Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
- -
- Low-density lipoprotein cholesterol (LDL-c) 115 mg% or higher;
- -
- Triacylglycerols (TG) 150 mg% or higher;
- -
- High-density lipoprotein cholesterol (HDL-c) below 40 mg% (men) or below 45 mg% (women).
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosik, J.; Szostak, B.; Machaj, F.; Pawlik, A. Potential targets of gene therapy in the treatment of heart failure. Expert Opin. Ther. Targets 2018, 22, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Machaj, F.; Dembowska, E.; Rosik, J.; Szostak, B.; Mazurek-Mochol, M.; Pawlik, A. New therapies for the treatment of heart failure: A summary of recent accomplishments. Ther. Clin. Risk Manag. 2019, 15, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 2 June 2022).
- Liu, B.; Zhang, T.-N.; Knight, J.K.; Goodwin, J.E. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019, 8, 1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis. 2016, 109, 708–715. [Google Scholar] [CrossRef]
- Albany, C.J.; Trevelin, S.C.; Giganti, G.; Lombardi, G.; Scottà, C. Getting to the Heart of the Matter: The Role of Regulatory T-Cells (Tregs) in Cardiovascular Disease (CVD) and Atherosclerosis. Front. Immunol. 2019, 10, 2795. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Usman, A.; Das, T.; Patterson, A.J.; Gillard, J.H.; Graves, M.J. Imaging Carotid Atherosclerosis Plaque Ulceration: Comparison of Advanced Imaging Modalities and Recent Developments. Am. J. Neuroradiol. 2017, 38, 664. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Fang, Z.; Wang, H.; Cai, Y.; Rahimi, K.; Zhu, Y.; Fowkes, F.G.R.; Fowkes, F.J.I.; Rudan, I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob. Health 2020, 8, e721–e729. [Google Scholar] [CrossRef]
- Razzouk, L.; Rockman, C.B.; Patel, M.R.; Guo, Y.; Adelman, M.A.; Riles, T.S.; Berger, J.S. Co-existence of vascular disease in different arterial beds: Peripheral artery disease and carotid artery stenosis—Data from Life Line Screening®. Atherosclerosis 2015, 241, 687–691. [Google Scholar] [CrossRef] [Green Version]
- Oakley, R.H.; Cidlowski, J.A. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 2013, 132, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Rhen, T.; Cidlowski, J.A. Antiinflammatory Action of Glucocorticoids—New Mechanisms for Old Drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef] [Green Version]
- Miner, J.N.; Hong, M.H.; Negro-Vilar, A. New and improved glucocorticoid receptor ligands. Expert Opin. Investig. Drugs 2005, 14, 1527–1545. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cidlowski, J.A. The human glucocorticoid receptor: One gene, multiple proteins and diverse responses. Steroids 2005, 70, 407–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Blasio, A.M.; Van Rossum, E.F.C.; Maestrini, S.; Berselli, M.E.; Tagliaferri, M.; Podestà, F.; Koper, J.W.; Liuzzi, A.; Lamberts, S.W.J. The relation between two polymorphisms in the glucocorticoid receptor gene and body mass index, blood pressure and cholesterol in obese patients. Clin. Endocrinol. 2003, 59, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Prakash, J.; Lakhan, R.; Agarwal, C.G.; Pant, D.C.; Mittal, B. Influence of Bcl-1 Gene Polymorphism of Glucocorticoid Receptor Gene (NR3C1, rs41423247) on Blood Pressure, Glucose in Northern Indians. Indian J. Clin. Biochem. 