Human Blastocyst Components Detection Using Multiscale Aggregation Semantic Segmentation Network for Embryonic Analysis
Abstract
:1. Introduction
- It detects the blastocyst components without using conventional image processing schemes.
- It is a multiscale semantic segmentation network that uses four different scales without increasing the depth of the network.
- The feature boost block (FBB) helps pick the boundaries of the components (TE, ZP, ICM, and BL) that are not easily discernible.
- The proposed MASS-Net trained semantic segmentation models were made publicly available in [19].
2. Materials and Methods
2.1. Datasets
2.2. Overview of the Proposed MASS-Net-Based Segmentation of Blastocyst Components
2.3. MASS-Net Design Principles
2.4. Structure of Proposed MASS-Net Downsampling Block
2.5. Feature Booster Block (FBB)
2.6. Structure of MASS-Net Upsampling Block
2.7. Training of Proposed Method, Experimental Environment and Protocols
2.8. Evaluation of Proposed Method (MASS-Net)
3. Results
3.1. Ablation Study for MASS-Net
3.2. Comparison of MASS-Net with State of the Art Methods
3.3. Visual Results of Proposed MASS-Net for Embryonic Component Segmentation
4. Discussion
4.1. Visual Representation of Predictions
4.2. Embryonic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and Infertility: Definition and Epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Huangfu, C.; Li, J.; Liu, H.; Tang, N. Psychological Resilience as the Mediating Factor Between Stigma and Social Avoidance and Distress of Infertility Patients in China: A Structural Equation Modeling Analysis. Psychol. Res. Behav. Manag. 2022, 15, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Louis, C.M.; Erwin, A.; Handayani, N.; Polim, A.A.; Boediono, A.; Sini, I. Review of Computer Vision Application in in Vitro Fertilization: The Application of Deep Learning-Based Computer Vision Technology in the World of IVF. J. Assist. Reprod. Genet. 2021, 38, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Zaninovic, N.; Rosenwaks, Z. Artificial Intelligence in Human in Vitro Fertilization and Embryology. Fertil. Steril. 2020, 114, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, P.; Matyas, S. Choosing an Embryo for Transfer. In Assisted Reproduction Techniques; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 484–491. ISBN 978-1-119-62221-5. [Google Scholar]
- Ozgur, K.; Berkkanoglu, M.; Bulut, H.; Donmez, L.; Isikli, A.; Coetzee, K. Blastocyst Age, Expansion, Trophectoderm Morphology, and Number Cryopreserved Are Variables Predicting Clinical Implantation in Single Blastocyst Frozen Embryo Transfers in Freeze-Only-IVF. J. Assist. Reprod. Genet. 2021, 38, 1077–1087. [Google Scholar] [CrossRef]
- Zhou, Z.; Ni, C.; Wu, L.; Chen, B.; Xu, Y.; Zhang, Z.; Mu, J.; Li, B.; Yan, Z.; Fu, J.; et al. Novel Mutations in ZP1, ZP2, and ZP3 Cause Female Infertility Due to Abnormal Zona Pellucida Formation. Hum. Genet. 2019, 138, 327–337. [Google Scholar] [CrossRef]
