Kawasaki Disease-like Vasculitis Facilitates Atherosclerosis, and Statin Shows a Significant Antiatherosclerosis and Anti-Inflammatory Effect in a Kawasaki Disease Model Mouse
Abstract
:1. Introduction
2. Materials and Methods
- 1)
- Animals
- 2)
- Preparation of CAWS and Statin
- 3)
- Experimental Procedures
- 4)
- Assessment of atherosclerotic lesions in the aorta
- 5)
- Assessment of the area of aortic root horizontal transection
- 6)
- Evaluation of macrophage cell and TGFβ receptor expression in the aortic root
- 7)
- Evaluation of macrophage cells in the abdominal aorta
- 8)
- Serological Evaluation
- 9)
- Statistical Analysis
3. Results
- 1)
- Oil red O staining of the entire aorta (Figure 2)
- 2)
- EvaluationofAortic root samples
- 2a)
- Inflammatory cells were evaluated by HE staining (Figure 3)
- 2b)
- Immunostaining of macrophage cells with anti-Galectin 3 (MAC-2) antibody (Figure 3)
- 2c)
- Immunostaining of macrophage M1 cells with anti-CD80 antibody
- 2d)
- Immunostaining of macrophage M2 cells with the anti-CD206 antibody
- 2e)
- M2/M1 macrophage cell ratio
- 2f)
- Immunostaining with anti-TGFβ receptor II antibody
- 3)
- Evaluation of Infrarenal abdominal aorta samples
- 3a)
- Inflammatory cells evaluated by HE staining
- 3b)
- Immunostaining of macrophage cells with anti-galectin 3 (MAC-2) antibody
- 4)
- Serological examination
- 4a)
- Serum LDL/VLDL cholesterol levels in each group
- 4b)
- Serum hs-CRP levels in each group
- 4c)
- Correlations between aortic plaque area, inflammatory cell invasion area, and macrophage invasion area
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawasaki, T.; Kosaki, F.; Okawa, S.; Shigematsu, I.; Yanagawa, H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 1974, 54, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Fukazawa, R.; Kobayashi, J.; Ayusawa, M.; Hamada, H.; Miura, M.; Mitani, Y.; Tsuda, E.; Nakajima, H.; Matsuura, H.; Ikeda, K.; et al. JCS/JSCS 2020 guideline on diagnosis and management of cardiovascular sequelae in Kawasaki disease. Circ. J. 2020, 84, 1348–1407. [Google Scholar] [CrossRef] [PubMed]
- Report of the 24th Nation-Wide Survey for Kawasaki Disease. Available online: http://www.jichi.ac.jp/dph/kawasakibyou/20170928/mcls24report.pdf (accessed on 31 January 2021). (In Japanese).
- Fukazawa, R. Long-Term prognosis of Kawasaki disease: Increased cardiovascular risk? Curr. Opin. Pediatr. 2010, 22, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Ninomiya, Y.; Hazeki, D.; Masuda, K.; Nomura, Y.; Kawano, Y. Disruption of endothelial cell homeostasis plays a key role in the early pathogenesis of coronary artery abnormalities in Kawasaki disease. Sci. Rep. 2017, 7, 43719. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.-Y.; Zhang, M.; Ko, S.; Chen, F. An update on cardiovascular risk factors after Kawasaki disease. Front. Cardiovasc. Med. 2021, 8, 671198. [Google Scholar] [CrossRef]
- Mitani, Y.; Ohashi, H.; Sawada, H.; Ikeyama, Y.; Hayakawa, H.; Takabayashi, S.; Maruyama, K.; Shimpo, H.; Komada, Y. In vivo plaque composition and morphology in coronary artery lesions in adolescents and young adults long after Kawasaki disease: A virtual histology—Intravascular ultrasound study. Circulation 2009, 119, 2829–2836. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, T.; Ichiyama, T.; Furukawa, S. Immunological profile of peripheral blood lymphocytes and monocytes/macrophages in Kawasaki disease. Clin. Exp. Immunol. 2005, 141, 381–387. [Google Scholar] [CrossRef]
