How Structural Features Define Biogenesis and Function of Human Telomerase RNA Primary Transcript
Abstract
:1. Introduction
2. Diverse Forms of Human Telomerase RNA Are Processed from the Nascent Transcript
3. Structural Features of hTERC Responsible for Telomerase Activity
4. Human Telomerase RNA Structural Elements Form during Telomerase Complex Assembly
5. hTERC Structure and Localization Determine Its Function
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greider, C.W.; Blackburn, E.H. Identification of a Specific Telomere Terminal Transferase Activity in Tetrahymena Extracts. Cell 1985, 43, 405–413. [Google Scholar] [CrossRef]
- Morin, G.B. The Human Telomere Terminal Transferase Enzyme Is a Ribonucleoprotein That Synthesizes TTAGGG Repeats. Cell 1989, 59, 521–529. [Google Scholar] [CrossRef]
- Holt, S.E.; Shay, J.W. Role of Telomerase in Cellular Proliferation and Cancer. J. Cell. Physiol. 1999, 180, 10–18. [Google Scholar] [CrossRef]
- Bodnar, A.G.; Ouellette, M.; Frolkis, M.; Holt, S.E.; Chiu, C.P.; Morin, G.B.; Harley, C.B.; Shay, J.W.; Lichtsteiner, S.; Wright, W.E. Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science 1998, 279, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingner, J.; Cooper, J.; Cech, T. Telomerase and DNA End Replication: No Longer a Lagging Strand Problem? Science 1995, 269, 1533–1534. [Google Scholar] [CrossRef] [PubMed]
- Yashima, K.; Maitra, A.; Rogers, B.B.; Timmons, C.F.; Rathi, A.; Pinar, H.; Wright, W.E.; Shay, J.W.; Gazdar, A.F. Expression of the RNA Component of Telomerase during Human Development and Differentiation. Cell Growth Differ. 1998, 9, 805–813. [Google Scholar]
- Blasco, M.A.; Rizen, M.; Greider, C.W.; Hanahan, D. Differential Regulation of Telomerase Activity and Telomerase RNA during Multi-Stage Tumorigenesis. Nat. Genet. 1996, 12, 200–204. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Flores, J.M.; Blasco, M.A. The Telomerase RNA Component Terc Is Required for the Tumour-Promoting Effects of Tert Overexpression. EMBO Rep. 2005, 6, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Funk, W.D.; Wang, S.S.; Weinrich, S.L.; Avilion, A.A.; Chiu, C.P.; Adams, R.R.; Chang, E.; Allsopp, R.C.; Yu, J. The RNA Component of Human Telomerase. Science 1995, 269, 1236–1241. [Google Scholar] [CrossRef]
- Roake, C.M.; Artandi, S.E. Regulation of Human Telomerase in Homeostasis and Disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 384–397. [Google Scholar] [CrossRef]
- Rubtsova, M.; Dontsova, O. Human Telomerase RNA: Telomerase Component or More? Biomolecules 2020, 10, 873. [Google Scholar] [CrossRef]
- Rubtsova, M.; Naraykina, Y.; Vasilkova, D.; Meerson, M.; Zvereva, M.; Prassolov, V.; Lazarev, V.; Manuvera, V.; Kovalchuk, S.; Anikanov, N.; et al. Protein Encoded in Human Telomerase RNA Is Involved in Cell Protective Pathways. Nucleic Acids Res. 2018, 46, 8966–8977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shliapina, V.; Koriagina, M.; Vasilkova, D.; Govorun, V.; Dontsova, O.; Rubtsova, M. Human Telomerase RNA Protein Encoded by Telomerase RNA Is Involved in Metabolic Responses. Front. Cell Dev. Biol. 2021, 9, 754611. [Google Scholar] [CrossRef] [PubMed]
- Rubtsova, M.P.; Vasilkova, D.P.; Moshareva, M.A.; Malyavko, A.N.; Meerson, M.B.; Zatsepin, T.S.; Naraykina, Y.V.; Beletsky, A.V.; Ravin, N.V.; Dontsova, O.A. Integrator Is a Key Component of Human Telomerase RNA Biogenesis. Sci. Rep. 2019, 9, 1701. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-K.; Wang, H.-F.; Burns, A.M.; Schroeder, M.R.; Gaspari, M.; Baumann, P. Human Telomerase RNA Processing and Quality Control. Cell Rep. 2015, 13, 2232–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Roake, C.M.; Galati, A.; Bavasso, F.; Micheli, E.; Saggio, I.; Schoeftner, S.; Cacchione, S.; Gatti, M.; Artandi, S.E.; et al. Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep. 2020, 30, 1358–1372.e5. [Google Scholar] [CrossRef]