- Ganeva, R.; Parvanov, D.; Velikova, D.; Vasileva, M.; Nikolova, K.; Stamenov, G. Sperm Morphology and DNA Fragmentation after Zona Pellucida Selection. Reprod. Fertil. 2021, 2, 221–230. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, R.; Yuan, P.; Ren, Y.; Mao, Y.; Li, R.; Lian, Y.; Li, J.; Wen, L.; Yan, L.; et al. Reconstituting the Transcriptome and DNA Methylome Landscapes of Human Implantation. Nature 2019, 572, 660–664. [Google Scholar] [CrossRef]
- Ezoe, K.; Miki, T.; Ohata, K.; Fujiwara, N.; Yabuuchi, A.; Kobayashi, T.; Kato, K. Prolactin Receptor Expression and Its Role in Trophoblast Outgrowth in Human Embryos. Reprod. BioMed. Online 2021, 42, 699–707. [Google Scholar] [CrossRef]
- Battaglia, R.; Palini, S.; Vento, M.E.; La Ferlita, A.; Lo Faro, M.J.; Caroppo, E.; Borzì, P.; Falzone, L.; Barbagallo, D.; Ragusa, M.; et al. Identification of Extracellular Vesicles and Characterization of MiRNA Expression Profiles in Human Blastocoel Fluid. Sci. Rep. 2019, 9, 84. [Google Scholar] [CrossRef]
- Sciorio, R.; Meseguer, M. Focus on Time-Lapse Analysis: Blastocyst Collapse and Morphometric Assessment as New Features of Embryo Viability. Reprod. BioMed. Online 2021, 43, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Fouks, Y.; Yogev, Y. Twinning in ART: Single Embryo Transfer Policy. Best Pract. Res. Clin. Obstet. Gynaecol. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Forman, E.J.; Hong, K.H.; Ferry, K.M.; Tao, X.; Taylor, D.; Levy, B.; Treff, N.R.; Scott, R.T. In Vitro Fertilization with Single Euploid Blastocyst Transfer: A Randomized Controlled Trial. Fertil. Steril. 2013, 100, 100–107.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goeckenjan, M.; Madej, D.; Klimova, A.; Wimberger, P.; Birdir, C.; Glaß, K. Are Two Children at Once Better than One? Risk Analysis of Twin Pregnancies and Births after Assisted Reproduction. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 264, 76–82. [Google Scholar] [CrossRef]
- Tartia, A.P.; Wu, C.Q.; Gale, J.; Shmorgun, D.; Léveillé, M.-C. Time-Lapse KIDScoreD5 for Prediction of Embryo Pregnancy Potential in Fresh and Vitrified-Warmed Single-Embryo Transfers. Reprod. BioMed. Online 2022, 45, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine Learning in Medical Applications: A Review of State-of-the-Art Methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef]
- Siristatidis, C.; Stavros, S.; Drakeley, A.; Bettocchi, S.; Pouliakis, A.; Drakakis, P.; Papapanou, M.; Vlahos, N. Omics and Artificial Intelligence to Improve In Vitro Fertilization (IVF) Success: A Proposed Protocol. Diagnostics 2021, 11, 743. [Google Scholar] [CrossRef]
- MASS-Net Model. Available online: http://dm.dgu.edu/link.html (accessed on 15 June 2022).
- Saeedi, P.; Yee, D.; Au, J.; Havelock, J. Automatic Identification of Human Blastocyst Components via Texture. IEEE Trans. Biomed. Eng. 2017, 64, 2968–2978. [Google Scholar] [CrossRef]
