An Ovarian Steroid Metabolomic Pathway Analysis in Basal and Polycystic Ovary Syndrome (PCOS)-like Gonadotropin Conditions Reveals a Hyperandrogenic Phenotype Measured by Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Legro, R.S. Obesity and PCOS: Implications for Diagnosis and Treatment. Semin. Reprod. Med. 2012, 30, 496–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamanti-Kandarakis, E. Insulin Resistance in PCOS. Endocrine 2006, 30, 13–17. [Google Scholar] [CrossRef]
- Banaszewska, B.; Spaczyński, R.Z.; Pelesz, M.; Pawelczyk, L. Incidence of Elevated LH/FSH Ratio in Polycystic Ovary Syndrome Women with Normo- and Hyperinsulinemia. Rocz. Akad. Med. W Białymstoku 2003, 48, 131–134. [Google Scholar]
- Saadia, Z. Follicle Stimulating Hormone (LH: FSH) Ratio in Polycystic Ovary Syndrome (PCOS)—Obese vs. Non-Obese Women. Med. Arch. 2020, 74, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.S.; Banu, H.; Akhtar, N.; Sultana, T.; Begum, A.; Zamilla, M.; Tuqan, S.; Shah, S.; Hossain, A.; Afrine, S.; et al. Luteinizing Hormone to Follicle-Stimulating Hormone Ratio Significantly Correlates with Androgen Level and Manifestations Are More Frequent with Hyperandrogenemia in Women With Polycystic Ovary Syndrome. J. Endocrinol. Metab. 2021, 11, 14–21. [Google Scholar] [CrossRef]
- Hillier, S.G.; Whitelaw, P.F.; Smyth, C.D. Follicular Oestrogen Synthesis: The “two-Cell, Two-Gonadotrophin” Model Revisited. Mol. Cell. Endocrinol. 1994, 100, 51–54. [Google Scholar] [CrossRef]
- Lebbe, M.; Woodruff, T.K. Involvement of Androgens in Ovarian Health and Disease. Mol. Hum. Reprod. 2013, 19, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Walters, K.A.; Allan, C.M.; Handelsman, D.J. Rodent Models for Human Polycystic Ovary Syndrome. Biol. Reprod. 2012, 86, 149–150. [Google Scholar] [CrossRef]
- Azziz, R. PCOS: Animal Models for PCOS-Not the Real Thing. Nat. Rev. Endocrinol. 2017, 13, 382–384. [Google Scholar] [CrossRef]
- Lebbe, M.; Taylor, A.E.; Visser, J.A.; Kirkman-Brown, J.C.; Woodruff, T.K.; Arlt, W. The Steroid Metabolome in the Isolated Ovarian Follicle and Its Response to Androgen Exposure and Antagonism. Endocrinology 2017, 158, 1474–1485. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Zhang, J.; Romero, M.M.; Smith, K.N.; Shea, L.D.; Woodruff, T.K. In Vitro Follicle Growth Supports Human Oocyte Meiotic Maturation. Sci. Rep. 2015, 5, 17323. [Google Scholar] [CrossRef] [PubMed]
- Skory, R.M.; Xu, Y.; Shea, L.D.; Woodruff, T.K. Engineering the Ovarian Cycle Using in Vitro Follicle Culture. Hum. Reprod. 2015, 30, 1386–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Coppeta, J.R.; Rogers, H.B.; Isenberg, B.C.; Zhu, J.; Olalekan, S.A.; McKinnon, K.E.; Dokic, D.; Rashedi, A.S.; Haisenleder, D.J.; et al. A Microfluidic Culture Model of the Human Reproductive Tract and 28-Day Menstrual Cycle. Nat. Commun. 2017, 8, 14584. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.E.; Keevil, B.; Huhtaniemi, I.T. Mass Spectrometry and Immunoassay: How to Measure Steroid Hormones Today and Tomorrow. Eur. J. Endocrinol. 2015, 173, D1–D12. [Google Scholar] [CrossRef] [Green Version]