- Burns, J.C.; Glodé, M.P. Kawasaki syndrome. Lancet 2004, 364, 533–544. [Google Scholar] [CrossRef]
- Fukazawa, R.; Ikegam, E.; Watanabe, M.; Hajikano, M.; Kamisago, M.; Katsube, Y.; Yamauchi, H.; Ochi, M.; Ogawa, S. Coronary artery aneurysm induced by Kawasaki disease in children show features typical senescence. Circ. J. 2007, 71, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lee, Y.; Crother, T.R.; Fishbein, M.; Zhang, W.; Yilmaz, A.; Shimada, K.; Schulte, D.J.; Lehman, T.J.A.; Shah, P.K.; et al. Marked acceleration of atherosclerosis after Lactobacillus casei–induced coronary arteritis in a mouse model of Kawasaki disease. Arterioscler. Thromb. Vasc. Biol. 2012, 32, e60–e71. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-M.; Weng, K.-P.; Chang, J.-S.; Lee, W.-Y.; Huang, S.-H.; Hsieh, K.-S. Effects of statin therapy in children complicated with coronary arterial abnormality late after Kawasaki disease. Circ. J. 2008, 72, 1583–1587. [Google Scholar] [CrossRef] [Green Version]
- Duan, C.; Du, Z.-D.; Wang, Y.; Jia, L.-Q. Effect of pravastatin on endothelial dysfunction in children with medium to giant coronary aneurysms due to Kawasaki disease. World J. Pediatr. 2014, 10, 232–237. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Fukazawa, R.; Nagi-Miura, N.; Ohno, N.; Suzuki, N.; Katsube, Y.; Kamisago, M.; Akao, M.; Watanabe, M.; Hashimoto, K.; et al. Interleukin-1beta inhibition attenuates vasculitis in a mouse model of Kawasaki disease. J. Nippon Med. Sch. 2019, 86, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, N. Chemistry and biology of angiitis inducer, Candida albicans water-soluble mannoprotein-β-glucan complex (CAWS). Microbiol. Immunol. 2003, 47, 479–490. [Google Scholar] [CrossRef]
- Nagi-Miura, N.; Harada, T.; Shinohara, H.; Kurihara, K.; Adachi, Y.; Ishida-Okawara, A.; Oharaseki, T.; Takahashi, K.; Naoe, S.; Suzuki, K.; et al. Lethal and severe coronary arteritis in DBA/2 mice induced by fungal pathogen, CAWS, Candida albicans water-soluble fraction. Atherosclerosis 2006, 186, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Science Council of Japan Guidelines for Proper Conduct of Animal Experiments. Available online: https://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-20-k16-2e.pdf (accessed on 20 July 2022).
- Uchiyama, M.; Ohno, N.; Miura, N.N.; Adachi, Y.; Aizawa, M.W.; Tamura, H.; Tanaka, S.; Yadomae, T. Chemical and immunochemical characterization of limulus factor G-activating substance of Candida spp. FEMS Immunol. Med. Microbiol. 1999, 24, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Centa, M.; Ketelhuth, D.F.J.; Malin, S.; Gisterå, A. Quantification of atherosclerosis in mice. J. Vis. Exp. 2019, e59828. [Google Scholar]
- Lee, A.M.; Shimizu, C.; Oharaseki, T.; Takahashi, K.; Daniels, L.B.; Kahn, A.; Adamson, R.; Dembitsky, W.; Gordon, J.B.; Burns, J.C. Role of TGF-β Signaling in remodeling of noncoronary artery aneurysms in Kawasaki disease. Pediatr. Dev. Pathol. 2015, 18, 310–317. [Google Scholar] [CrossRef]