- Qin, J.; Autexier, C. Regulation of Human Telomerase RNA Biogenesis and Localization. RNA Biol. 2021, 18, 305–315. [Google Scholar] [CrossRef]
- Nguyen, D.; Grenier St-Sauveur, V.; Bergeron, D.; Dupuis-Sandoval, F.; Scott, M.S.; Bachand, F. A Polyadenylation-Dependent 3’ End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA. Cell Rep. 2015, 13, 2244–2257. [Google Scholar] [CrossRef] [Green Version]
- Fok, W.C.; Shukla, S.; Vessoni, A.T.; Brenner, K.A.; Parker, R.; Sturgeon, C.M.; Batista, L.F.Z. Posttranscriptional Modulation of TERC by PAPD5 Inhibition Rescues Hematopoietic Development in Dyskeratosis Congenita. Blood 2019, 133, 1308–1312. [Google Scholar] [CrossRef]
- Shukla, S.; Jeong, H.-C.; Sturgeon, C.M.; Parker, R.; Batista, L.F.Z. Chemical Inhibition of PAPD5/7 Rescues Telomerase Function and Hematopoiesis in Dyskeratosis Congenita. Blood Adv. 2020, 4, 2717–2722. [Google Scholar] [CrossRef]
- Moon, D.H.; Segal, M.; Boyraz, B.; Guinan, E.; Hofmann, I.; Cahan, P.; Tai, A.K.; Agarwal, S. Poly (A)-Specific Ribonuclease (PARN) Mediates 3’-End Maturation of the Telomerase RNA Component. Nat. Genet. 2015, 47, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Schmidt, J.C.; Goldfarb, K.C.; Cech, T.R.; Parker, R. Inhibition of Telomerase RNA Decay Rescues Telomerase Deficiency Caused by Dyskerin or PARN Defects. Nat. Struct. Mol. Biol. 2016, 23, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wang, X.; Liu, F.; Guenther, U.-P.; Srinivasan, S.; Anderson, J.T.; Jankowsky, E. The RNA Helicase Mtr4p Modulates Polyadenylation in the TRAMP Complex. Cell 2011, 145, 890–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Deng, Z.; Jiang, S.; Hu, Q.; Liu, H.; Songyang, Z.; Ma, W.; Chen, S.; Zhao, Y. Human Cells Lacking Coilin and Cajal Bodies Are Proficient in Telomerase Assembly, Trafficking and Telomere Maintenance. Nucleic Acids Res. 2015, 43, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Huang, Y.; Weng, K.; Lin, S.; Li, Y.; Shi, G.; Chen, Y.; Huang, J.; Liu, D.; Ma, W.; et al. TOE1 Acts as a 3’ Exonuclease for Telomerase RNA and Regulates Telomere Maintenance. Nucleic Acids Res. 2019, 47, 391–405. [Google Scholar] [CrossRef]
- Meola, N.; Jensen, T.H. Targeting the Nuclear RNA Exosome: Poly (A) Binding Proteins Enter the Stage. RNA Biol. 2017, 14, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Pakhomova, T.; Moshareva, M.; Vasilkova, D.; Zatsepin, T.; Dontsova, O.; Rubtsova, M. Role of RNA Biogenesis Factors in the Processing and Transport of Human Telomerase RNA. Biomedicines 2022, 10, 1275. [Google Scholar] [CrossRef]
- Boulon, S.; Verheggen, C.; Jady, B.E.; Girard, C.; Pescia, C.; Paul, C.; Ospina, J.K.; Kiss, T.; Matera, A.G.; Bordonné, R.; et al. PHAX and CRM1 Are Required Sequentially to Transport U3 SnoRNA to Nucleoli. Mol. Cell 2004, 16, 777–787. [Google Scholar] [CrossRef]
- O’Sullivan, C.; Howard, P.L. The Diverse Requirements of ARS2 in Nuclear Cap-Binding Complex-Dependent RNA Processing. RNA Dis. 2017, 4, e1376. [Google Scholar] [CrossRef] [Green Version]