- Handelsman, D.J.; Wartofsky, L. Requirement for Mass Spectrometry Sex Steroid Assays in the Journal of Clinical Endocrinology and Metabolism. J. Clin. Endocrinol. Metab. 2013, 98, 3971–3973. [Google Scholar] [CrossRef] [Green Version]
- Haisenleder, D.J.; Schoenfelder, A.H.; Marcinko, E.S.; Geddis, L.M.; Marshall, J.C. Estimation of Estradiol in Mouse Serum Samples: Evaluation of Commercial Estradiol Immunoassays. Endocrinology 2011, 152, 4443–4447. [Google Scholar] [CrossRef] [Green Version]
- Rosner, W.; Auchus, R.J.; Azziz, R.; Sluss, P.M.; Raff, H. Utility, Limitations, and Pitfalls in Measuring Testosterone: An Endocrine Society Position Statement. J. Clin. Endocrinol. Metab. 2007, 92, 405–413. [Google Scholar] [CrossRef]
- Handelsman, D.J. Mass Spectrometry, Immunoassay and Valid Steroid Measurements in Reproductive Medicine and Science. Hum. Reprod. 2017, 32, 1147–1150. [Google Scholar] [CrossRef] [Green Version]
- Rosner, W.; Hankinson, S.E.; Sluss, P.M.; Vesper, S.W.; Wierman, M.E. Challenges to the Measurement of Estradiol: An Endocrine Society Position Statement. J. Clin. Endocrinol. Metab. 2013, 98, 1376–1387. [Google Scholar] [CrossRef] [Green Version]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [Green Version]
- Long, G.L.; Winefordner, J.D. Limit of Detection: A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar] [CrossRef]
- Babayev, E.; Duncan, F.E. Age-Associated Changes in Cumulus Cells and Follicular Fluid: The Local Oocyte Microenvironment as a Determinant of Gamete Quality. Biol. Reprod. 2022, 106, 351–365. [Google Scholar] [CrossRef]
- O’Reilly, M.W.; Taylor, A.E.; Crabtree, N.J.; Hughes, B.A.; Capper, F.; Crowley, R.K.; Stewart, P.M.; Tomlinson, J.W.; Arlt, W. Hyperandrogenemia Predicts Metabolic Phenotype in Polycystic Ovary Syndrome: The Utility of Serum Androstenedione. J. Clin. Endocrinol. Metab. 2014, 99, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Snaterse, G.; van Dessel, L.F.; Taylor, A.E.; Visser, J.A.; Arlt, W.; Lolkema, M.P.; Hofland, J. Validation of Circulating Steroid Hormone Measurements across Different Matrices by Liquid Chromatography–Tandem Mass Spectrometry. Steroids 2021, 167, 108800. [Google Scholar] [CrossRef] [PubMed]
- Shinwari, K.J. Emerging Technologies for the Recovery of Bioactive Compounds from Saffron Species. In Saffron; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 143–182. [Google Scholar] [CrossRef]
- Walters, K.A.; Allan, C.M.; Handelsman, D.J. Androgen Actions and the Ovary. Biol. Reprod. 2008, 78, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Franik, G.; Maksym, M.; Owczarek, A.J.; Chudek, J.; Madej, P.; Olszanecka-Glinianowicz, M. Estradiol/Testosterone and Estradiol/Androstenedione Indexes and Nutritional Status in PCOS Women—A Pilot Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 242, 166–169. [Google Scholar] [CrossRef]
- Naessen, T.; Kushnir, M.M.; Chaika, A.; Nosenko, J.; Mogilevkina, I.; Rockwood, A.L.; Carlstrom, K.; Bergquist, J.; Kirilovas, D. Steroid Profiles in Ovarian Follicular Fluid in Women with and without Polycystic Ovary Syndrome, Analyzed by Liquid Chromatography-Tandem Mass Spectrometry. Fertil. Steril. 2010, 94, 2228–2233. [Google Scholar] [CrossRef]