- Sugimura, T.; Kato, H.; Inoue, O.; Fukuda, T.; Sato, N.; Ishii, M.; Takagi, J.; Akagi, T.; Maeno, Y.; Kawano, T. Intravascular ultrasound of coronary arteries in children. assessment of the wall morphology and the lumen after Kawasaki disease. Circulation 1994, 89, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Yamakawa, R.; Ishii, M.; Sugimura, T.; Akagi, T.; Eto, G.; Iemura, M.; Tsutsumi, T.; Kato, H. Coronary endothelial dysfunction after Kawasaki disease: Evaluation by intracoronary injection of acetylcholine. J. Am. Coll. Cardiol. 1998, 31, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J. Am. Coll. Cardiol. 2019, 73, e285–e350. [Google Scholar] [CrossRef] [PubMed]
- Miyabe, C.; Miyabe, Y.; Bricio-Moreno, L.; Lian, J.; Rahimi, R.A.; Miura, N.N.; Ohno, N.; Iwakura, Y.; Kawakami, T.; Luster, A.D. Dectin-2–induced CCL2 production in tissue-resident macrophages ignites cardiac arteritis. J. Clin. Investig. 2019, 129, 3610–3624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momi, S.; Monopoli, A.; Alberti, P.F.; Falcinelli, E.; Corazzi, T.; Conti, V.; Miglietta, D.; Ongini, E.; Minuz, P.; Gresele, P. Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovasc. Res. 2012, 94, 428–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, P.; Li, D.; Hu, L.; Jin, S.; Yu, Y.; Cai, Z.; Shao, Q.; Shen, J.; Yi, J.; Xiao, H.; et al. Atorvastatin improves plaque stability in ApoE-knockout mice by regulating chemokines and chemokine receptors. PLoS ONE 2014, 9, e97009. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 2013, 229, 176–185. [Google Scholar] [CrossRef]
- Da Silva, R.F.; Lappalainen, J.; Lee-Rueckert, M.; Kovanen, P.T. Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation. Atherosclerosis 2016, 248, 170–178. [Google Scholar] [CrossRef]
- Ohashi, R.; Fukazawa, R.; Shimizu, A.; Ogawa, S.; Ochi, M.; Nitta, T.; Itoh, Y. M1 macrophage is the predominant phenotype in coronary artery lesions following Kawasaki disease. Vasc. Med. 2019, 24, 484–492. [Google Scholar] [CrossRef]
- Zhang, T.; Shao, B.; Liu, G.-A. Rosuvastatin promotes the differentiation of peripheral blood monocytes into M2 macrophages in patients with atherosclerosis by activating PPAR-γ. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4464–4471. [Google Scholar]
- Wang, Y.; Krishna, S.M.; Moxon, J.; Dinh, T.N.; Jose, R.J.; Yu, H.; Golledge, J. Influence of apolipoprotein E, age and aortic site on calcium phosphate induced abdominal aortic aneurysm in mice. Atherosclerosis 2014, 235, 204–212. [Google Scholar] [CrossRef]
- Widjaja, A.A.; Singh, B.K.; Adami, E.; Viswanathan, S.; Dong, J.; D’Agostino, G.A.; Ng, B.; Lim, W.W.; Tan, J.; Paleja, B.S.; et al. Inhibiting interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of nonalcoholic steatohepatitis. Gastroenterology 2019, 157, 777–792.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, B.; Li, X.; Xu, J.; Zhu, Y.; Huang, L.; Tong, W.; Yao, H.; Chow, D.H.-K.; Qin, L. Synergistic effects of magnesium ions and simvastatin on attenuation of high-fat diet-induced bone loss. Bioact. Mater. 2021, 6, 2511–2522. [Google Scholar] [CrossRef] [PubMed]
- Plump, A.S.; Smith, J.D.; Hayek, T.; Aalto-Setälä, K.; Walsh, A.; Verstuyft, J.G.; Rubin, E.M.; Breslow, J.L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992, 71, 343–353. [Google Scholar] [CrossRef]