2011, 26, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Kuningas, M.; Mooijaart, S.P.; Slagboom, P.E.; Westendorp, R.G.J.; Van Heemst, D. Genetic variants in the glucocorticoid receptor gene (NR3C1) and cardiovascular disease risk. The Leiden 85-plus Study. Biogerontology 2006, 7, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Dobson, M.G.; Redfern, C.P.F.; Unwin, N.; Weaver, J.U. The N363S Polymorphism of the Glucocorticoid Receptor: Potential Contribution to Central Obesity in Men and Lack of Association with Other Risk Factors for Coronary Heart Disease and Diabetes Mellitus1. J. Clin. Endocrinol. Metab. 2001, 86, 2270–2274. [Google Scholar] [CrossRef]
- Vitellius, G.; Trabado, S.; Bouligand, J.; Delemer, B.; Lombès, M. Pathophysiology of Glucocorticoid Signaling. Ann. D’endocrinol. 2018, 79, 98–106. [Google Scholar] [CrossRef]
- van Rossum, E.F.; Koper, J.W.; Huizenga, N.A.; Uitterlinden, A.G.; Janssen, J.A.; Brinkmann, A.O.; Grobbee, D.E.; de Jong, F.H.; van Duyn, C.M.; Pols, H.A.; et al. A Polymorphism in the Glucocorticoid Receptor Gene, Which Decreases Sensitivity to Glucocorticoids In Vivo, Is Associated with Low Insulin and Cholesterol Levels. Diabetes 2002, 51, 3128–3134. [Google Scholar] [CrossRef] [Green Version]
- Geelhoed, J.M.; van Duijn, C.; van Osch-Gevers, L.; Steegers, E.A.; Hofman, A.; Helbing, W.A.; Jaddoe, V.W. Glucocorticoid receptor-9beta polymorphism is associated with systolic blood pressure and heart growth during early childhood. The Generation R Study. Early Hum. Dev. 2011, 87, 97–102. [Google Scholar] [CrossRef]
- Akker, E.L.T.V.D.; Koper, J.W.; Van Rossum, E.F.C.; Dekker, M.J.H.; Russcher, H.; De Jong, F.H.; Uitterlinden, A.G.; Hofman, A.; Pols, H.A.; Witteman, J.C.M.; et al. Glucocorticoid Receptor Gene and Risk of Cardiovascular Disease. Arch. Intern. Med. 2008, 168, 33. [Google Scholar] [CrossRef] [Green Version]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; et al. Mannheim carotid intima-media thickness consensus (2004–2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc. Dis. 2007, 23, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S. Use of Carotid Ultrasound to Identify Subclinical Vascular Disease and Evaluate Cardiovascular Disease Risk: A Consensus Statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008, 21, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Agboola, A.O.; Ebili, H.O.; Iyawe, V.O.; Banjo, A.A.; Salami, B.A.; Rakha, E.A.; Nolan, C.C.; Ellis, I.O.; Green, A.R. Clinicopathological and molecular characteristics of Ku 70/80 expression in Nigerian breast cancer and its potential therapeutic implications. Pathol. Res. Pract. 2017, 213, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.Y.; Cao, J.; Steffen, B.T.; Weir, N.L.; Rich, S.S.; Liang, S.; Guan, W. 5-Lipoxygenase Gene Variants Are Not Associated with Atherosclerosis or Incident Coronary Heart Disease in the Multi-Ethnic Study of Atherosclerosis Cohort. J. Am. Heart Assoc. 2016, 5, e002814. [Google Scholar] [CrossRef] [Green Version]
- Lötzer, K.; Funk, C.D.; Habenicht, A.J.R. The 5-lipoxygenase pathway in arterial wall biology and atherosclerosis. Biochim. Biophys. Acta (BBA) -Mol. Cell Biol. Lipids 2005, 1736, 30–37. [Google Scholar] [CrossRef]