- Arsalan, M.; Haider, A.; Choi, J.; Park, K.R. Detecting Blastocyst Components by Artificial Intelligence for Human Embryological Analysis to Improve Success Rate of In Vitro Fertilization. J. Pers. Med. 2022, 12, 124. [Google Scholar] [CrossRef]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. BLAST-NET: Semantic Segmentation of Human Blastocyst Components via Cascaded Atrous Pyramid and Dense Progressive Upsampling. In Proceedings of the IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 1865–1869. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Arsalan, M.; Haider, A.; Won Lee, Y.; Ryoung Park, K. Detecting Retinal Vasculature as a Key Biomarker for Deep Learning-Based Intelligent Screening and Analysis of Diabetic and Hypertensive Retinopathy. Expert Syst. Appl. 2022, 200, 117009. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the 4th International Conference on Learning Representations, San Juan, Puert Rico, 2–4 May 2016; pp. 1–13. [Google Scholar]
- Salehi, S.S.M.; Erdogmus, D.; Gholipour, A. Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks. In Proceedings of the Machine Learning in Medical Imaging, Quebec City, QC, Canada, 10 September 2017; pp. 379–387. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Aurelio, Y.S.; de Almeida, G.M.; de Castro, C.L.; Braga, A.P. Learning from Imbalanced Data Sets with Weighted Cross-Entropy Function. Neural Process. Lett. 2019, 50, 1937–1949. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Québec City, QC, Canada, 14 September 2017; pp. 240–248. [Google Scholar]
- Iglovikov, V.; Shvets, A. TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. arXiv 2018, arXiv:1801.05746. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE international Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Revelli, A.; Canosa, S.; Carosso, A.; Filippini, C.; Paschero, C.; Gennarelli, G.; Delle Piane, L.; Benedetto, C. Impact of the Addition of Early Embryo Viability Assessment to Morphological Evaluation on the Accuracy of Embryo Selection on Day 3 or Day 5: A Retrospective Analysis. J. Ovarian Res. 2019, 12, 73. [Google Scholar] [CrossRef] [Green Version]
Block | Layer | Size of Layer K × K × C, (Stride) | Filters/Groups | Repetition | Output Size |
---|---|---|---|---|---|
Input Conv | 3 × 3 × 1 (S = 2) | 16 | 1 | 200 × 200 × 16 | |
Scale-8 block | S8-Conv-S | 3 × 3 × 16 (S = 8) | 32 | 1 | 25 × 25 × 32 |
S8-DWSC | 3 × 3 × 32 (S = 1) | 32 | 8 | 25 × 25 × 32 | |
S8-Tconv-A | 2 × 2 × 32 (S = 2) | 32 | 1 | 50 × 50 × 32 | |
S8-Tconv-B | 2 × 2 × 32 (S = 2) | 32 | 1 | 100 × 100 × 32 | |
S8-Tconv-C | 2 × 2 × 32 (S = 2) | 32 | 1 | 200 × 200 × 32 | |
Scale-2 block | S2-Conv-S | 3 × 3 × 16 (S = 8) | 32 | 1 | 100 × 100 × 32 |
S2-Conv-A | 3 × 3 × 32 (S = 1) | 64 | 1 | 100 × 100 × 64 | |
S2-Conv-B | 3 × 3 × 64 (S = 1) | 64 | 1 | 100 × 100 × 64 | |
Pool | 2 × 2 × 64 (S = 2) | - | 1 | 50 × 50 × 64 | |
S2-Conv-C | 3 × 3 × 64 (S = 1) | 128 | 1 | 50 × 50 × 128 | |
S2-Conv-D | 3 × 3 × 128 (S = 1) | 256 | 1 | 50 × 50 × 256 | |
S2-DWSC | 3 × 3 × 256 (S = 1) | 256 | 2 | 50 × 50 × 256 | |
S2-Tconv-A | 2 × 2 × 256 (S = 2) | 128 | 1 | 100 × 100 × 128 | |
S2-Tconv-B | 2 × 2 × 128 (S = 2) | 64 | 1 | 200 × 200 × 64 | |
Scale-4 block | S4-Conv-S | 3 × 3 × 16 (S = 4) | 32 | 1 | 50 × 50 × 32 |
S4-Conv-A | 3 × 3 × 32 (S = 1) | 64 | 1 | 50 × 50 × 64 | |
S4-Conv-B | 3 × 3 × 64 (S = 1) | 128 | 1 | 50 × 50 × 128 | |
S4-DWSC-A | 3 × 3 × 128 (S = 1) | 128 | 2 | 50 × 50 × 128 | |
S4-DWSC-B | 3 × 3 × 128 (S = 1) | 64 | 2 | 50 × 50 × 64 | |
S4-Tconv-A | 2 × 2 × 64 (S = 2) | 128 | 1 | 100 × 100 × 128 | |