- Nachtigal, P.; Pospisilova, N.; Jamborova, G.; Pospechova, K.; Solichova, D.; Andrys, C.; Zdansky, P.; Micuda, S.; Semecky, V. Atorvastatin has hypolipidemic and anti-inflammatory effects in ApoE/LDL receptor-double-knockout mice. Life Sci. 2008, 82, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, D.; Enomoto, S.; Nagai, R.; Sata, M. Inhibition of renin–angiotensin system attenuates periadventitial inflammation and reduces atherosclerotic lesion formation. Biomed. Pharmacother. 2009, 63, 754–761. [Google Scholar] [CrossRef]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamaoka, A.; Hamaoka, K.; Yahata, T.; Fujii, M.; Ozawa, S.; Toiyama, K.; Nishida, M.; Itoi, T. Effects of HMG-CoA reductase inhibitors on continuous post-inflammatory vascular remodeling late after Kawasaki disease. J. Cardiol. 2010, 56, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Niedra, E.; Chahal, N.; Manlhiot, C.; Yeung, R.S.M.; McCrindle, B.W. Atorvastatin safety in Kawasaki disease patients with coronary artery aneurysms. Pediatr. Cardiol. 2014, 35, 89–92. [Google Scholar] [CrossRef]
6 weeks after CAWS administration | ||||||||||||||
Control | CAWS | CAWS+statin | ||||||||||||
Body weight (g) | 28.4 | ± | 1.2 | 28.9 | ± | 2.4 | 27.1 | ± | 1.4 * | ** | ||||
(n = 7) | (n = 9) | (n = 8) | ||||||||||||
Spleen weight (g) | 0.14 | ± | 0.02 | 0.23 | ± | 0.02 * | 0.22 | ± | 0.04 | ** | ||||
(n = 7) | (n = 9) | (n = 8) | ||||||||||||
Spleen/body weight ratio (%) | 0.5 | ± | 0.1 | 0.8 | ± | 0.1 * | 0.8 | ± | 0.1 * | |||||
(n = 7) | (n = 9) | (n = 8) | ||||||||||||
LDL/VLDL cholesterol (mg/dL) | 472.5 | ± | 45.0 | 543.0 | ± | 6.8 * | 528.3 | ± | 11.6 | ** | ||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
hs-CRP (pg/mL) | 102.7 | ± | 20.9 | 307.4 | ± | 121.5 * | 248.2 | ± | 40.1 * | |||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
Aortic plaque lesion coverage (%) | 5.2 | ± | 3.2 | 20.6 | ± | 5.9 * | 12.7 | ± | 6.1 | |||||
(n = 3) | (n = 5) | (n = 4) | ||||||||||||
Aortic root | ||||||||||||||
Inflammatory cell invasion area (%) | 2.7 | ± | 1.0 | 15.4 | ± | 1.2 * | 4.8 | ± | 1.2 * | ** | ||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
Aortic root | ||||||||||||||
Macrophage cell invasion area (%) | 0.3 | ± | 0.1 | 10.2 | ± | 2.2 * | 3.5 | ± | 0.4 * | ** | ||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
Macrophage M1 cell area (%) | 0.6 | ± | 0.3 | 11.4 | ± | 2.5 * | 1.9 | ± | 0.4 * | ** | ||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
Macrophage M2 cell area (%) | 0.2 | ± | 0.2 | 1.1 | ± | 0.5 * | 2.1 | ± | 0.3 * | ** | ||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
TGFβ receptor II area (%) | 1.1 | ± | 0.7 | 25.7 | ± | 3.9 * | 5.7 | ± | 1.4 * | ** | ||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
Abdominal aorta | ||||||||||||||
Inflammatory cell invasion area (%) | 3.3 | ± | 1.2 | 9.5 | ± | 0.9 * | 4.2 | ± | 0.4 | ** | ||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
Abdominal aorta | ||||||||||||||
Macrophage cell invasion area (%) | 0.2 | ± | 0.1 | 2.0 | ± | 1.6 * | 1.1 | ± | 0.2 * | |||||
(n = 4) | (n = 4) | (n = 4) | ||||||||||||
10 weeks after CAWS administration | ||||||||||||||
Control | CAWS | CAWS+statin | Late-statin | |||||||||||
Body weight (g) | 33.1 | ± | 4.2 | 28.0 | ± | 2.3 * | 26.2 | ± | 1.6* | 26.9 | ± | 1.5 * | ||
(n = 8) | (n = 9) | (n = 9) | (n = 9) | |||||||||||
Spleen weight (g) | 0.14 | ± | 0.02 | 0.27 | ± | 0.04 * | 0.25 | ± | 0.04 * | 0.24 | ± | 0.06 * | ** | |
(n = 8) | (n = 9) | (n = 9) | (n = 9) | |||||||||||