- Cipollone, F.; Mezzetti, A.; Fazia, M.L.; Cuccurullo, C.; Iezzi, A.; Ucchino, S.; Spigonardo, F.; Bucci, M.; Cuccurullo, F.; Prescott, S.M.; et al. Association Between 5-Lipoxygenase Expression and Plaque Instability in Humans. Arter. Thromb. Vasc. Biol. 2005, 25, 1665–1670. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, K.; Jala, V.R.; Mathis, S.; Suttles, J.; Zacharias, W.; Ahamed, J.; Ali, H.; Tseng, M.T.; Haribabu, B. Role of Leukotriene B4 Receptors in the Development of Atherosclerosis: Potential Mechanisms. Arter. Thromb. Vasc. Biol. 2004, 24, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, J.H.; Allayee, H.; Dwyer, K.M.; Fan, J.; Wu, H.; Mar, R.; Lusis, A.J.; Mehrabian, M. Arachidonate 5-Lipoxygenase Promoter Genotype, Dietary Arachidonic Acid, and Atherosclerosis. N. Engl. J. Med. 2004, 350, 29–37. [Google Scholar] [CrossRef]
- van Rossum, E.F.; Feelders, R.A.; van den Beld, A.W.; Uitterlinden, A.G.; Janssen, J.A.; Ester, W.; Brinkmann, A.O.; Grobbee, D.E.; de Jong, F.H.; Pols, H.A.; et al. Association of the ER22/23EK polymorphism in the glucocorticoid receptor gene with survival and C-reactive protein levels in elderly men. Am. J. Med. 2004, 117, 158–162. [Google Scholar] [CrossRef]
- Pai, J.K.; Mukamal, K.J.; Rexrode, K.M.; Rimm, E.B. C-Reactive Protein (CRP) Gene Polymorphisms, CRP Levels, and Risk of Incident Coronary Heart Disease in Two Nested Case-Control Studies. PLoS ONE 2008, 3, e1395. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, A.; Green, F.; Hansson, L.-O.; Lundman, P.; Samnegård, A.; Boquist, S.; Ericsson, C.-G.; Watkins, H.; Hamsten, A.; Tornvall, P. A novel common single nucleotide polymorphism in the promoter region of the C-reactive protein gene associated with the plasma concentration of C-reactive protein. Atherosclerosis 2005, 178, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Gorący, J.; Gorący, I.; Safranow, K.; Taryma, O.; Adler, G.; Ciechanowicz, A. Lack of Association of Interleukin-1 Gene Cluster Polymorphisms with Angiographically Documented Coronary Artery Disease: Demonstration of Association with Hypertension in the Polish Population. Arch. Med. Res. 2011, 42, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Gorący, I.; Kaczmarczyk, M.; Ciechanowicz, A.; Lewandowska, K.; Jakubiszyn, P.; Bodnar, O.; Kopijek, B.; Brodkiewicz, A.; Cyryłowski, L. Polymorphism of Interleukin 1B May Modulate the Risk of Ischemic Stroke in Polish Patients. Medicina 2019, 55, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosmond, R.; Dallman, M.F.; Björntorp, P. Stress-Related Cortisol Secretion in Men: Relationships with Abdominal Obesity and Endocrine, Metabolic and Hemodynamic Abnormalities. J. Clin. Endocrinol. Metab. 1998, 83, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Macdonald, T.M.; Walker, B.R. Taking Glucocorticoids by Prescription Is Associated with Subsequent Cardiovascular Disease. Ann. Intern. Med. 2004, 141, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Brotman, D.J.; Girod, J.P.; Garcia, M.J.; Patel, J.V.; Gupta, M.; Posch, A.; Saunders, S.; Lip, G.Y.H.; Worley, S.; Reddy, S. Effects of Short-Term Glucocorticoids on Cardiovascular Biomarkers. J. Clin. Endocrinol. Metab. 2005, 90, 3202–3208. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Topete, D.; Oakley, R.H.; Cidlowski, J.A. Glucocorticoid Signaling and the Aging Heart. Front. Endocrinol. 2020, 11, 347. [Google Scholar] [CrossRef]