- Narita, T.; Yung, T.M.C.; Yamamoto, J.; Tsuboi, Y.; Tanabe, H.; Tanaka, K.; Yamaguchi, Y.; Handa, H. NELF Interacts with CBC and Participates in 3’ End Processing of Replication-Dependent Histone MRNAs. Mol. Cell 2007, 26, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Hallais, M.; Pontvianne, F.; Andersen, P.R.; Clerici, M.; Lener, D.; Benbahouche, N.E.H.; Gostan, T.; Vandermoere, F.; Robert, M.-C.; Cusack, S.; et al. CBC–ARS2 Stimulates 3′-End Maturation of Multiple RNA Families and Favors Cap-Proximal Processing. Nat. Struct. Mol. Biol. 2013, 20, 1358–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacometti, S.; Benbahouche, N.E.H.; Domanski, M.; Robert, M.-C.; Meola, N.; Lubas, M.; Bukenborg, J.; Andersen, J.S.; Schulze, W.M.; Verheggen, C.; et al. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate. Cell Rep. 2017, 18, 2635–2650. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.D. Structural Biology of Human Telomerase: Progress and Prospects. Biochem. Soc. Trans. 2021, 49, 1927–1939. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.R.; Collins, K. Human Telomerase Activation Requires Two Independent Interactions between Telomerase RNA and Telomerase Reverse Transcriptase. Mol. Cell 2000, 6, 361–371. [Google Scholar] [CrossRef]
- Tesmer, V.M.; Ford, L.P.; Holt, S.E.; Frank, B.C.; Yi, X.; Aisner, D.L.; Ouellette, M.; Shay, J.W.; Wright, W.E. Two Inactive Fragments of the Integral RNA Cooperate To Assemble Active Telomerase with the Human Protein Catalytic Subunit (HTERT) In Vitro. Mol. Cell Biol. 1999, 19, 6207–6216. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.D.; Tam, J.; Wu, R.A.; Greber, B.J.; Toso, D.; Nogales, E.; Collins, K. Cryo-EM Structure of Substrate-Bound Human Telomerase Holoenzyme. Nature 2018, 557, 190–195. [Google Scholar] [CrossRef]
- Tseng, C.-K.; Wang, H.-F.; Schroeder, M.R.; Baumann, P. The H/ACA Complex Disrupts Triplex in HTR Precursor to Permit Processing by RRP6 and PARN. Nat. Commun. 2018, 9, 5430. [Google Scholar] [CrossRef]
- Vogan, J.M.; Zhang, X.; Youmans, D.T.; Regalado, S.G.; Johnson, J.Z.; Hockemeyer, D.; Collins, K. Minimized Human Telomerase Maintains Telomeres and Resolves Endogenous Roles of H/ACA Proteins, TCAB1, and Cajal Bodies. Elife 2016, 5, e18221. [Google Scholar] [CrossRef]
- Chen, L.; Roake, C.M.; Freund, A.; Batista, P.J.; Tian, S.; Yin, Y.A.; Gajera, C.R.; Lin, S.; Lee, B.; Pech, M.F.; et al. An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1. Cell 2018, 174, 218–230.e13. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Brown, A.F.; Wu, J.; Xue, J.; Bley, C.J.; Rand, D.P.; Wu, L.; Zhang, R.; Chen, J.J.-L.; Lei, M. Structural Basis for Protein-RNA Recognition in Telomerase. Nat. Struct. Mol. Biol. 2014, 21, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, G.E.; Fountain, A.J.; van Roon, A.-M.M.; Rangan, R.; Das, R.; Collins, K.; Nguyen, T.H.D. Structure of Human Telomerase Holoenzyme with Bound Telomeric DNA. Nature 2021, 593, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Zemora, G.; Handl, S.; Waldsich, C. Human Telomerase Reverse Transcriptase Binds to a Pre-Organized HTR in Vivo Exposing Its Template. Nucleic Acids Res. 2016, 44, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Niederer, R.O.; Zappulla, D.C. Refined Secondary-Structure Models of the Core of Yeast and Human Telomerase RNAs Directed by SHAPE. RNA 2015, 21, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theimer, C.A.; Finger, L.D.; Trantirek, L.; Feigon, J. Mutations Linked to Dyskeratosis Congenita Cause Changes in the Structural Equilibrium in Telomerase RNA. Proc. Natl. Acad. Sci. USA 2003, 100, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Kim, N.-K.; Peterson, R.D.; Wang, Z.; Feigon, J. Structurally Conserved Five Nucleotide Bulge Determines the Overall Topology of the Core Domain of Human Telomerase RNA. Proc. Natl. Acad. Sci. USA 2010, 107, 18761–18768. [Google Scholar] [CrossRef] [Green Version]
- Roake, C.M.; Chen, L.; Chakravarthy, A.L.; Ferrell, J.E.; Raffa, G.D.; Artandi, S.E. Disruption of Telomerase RNA Maturation Kinetics Precipitates Disease. Mol. Cell 2019, 74, 688–700.e3. [Google Scholar] [CrossRef]