Spleen/body weight ratio (%) | 0.4 | ± | 0.1 | 1.0 | ± | 0.1 * | 0.9 | ± | 0.1 * | 0.9 | ± | 0.2 * | ** | |
(n = 8) | (n = 9) | (n = 9) | (n = 9) | |||||||||||
LDL/VLDL cholesterol (mg/dL) | 513.3 | ± | 49.8 | 532.9 | ± | 13.9 | 532.0 | ± | 8.6 ** | 446.5 | ± | 52.7 ** | ||
(n = 4) | (n = 4) | (n = 4) | (n = 4) | |||||||||||
hs-CRP (pg/mL) | 79.4 | ± | 17.8 | 396.3 | ± | 197.5 * | 314.6 | ± | 108.9 * | 141.0 | ± | 86.0 ** | ||
(n = 4) | (n = 4) | (n = 4) | (n = 4) | |||||||||||
Aortic plaque lesion coverage (%) | 6.5 | ± | 2.4 | 33.0 | ± | 7.6 * | 17.5 | ± | 3.9 * | ** | 21.0 | ± | 4.0 * | ** |
(n = 5) | (n = 5) | (n = 5) | (n = 5) | |||||||||||
Aortic root | ||||||||||||||
Inflammatory cell invasion area (%) | 2.0 | ± | 0.5 | 16.9 | ± | 1.3 | 6.0 | ± | 2.0 ** | 6.9 | ± | 1.1 ** | ||
(n = 3) | (n = 4) | (n = 4) | (n = 4) | |||||||||||
Aortic root | ||||||||||||||
Macrophage cell invasion area (%) | 0.7 | ± | 0.4 | 6.5 | ± | 1.1 | 2.5 | ± | 0.7 * | ** | 3.0 | ± | 0.8 | ** |
(n = 3) | (n = 4) | (n = 4) | (n = 4) | |||||||||||
Macrophage M1 cell area (%) | 1.0 | ± | 0.3 | 6.3 | ± | 1.3 * | 1.9 | ± | 0.3 * | ** | 2.1 | ± | 0.7 * | ** |
(n = 3) | (n = 4) | (n = 4) | (n = 4) | |||||||||||
Macrophage M2 cell area (%) | 0.2 | ± | 0.1 | 1.0 | ± | 0.4 | 1.8 | ± | 0.3 * | 0.9 | ± | 0.2 | ||
(n = 3) | (n = 4) | (n = 4) | (n = 4) | |||||||||||
TGFβ receptor II area (%) | 0.4 | ± | 0.3 | 17.5 | ± | 2.5 * | 6.2 | ± | 1.8 | ** | 7.6 | ± | 1.4 * | ** |
(n = 3) | (n = 4) | (n = 4) | (n = 4) | |||||||||||
Abdominal aorta | ||||||||||||||
Inflammatory cell invasion area (%) | 3.3 | ± | 0.7 | 11.1 | ± | 1.9 * | 4.6 | ± | 0.9 | ** | 5.8 | ± | 0.6 | |
(n = 3) | (n = 4) | (n = 4) | (n = 4) | |||||||||||
Abdominal aorta | ||||||||||||||
Macrophage cell invasion area (%) | 0.2 | ± | 0.2 | 6.3 | ± | 3.4 * | 2.1 | ± | 1.9 * | 2.0 | ± | 2.3 | ||
(n = 3) | (n = 4) | (n = 4) | (n = 4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motoji, Y.; Fukazawa, R.; Matsui, R.; Nagi-Miura, N.; Miyagi, Y.; Itoh, Y.; Ishii, Y. Kawasaki Disease-like Vasculitis Facilitates Atherosclerosis, and Statin Shows a Significant Antiatherosclerosis and Anti-Inflammatory Effect in a Kawasaki Disease Model Mouse. Biomedicines 2022, 10, 1794. https://doi.org/10.3390/biomedicines10081794
Motoji Y, Fukazawa R, Matsui R, Nagi-Miura N, Miyagi Y, Itoh Y, Ishii Y. Kawasaki Disease-like Vasculitis Facilitates Atherosclerosis, and Statin Shows a Significant Antiatherosclerosis and Anti-Inflammatory Effect in a Kawasaki Disease Model Mouse. Biomedicines. 2022; 10(8):1794. https://doi.org/10.3390/biomedicines10081794
Chicago/Turabian StyleMotoji, Yusuke, Ryuji Fukazawa, Ryosuke Matsui, Noriko Nagi-Miura, Yasuo Miyagi, Yasuhiko Itoh, and Yosuke Ishii. 2022. "Kawasaki Disease-like Vasculitis Facilitates Atherosclerosis, and Statin Shows a Significant Antiatherosclerosis and Anti-Inflammatory Effect in a Kawasaki Disease Model Mouse" Biomedicines 10, no. 8: 1794. https://doi.org/10.3390/biomedicines10081794
APA StyleMotoji, Y., Fukazawa, R., Matsui, R., Nagi-Miura, N., Miyagi, Y., Itoh, Y., & Ishii, Y. (2022). Kawasaki Disease-like Vasculitis Facilitates Atherosclerosis, and Statin Shows a Significant Antiatherosclerosis and Anti-Inflammatory Effect in a Kawasaki Disease Model Mouse. Biomedicines, 10(8), 1794. https://doi.org/10.3390/biomedicines10081794