- Amato, M.C.; Verghi, M.; Nucera, M.; Galluzzo, A.; Giordano, C. Low Estradiol-to-Testosterone Ratio Is Associated with Oligo-Anovulatory Cycles and Atherogenic Lipidic Pattern in Women with Polycystic Ovary Syndrome. Gynecol. Endocrinol. 2011, 27, 579–586. [Google Scholar] [CrossRef]
- Wood, J.R.; Nelson, V.L.; Ho, C.; Jansen, E.; Wang, C.Y.; Urbanek, M.; McAllister, J.M.; Mosselman, S.; Strauss, J.F., III. The Molecular Phenotype of Polycystic Ovary Syndrome (PCOS) Theca Cells and New Candidate PCOS Genes Defined by Microarray Analysis. J. Biol. Chem. 2003, 278, 26380–26390. [Google Scholar] [CrossRef] [Green Version]
- Nelson, V.L.; Legro, R.S.; Strauss, J.F., III; McAllister, J.M. Augmented Androgen Production Is a Stable Steroidogenic Phenotype of Propagated Theca Cells from Polycystic Ovaries. Mol. Endocrinol. 1999, 13, 946–957. [Google Scholar] [CrossRef]
- Gilling-Smith, C.; Franks, S.; Willis, D.S.; Beard, R.W. Hypersecretion of Androstenedione by Isolated Thecal Cells from Polycystic Ovaries. J. Clin. Endocrinol. Metab. 1994, 79, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- McAllister, J.M.; Legro, R.S.; Modi, B.P.; Strauss, J.F., III. Functional Genomics of PCOS: From GWAS to Molecular Mechanisms. Trends Endocrinol. Metab. 2015, 26, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickso, G.F.; Hsueh, A.J.W.; Quigley, M.E.; Rebar, R.W.; Yen, S.S.C. Functional Studies of Aromatase Activity in Human Granulosa Cells from Normal and Polycystic Ovaries. J. Clin. Endocrinol. Metab. 1979, 49, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Jakimiuk, A.J.; Weitsman, S.R.; Brzechffa, P.R.; Magoffin, D.A. Aromatase MRNA Expression in Individual Follicles from Polycystic Ovaries. Mol. Hum. Reprod. 1998, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rajkhowa, M.; Bicknell, J.; Jones, M.; Clayton, R.N. Insulin Sensitivity in Women with Polycystic Ovary Syndrome: Relationship to Hyperandrogenemia. Fertil. Steril. 1994, 61, 605–612. [Google Scholar] [CrossRef]
- Boutzios, G.; Karalaki, M.; Zapanti, E. Common Pathophysiological Mechanisms Involved in Luteal Phase Deficiency and Polycystic Ovary Syndrome. Impact on Fertility. Endocrine 2013, 43, 314–317. [Google Scholar] [CrossRef]
- Willis, D.; Mason, H.; Gilling-Smith, C.; Franks, S. Modulation by Insulin of Follicle-Stimulating Hormone and Luteinizing Hormone Actions in Human Granulosa Cells of Normal and Polycystic Ovaries. J. Clin. Endocrinol. Metab. 1996, 81, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.D.; Vijayvergia, M.; Miller, F.H.; Carroll, T.; Fasanati, C.; Shea, L.D.; Brinson, L.C.; Woodruff, T.K. Multi-Modal Magnetic Resonance Elastography for Noninvasive Assessment of Ovarian Tissue Rigidity in Vivo. Acta Biomater. 2015, 13, 295–300. [Google Scholar] [CrossRef] [Green Version]
- West, E.R.; Xu, M.; Woodruff, T.K.; Shea, L.D. Physical Properties of Alginate Hydrogels and Their Effects on In Vitro Follicle Development. Biomaterials 2007, 28, 4439–4448. [Google Scholar] [CrossRef] [Green Version]