- Bamberger, C.M.; Schulte, H.M.; Chrousos, G.P. Molecular Determinants of Glucocorticoid Receptor Function and Tissue Sensitivity to Glucocorticoids. Endocr. Rev. 1996, 17, 245–261. [Google Scholar] [CrossRef]
- Koeijvoets, K.C.M.C.; van der Net, J.B.; van Rossum, E.F.C.; Steyerberg, E.W.; Defesche, J.C.; Kastelein, J.J.P.; Lamberts, S.W.J.; Sijbrands, E.J.G. Two Common Haplotypes of the Glucocorticoid Receptor Gene Are Associated with Increased Susceptibility to Cardiovascular Disease in Men with Familial Hypercholesterolemia. J. Clin. Endocrinol. Metab. 2008, 93, 4902–4908. [Google Scholar] [CrossRef] [Green Version]
- van Rossum, E.F.; Voorhoeve, P.G.; te Velde, S.J.; Koper, J.W.; Delemarre-van de Waal, H.A.; Kemper, H.C.; Lamberts, S.W. The ER22/23EK Polymorphism in the Glucocorticoid Receptor Gene Is Associated with a Beneficial Body Composition and Muscle Strength in Young Adults. J. Clin. Endocrinol. Metab. 2004, 89, 4004–4009. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.C.; Wang, X.L.; Morris, B.J. Association of Coronary Artery Disease with Glucocorticoid Receptor N363S Variant. Hypertension 2003, 41, 404–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayramci, N.S.; Açik, L.; Kalkan, Ç.; Yetkin, I. Investigation of glucocorticoid receptor and calpain-10 gene polymorphisms in Turkish patients with type 2 diabetes mellitus. Turk. J. Med. Sci. 2017, 47, 1568–1575. [Google Scholar] [CrossRef]
- van Rossum, E.F.C.; Roks, P.H.M.; de Jong, F.H.; Brinkmann, A.O.; Pols, H.A.P.; Koper, J.W.; Lamberts, S.W.J. Characterization of a promoter polymorphism in the glucocorticoid receptor gene and its relationship to three other polymorphisms. Clin. Endocrinol. 2004, 61, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Geelen, C.C.; Van Greevenbroek, M.M.; Van Rossum, E.F.; Schaper, N.; Nijpels, G.; Hart, L.M.; Schalkwijk, C.G.; Ferreira, I.; Van Der Kallen, C.J.; Sauerwein, H.P.; et al. BclI Glucocorticoid Receptor Polymorphism Is Associated with Greater Body Fatness: The Hoorn and CODAM Studies. J. Clin. Endocrinol. Metab. 2013, 98, E595–E599. [Google Scholar] [CrossRef] [Green Version]
- Gorący, I.; Gorący, J.; Safranow, K.; Skonieczna-Żydecka, K.; Ciechanowicz, A. Association of Glucocorticoid Receptor Gene NR3C1 Genetic Variants with Angiographically Documented Coronary Artery Disease and Its Risk Factors. Arch. Med. Res. 2013, 44, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Alevizaki, M.; Cimponeriu, A.; Lekakis, J.; Papamichael, C.; Chrousos, G.P. High anticipatory stress plasma cortisol levels and sensitivity to glucocorticoids predict severity of coronary artery disease in subjects undergoing coronary angiography. Metabolism 2007, 56, 222–226. [Google Scholar] [CrossRef]
- Koertge, J.; Al-Khalili, F.; Ahnve, S.; Janszky, I.; Svane, B.; Schenck-Gustafsson, K. Cortisol and vital exhaustion in relation to significant coronary artery stenosis in middle-aged women with acute coronary syndrome. Psychoneuroendocrinology 2002, 27, 893–906. [Google Scholar] [CrossRef]
- Varma, V.K.; Rushing, J.T.; Ettinger, W.H. High Density Lipoprotein Cholesterol is Associated with Serum Cortisol in Older People. J. Am. Geriatr. Soc. 1995, 43, 1345–1349. [Google Scholar] [CrossRef]