- Robart, A.R.; Collins, K. Investigation of Human Telomerase Holoenzyme Assembly, Activity, and Processivity Using Disease-Linked Subunit Variants. J. Biol. Chem. 2010, 285, 4375–4386. [Google Scholar] [CrossRef] [Green Version]
- Errington, T.M.; Fu, D.; Wong, J.M.Y.; Collins, K. Disease-Associated Human Telomerase RNA Variants Show Loss of Function for Telomere Synthesis without Dominant-Negative Interference. Mol. Cell Biol. 2008, 28, 6510–6520. [Google Scholar] [CrossRef] [Green Version]
- Comolli, L.R.; Smirnov, I.; Xu, L.; Blackburn, E.H.; James, T.L. A Molecular Switch Underlies a Human Telomerase Disease. Proc. Natl. Acad. Sci. USA 2002, 99, 16998–17003. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-L.; Greider, C.W. Functional Analysis of the Pseudoknot Structure in Human Telomerase RNA. Proc. Natl. Acad. Sci. USA 2005, 102, 8080–8085. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, A.P.; Collins, K. Mechanisms of Template Handling and Pseudoknot Folding in Human Telomerase and Their Manipulation to Expand the Sequence Repertoire of Processive Repeat Synthesis. Nucleic Acids Res. 2018, 46, 7886–7901. [Google Scholar] [CrossRef] [PubMed]
- Antal, M.; Boros, E.; Solymosy, F.; Kiss, T. Analysis of the Structure of Human Telomerase RNA in Vivo. Nucleic Acids Res. 2002, 30, 912–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeper, T.C.; Varani, G. The Structure of an Enzyme-Activating Fragment of Human Telomerase RNA. RNA 2005, 11, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.-K.; Theimer, C.A.; Mitchell, J.R.; Collins, K.; Feigon, J. Effect of Pseudouridylation on the Structure and Activity of the Catalytically Essential P6.1 Hairpin in Human Telomerase RNA. Nucleic Acids Res. 2010, 38, 6746–6756. [Google Scholar] [CrossRef] [Green Version]
- Palka, C.; Forino, N.M.; Hentschel, J.; Das, R.; Stone, M.D. Folding Heterogeneity in the Essential Human Telomerase RNA Three-Way Junction. RNA 2020, 26, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Cristofari, G.; Adolf, E.; Reichenbach, P.; Sikora, K.; Terns, R.M.; Terns, M.P.; Lingner, J. Human Telomerase RNA Accumulation in Cajal Bodies Facilitates Telomerase Recruitment to Telomeres and Telomere Elongation. Mol. Cell 2007, 27, 882–889. [Google Scholar] [CrossRef]
- Zhu, Y.; Tomlinson, R.L.; Lukowiak, A.A.; Terns, R.M.; Terns, M.P. Telomerase RNA Accumulates in Cajal Bodies in Human Cancer Cells. Mol. Biol. Cell 2004, 15, 81–90. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, P.; Zheng, Q.; Gao, G.; Yuan, J.; Wang, P.; Huang, J.; Xie, L.; Lu, X.; Tong, T.; et al. Mitochondrial Trafficking and Processing of Telomerase RNA TERC. Cell Rep. 2018, 24, 2589–2595. [Google Scholar] [CrossRef] [Green Version]
- Gazzaniga, F.S.; Blackburn, E.H. An Antiapoptotic Role for Telomerase RNA in Human Immune Cells Independent of Telomere Integrity or Telomerase Enzymatic Activity. Blood 2014, 124, 3675–3684. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubtsova, M.; Dontsova, O. How Structural Features Define Biogenesis and Function of Human Telomerase RNA Primary Transcript. Biomedicines 2022, 10, 1650. https://doi.org/10.3390/biomedicines10071650
Rubtsova M, Dontsova O. How Structural Features Define Biogenesis and Function of Human Telomerase RNA Primary Transcript. Biomedicines. 2022; 10(7):1650. https://doi.org/10.3390/biomedicines10071650
Chicago/Turabian StyleRubtsova, Maria, and Olga Dontsova. 2022. "How Structural Features Define Biogenesis and Function of Human Telomerase RNA Primary Transcript" Biomedicines 10, no. 7: 1650. https://doi.org/10.3390/biomedicines10071650
APA StyleRubtsova, M., & Dontsova, O. (2022). How Structural Features Define Biogenesis and Function of Human Telomerase RNA Primary Transcript. Biomedicines, 10(7), 1650. https://doi.org/10.3390/biomedicines10071650