- West-Farrell, E.R.; Xu, M.; Gomberg, M.A.; Chow, Y.H.; Woodruff, T.K.; Shea, L.D. The Mouse Follicle Microenvironment Regulates Antrum Formation and Steroid Production: Alterations in Gene Expression Profiles. Biol. Reprod. 2009, 80, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, T.K.; Shea, L.D. A New Hypothesis Regarding Ovarian Follicle Development: Ovarian Rigidity as a Regulator of Selection and Health. J. Assist. Reprod. Genet. 2011, 28, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, L.D.; Woodruff, T.K.; Shikanov, A. Bioengineering the Ovarian Follicle Microenvironment. Annu. Rev. Biomed. Eng. 2014, 16, 29–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crain, D.A.; Janssen, S.J.; Edwards, T.M.; Heindel, J.; Ho, S.M.; Hunt, P.; Iguchi, T.; Juul, A.; McLachlan, J.A.; Schwartz, J.; et al. Female Reproductive Disorders: The Roles of Endocrine-Disrupting Compounds and Developmental Timing. Fertil. Steril. 2008, 90, 911–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopal, S.; Rodrigues, A.L.; Dordick, J.S. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front. Bioeng. Biotechnol. 2020, 8, 692. [Google Scholar] [CrossRef] [PubMed]
- Laronda, M.M.; Burdette, J.E.; Kim, J.; Woodruff, T.K. Recreating the Female Reproductive Tract in Vitro Using IPSC Technology in a Linked Microfluidics Environment. Stem Cell Res. Ther. 2013, 4, S13. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, D.R.; Biason-Lauber, A. IPSC-Derived Gonadal Cell Models. In Current Progress in iPSC-Derived Cell Types; Birbrair, A., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 283–306. [Google Scholar] [CrossRef]
- Sun, T.; Pisarska, M.D. An Induced Pluripotent Stem Cell–Derived Granulosa Cell Model Revealed Hyperactive CREB Signaling in Polycystic Ovary Syndrome Subjects. Fertil. Steril. 2019, 112, 480–481. [Google Scholar] [CrossRef] [Green Version]
- Mutharasan, P.; Galdones, E.; Bernabé, B.P.; Garcia, O.A.; Jafari, N.; Shea, L.D.; Woodruff, T.K.; Legro, R.S.; Dunaif, A.; Urbanek, M. Evidence for Chromosome 2p16.3 Polycystic Ovary Syndrome Susceptibility Locus in Affected Women of European Ancestry. J. Clin. Endocrinol. Metab. 2013, 98, E185–E190. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.G.; Urbanek, M.; Ehrmann, D.A.; Armstrong, L.L.; Lee, J.Y.; Sisk, R.; Karaderi, T.; Barber, T.M.; McCarthy, M.I.; Franks, S.; et al. Genome-Wide Association of Polycystic Ovary Syndrome Implicates Alterations in Gonadotropin Secretion in European Ancestry Populations. Nat. Commun. 2015, 6, 7502. [Google Scholar] [CrossRef] [Green Version]
- Day, F.; Karaderi, T.; Jones, M.R.; Meun, C.; He, C.; Drong, A.; Kraft, P.; Lin, N.; Huang, H.; Broer, L.; et al. Large-Scale Genome-Wide Meta-Analysis of Polycystic Ovary Syndrome Suggests Shared Genetic Architecture for Different Diagnosis Criteria. PLoS Genet. 2018, 14, e1007813. [Google Scholar] [CrossRef] [Green Version]