S4-Tconv-B | 2 × 2 × 128 (S = 2) | 64 | 1 | 200 × 200 × 64 | |
Feature booster block | FBB-Conv-A | 3 × 3 × 16 (S = 1) | 32 | 1 | 200 × 200 × 32 |
FBB-Conv-B | 3 × 3 × 32 (S = 1) | 64 | 1 | 200 × 200 × 64 | |
FBB-Conv-C | 3 × 3 × 64 (S = 1) | 64 | 1 | 200 × 200 × 64 | |
FBB-Conv-D | 3 × 3 × 64 (S = 1) | 128 | 1 | 200 × 200 × 128 | |
Feature Aggregation | S8-Tconv-C S2-Tconv-B S4-Tconv-B FBB-Conv-D | 200 × 200 × 288 | |||
Upsampling block | US-Conv-A | 3 × 3 × 288 (S = 1) | 256 | 1 | 200 × 200 × 256 |
US-Conv-B | 3 × 3 × 256 (S = 1) | 128 | 1 | 200 × 200 × 128 | |
US-Conv-C | 3 × 3 × 128 (S = 1) | 64 | 1 | 200 × 200 × 64 | |
US-Tconv-A | 2 × 2 × 64 (S = 2) | 32 | 1 | 400 × 400 × 32 | |
Final masks | Class-Mask-Conv | 1 × 1 × 32 (S = 1) | 5 | 1 | 400 × 400 × 5 |
Method | TE | ZP | ICM | BL | BG | Mean JI | #Pram. |
---|---|---|---|---|---|---|---|
MASS-Net (WCE) | 77.34 | 82.14 | 85.13 | 87.98 | 95.86 | 85.69 | 2.06 M |
MASS-Net (FL) | 76.88 | 85.09 | 83.70 | 86.60 | 90.97 | 84.65 | 2.06 M |
MASS-Net (DL) | 78.98 | 84.12 | 84.68 | 88.92 | 95.61 | 86.46 | 2.06 M |
MASS-Net (TVL without FBB) | 77.25 | 84.76 | 84.55 | 87.78 | 95.96 | 86.06 | 1.63 M |
MASS-Net (TVL with FBB) | 79.08 | 84.69 | 85.88 | 89.28 | 96.07 | 87.00 | 2.06 M |
Method | TE | ZP | ICM | BL | BG | Mean JI | #Pram. |
---|---|---|---|---|---|---|---|
U-Net (baseline) [24] | 75.06 | 79.32 | 79.03 | 79.41 | 94.04 | 81.37 | 31.03 M |
Ternaus U-Net [34] | 76.16 | 80.24 | 77.58 | 78.61 | 94.50 | 81.42 | 10 M |
PSP-Net [35] | 74.83 | 80.57 | 78.28 | 79.26 | 94.60 | 81.51 | 35 M |
DeepLab-V3 [25] | 73.98 | 80.84 | 80.60 | 78.35 | 94.49 | 81.65 | 40 M |
BlastNet [22] | 76.52 | 81.15 | 81.07 | 80.79 | 94.74 | 82.85 | 25 M |
SSS-Net (Residual) [21] | 77.40 | 82.88 | 84.94 | 88.39 | 96.03 | 85.93 | 4.04 M |
SSS-Net (Dense) [21] | 78.15 | 84.51 | 84.50 | 88.68 | 95.82 | 86.34 | 4.04 M |
MASS-Net (Proposed without FBB) | 77.25 | 84.76 | 84.55 | 87.78 | 95.96 | 86.06 | 1.63 M |
MASS-Net (Proposed with FBB) | 79.08 | 84.69 | 85.88 | 89.28 | 96.07 | 87.00 | 2.06 M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsalan, M.; Haider, A.; Cho, S.W.; Kim, Y.H.; Park, K.R. Human Blastocyst Components Detection Using Multiscale Aggregation Semantic Segmentation Network for Embryonic Analysis. Biomedicines 2022, 10, 1717. https://doi.org/10.3390/biomedicines10071717
Arsalan M, Haider A, Cho SW, Kim YH, Park KR. Human Blastocyst Components Detection Using Multiscale Aggregation Semantic Segmentation Network for Embryonic Analysis. Biomedicines. 2022; 10(7):1717. https://doi.org/10.3390/biomedicines10071717
Chicago/Turabian StyleArsalan, Muhammad, Adnan Haider, Se Woon Cho, Yu Hwan Kim, and Kang Ryoung Park. 2022. "Human Blastocyst Components Detection Using Multiscale Aggregation Semantic Segmentation Network for Embryonic Analysis" Biomedicines 10, no. 7: 1717. https://doi.org/10.3390/biomedicines10071717
APA StyleArsalan, M., Haider, A., Cho, S. W., Kim, Y. H., & Park, K. R. (2022). Human Blastocyst Components Detection Using Multiscale Aggregation Semantic Segmentation Network for Embryonic Analysis. Biomedicines, 10(7), 1717. https://doi.org/10.3390/biomedicines10071717