kölb-Keerl, R.; Knuf, M.; Kirchhof, B.; Muether, P.S.; Bauer, J. Functional analysis and associated factors of the peripapillary retinal nerve fibre layer in former preterm and full-term infants. Br. J. Ophthalmol. 2017, 101, 1405–1411. [Google Scholar] [CrossRef]
- Park, K.A.; Oh, S.Y. Retinal nerve fiber layer thickness in prematurity is correlated with stage of retinopathy of prematurity. Eye 2015, 29, 1594–1602. [Google Scholar] [CrossRef] [Green Version]
- Reichenbach, A.; Bringmann, A. Glia of the human retina. Glia 2020, 68, 768–796. [Google Scholar] [CrossRef]
- Reichenbach, A.; Bringmann, A. New functions of Müller cells. Glia 2013, 61, 651–678. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Zhang, X. Development of astrocytes in the vertebrate eye. Dev. Dyn. 2014, 243, 1501–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coorey, N.J.; Shen, W.; Chung, S.H.; Zhu, L.; Gillies, M.C. The role of glia in retinal vascular disease. Clin. Exp. Optom. 2012, 95, 266–281. [Google Scholar] [CrossRef]
- Lewis, G.P.; Fisher, S.K. Up-regulation of glial fibrillary acidic protein in response to retinal injury: Its potential role in glial remodeling and a comparison to vimentin expression. Int. Rev. Cytol. 2003, 230, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, A.S.; Saint-Geniez, M.; Maldonado, A.E.; D’Amore, P.A. Vascular endothelial growth factor localization in the adult. Am. J. Pathol. 2006, 168, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Nakazawa, T.; Matsubara, A.; Noda, K.; Hisatomi, T.; She, H.; Skondra, D.; Miyahara, S.; Sobrin, L.; Thomas, K.L.; Chen, D.F.; et al. Characterization of cytokine responses to retinal detachment in rats. Mol. Vis. 2006, 12, 867–878. [Google Scholar]
- Harada, T.; Harada, C.; Kohsaka, S.; Wada, E.; Yoshida, K.; Ohno, S.; Mamada, H.; Tanaka, K.; Parada, L.F.; Wada, K. Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J. Neurosci. 2002, 22, 9228–9236. [Google Scholar] [CrossRef] [Green Version]
- Jakobiec, F.A.; Thanos, A.; Stagner, A.M.; Grossniklaus, H.E.; Proia, A.D. So-called massive retinal gliosis: A critical review and reappraisal. Surv. Ophthalmol. 2016, 61, 339–356. [Google Scholar] [CrossRef]
- Houston, S.K.; Bourne, T.D.; Lopes, M.B.; Ghazi, N.G. Bilateral massive retinal gliosis associated with retinopathy of prematurity. Arch. Pathol. Lab. Med. 2009, 133, 1242–1245. [Google Scholar] [CrossRef]
- Yanoff, M.; Zimmerman, L.E.; Davis, R.L. Massive gliosis of the retina. Int. Ophthalmol. Clin. 1971, 11, 211–229. [Google Scholar]
- Huang, Z.; Ng, T.K.; Chen, W.; Sun, X.; Huang, D.; Zheng, D.; Yi, J.; Xu, Y.; Zhuang, X.; Chen, S. Nattokinase Attenuates Retinal Neovascularization Via Modulation of Nrf2/HO-1 and Glial Activation. Investig. Ophthalmol. Vis. Sci. 2021, 62, 25. [Google Scholar] [CrossRef] [PubMed]
- Thounaojam, M.C.; Jadeja, R.N.; Rajpurohit, S.; Gutsaeva, D.R.; Stansfield, B.K.; Martin, P.M.; Bartoli, M. Ursodeoxycholic Acid Halts Pathological Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. J. Clin. Med. 2020, 9, 1921. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Nian, S.; Li, S.Y.; Wong, D.; Chung, S.K.; Lo, A.C. Deficiency of aldose reductase attenuates inner retinal neuronal changes in a mouse model of retinopathy of prematurity. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchesi, M.; Marracci, S.; Amato, R.; Filippi, L.; Cammalleri, M.; Dal Monte, M. Neurosensory Alterations in Retinopathy of Prematurity: A Window to Neurological Impairments Associated to Preterm Birth. Biomedicines 2022, 10, 1603. https://doi.org/10.3390/biomedicines10071603
Lucchesi M, Marracci S, Amato R, Filippi L, Cammalleri M, Dal Monte M. Neurosensory Alterations in Retinopathy of Prematurity: A Window to Neurological Impairments Associated to Preterm Birth. Biomedicines. 2022; 10(7):1603. https://doi.org/10.3390/biomedicines10071603
Chicago/Turabian StyleLucchesi, Martina, Silvia Marracci, Rosario Amato, Luca Filippi, Maurizio Cammalleri, and Massimo Dal Monte. 2022. "Neurosensory Alterations in Retinopathy of Prematurity: A Window to Neurological Impairments Associated to Preterm Birth" Biomedicines 10, no. 7: 1603. https://doi.org/10.3390/biomedicines10071603
APA StyleLucchesi, M., Marracci, S., Amato, R., Filippi, L., Cammalleri, M., & Dal Monte, M. (2022). Neurosensory Alterations in Retinopathy of Prematurity: A Window to Neurological Impairments Associated to Preterm Birth. Biomedicines, 10(7), 1603. https://doi.org/10.3390/biomedicines10071603