- Jackson-Bey, T.; Colina, J.; Isenberg, B.C.; Coppeta, J.; Urbanek, M.; Kim, J.J.; Woodruff, T.K.; Burdette, J.E.; Russo, A. Exposure of Human Fallopian Tube Epithelium to Elevated Testosterone Results in Alteration of Cilia Gene Expression and Beating. Hum. Reprod. 2020, 35, 2086–2096. [Google Scholar] [CrossRef]
- Wiwatpanit, T.; Murphy, A.R.; Lu, Z.; Urbanek, M.; Burdette, J.E.; Woodruff, T.K.; Kim, J.J. Scaffold-Free Endometrial Organoids Respond to Excess Androgens Associated With Polycystic Ovarian Syndrome. J. Clin. Endocrinol. Metab. 2020, 105, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, A.S.L.; Middleton, L.J.; Jimenez, M.; Desai, R.; McMahon, A.C.; Allan, C.M.; Handelsman, D.J.; Walters, K.A. Characterization of Reproductive, Metabolic, and Endocrine Features of Polycystic Ovary Syndrome in Female Hyperandrogenic Mouse Models. Endocrinology 2014, 155, 3146–3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Analyte | m/z | LOD (ng/mL) | LOQ (ng/mL) | Polarity | ||
---|---|---|---|---|---|---|
Precursor Ion | Product Ion | |||||
Qual a | Quant b | |||||
E1 | 269.16 | 183.10 | 145.10 | 0.065 | 0.215 | Negative c |
E2 | 271.17 | 183.10 | 145.10 | 0.035 | 0.116 | Negative |
P | 315.20 | 109.10 | 97.00 | 0.022 | 0.074 | Positive d |
T | 289.20 | 109.10 | 97.00 | 0.015 | 0.051 | Positive |
A | 287.20 | 109.00 | 97.00 | 0.019 | 0.065 | Positive |
DHT e | 291.20 | 255.10 | 215.10 | 0.019 | 0.063 | Positive |
DHEA f | 289.20 | 271.10 | 213.10 | 2.314 | 7.713 | Positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargus, E.S.; Bae, Y.; Chen, J.; Moss, K.J.; Ingram, A.N.; Zhang, J.; Montgomery, N.T.; Boots, C.E.; Funk, W.E.; Woodruff, T.K. An Ovarian Steroid Metabolomic Pathway Analysis in Basal and Polycystic Ovary Syndrome (PCOS)-like Gonadotropin Conditions Reveals a Hyperandrogenic Phenotype Measured by Mass Spectrometry. Biomedicines 2022, 10, 1646. https://doi.org/10.3390/biomedicines10071646
Gargus ES, Bae Y, Chen J, Moss KJ, Ingram AN, Zhang J, Montgomery NT, Boots CE, Funk WE, Woodruff TK. An Ovarian Steroid Metabolomic Pathway Analysis in Basal and Polycystic Ovary Syndrome (PCOS)-like Gonadotropin Conditions Reveals a Hyperandrogenic Phenotype Measured by Mass Spectrometry. Biomedicines. 2022; 10(7):1646. https://doi.org/10.3390/biomedicines10071646
Chicago/Turabian StyleGargus, Emma S., Yeunook Bae, Jiexi Chen, Kristine J. Moss, Asia N. Ingram, Jiyang Zhang, Nathan T. Montgomery, Christina E. Boots, William E. Funk, and Teresa K. Woodruff. 2022. "An Ovarian Steroid Metabolomic Pathway Analysis in Basal and Polycystic Ovary Syndrome (PCOS)-like Gonadotropin Conditions Reveals a Hyperandrogenic Phenotype Measured by Mass Spectrometry" Biomedicines 10, no. 7: 1646. https://doi.org/10.3390/biomedicines10071646
APA StyleGargus, E. S., Bae, Y., Chen, J., Moss, K. J., Ingram, A. N., Zhang, J., Montgomery, N. T., Boots, C. E., Funk, W. E., & Woodruff, T. K. (2022). An Ovarian Steroid Metabolomic Pathway Analysis in Basal and Polycystic Ovary Syndrome (PCOS)-like Gonadotropin Conditions Reveals a Hyperandrogenic Phenotype Measured by Mass Spectrometry. Biomedicines, 10(7), 1646. https://doi.org/10.3390/biomedicines10071646