- van Rossum, E.F.; Lamberts, S.W. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog. Horm. Res. 2004, 59, 333–357. [Google Scholar] [CrossRef]
- Syed, A.A.; Irving, J.A.E.; Redfern, C.P.F.; Hall, A.G.; Unwin, N.; White, M.; Bhopal, R.S.; Alberti, K.G.M.M.; Weaver, J.U. Low Prevalence of the N363S Polymorphism of the Glucocorticoid Receptor in South Asians Living in the United Kingdom. J. Clin. Endocrinol. Metab. 2004, 89, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Favé, M.-J.; Lamaze, F.C.; Soave, D.; Hodgkinson, A.; Gauvin, H.; Bruat, V.; Grenier, J.-C.; Gbeha, E.; Skead, K.; Smargiassi, A.; et al. Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat. Commun. 2018, 9, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | CG (n = 88) | CS (n = 117) | p CG vs. CSa | CS70 (n = 61) | CS90 (n = 56) | p CS70 vs. CS90 a |
---|---|---|---|---|---|---|
Male gender | 39.77% | 64.96% | 0.0004 | 65.57% | 64.29% | 1.00 |
Age years | 60.14 ± 8.25 | 72.61 ± 7.96 | <0.00002 | 72.98 ± 7.24 | 72.20 ± 8.66 | 0.656 |
BMI (kg/m2) | 27.40 ± 3.85 | 27.74 ± 3.80 | 0.674 | 28.07 ± 3.90 | 27.39 ± 3.66 | 0.304 |
Dyslipidemia | 73.86% | 64.96% | 0.223 | 62.30% | 67.86% | 0.565 |
DM | 14.77% | 49.57% | <0.00002 | 49.18% | 50.00% | 1.00 |
HT | 54.55% | 86.32% | <0.00002 | 85.25% | 87.50% | 0.792 |
Smoking | 12.50% | 12.82% | 1 | 11.48% | 14.29% | 0.784 |
Polymorphism | CG (n = 88) | CS (n = 117) | CG vs. CS | |||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | p a | Compared Genotypes or Alleles | OR (95% CI) | p b | |
Tth111I genotype | 0.955 | |||||||
CC | 40 | 45.45% | 54 | 46.15% | CC + CT vs. TT | 0.85 (0.258–2.875) | 0.792 | |
CT | 41 | 46.59% | 55 | 47.01% | CC vs. CT + TT | 0.972 (0.537–1.758) | 1 | |
TT | 7 | 7.95% | 8 | 6.84% | CC vs. TT | 0.848 (0.246–2.994) | 0.786 | |
Tth111I allele | ||||||||
C | 121 | 68.75% | 163 | 69.66% | C vs. T | 0.958 (0.614–1.499) | 0.914 | |
T | 55 | 31.25% | 71 | 30.34% | ||||
N363S genotype | ||||||||
AA | 82 | 93.18% | 110 | 94.02% | AA vs. AG + GG | 0.87 (0.24–3.261) | 1 | |
AG | 6 | 6.82% | 6 | 5.13% | ||||
GG | 1 | 0.85% | ||||||
N363S allele | ||||||||
A | 170 | 96.59% | 226 | 96.58% | A vs. G | 1.003 (0.299–3.577) | 1 | |
G | 6 | 3.41% | 8 | 3.42% | ||||
ER22/ER23EK genotype | ||||||||
AG | 2 | 2.27% | 1 | 0.85% | AG vs. GG | 2.685 (0.138–160.345) | 0.578 | |
GG | 86 | 97.73% | 116 | 99.15% | ||||
ER22/ER23EK allele | ||||||||
A | 2 | 1.14% | 1 | 0.43% | A vs. G | 2.672 (0.138–138.519) | 0.579 | |
G | 174 | 98.86% | 233 | 99.57% | ||||
Tth111I/N363S/ ER22/23EK haplotype | ||||||||
CAG | 114 | 64.77% | 156 | 66.67% | CAG vs. other | 0.92 (0.597–1.419) | 0.752 | |
TAG | 54 | 30.68% | 69 | 29.49% | TAG vs. other | 1.058 (0.675–1.656) | 0.828 | |
CGG | 6 | 3.41% | 7 | 2.99% | CGG vs. other | 1.144 (0.312–4.056) | 1 | |
TAA | 1 | 0.57% | 1 | 0.43% | TAA vs. other | 1.33 (0.017–104.872) | 1 | |
CAA | 1 | 0.57% | ||||||
TGG | 1 | 0.43% |
Polymorphism | CS70 (n = 61) | CS90 (n = 56) | CS70 vs. CS90 | |||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | p a | Compared Genotypes or Alleles | OR (95% CI) | p b | |
Tth111I genotype | 0.351 | |||||||
CC | 32 | 52.46% | 22 | 39.29% | CC + CT vs. TT | 1.095 (0.194–6.198) | 1 | |
CT | 25 | 40.98% | 30 | 53.57% | CC vs. CT + TT | 1.698 (0.768–3.8) | 0.194 | |
TT | 4 | 6.56% | 4 | 7.14% | CC vs. TT | 1.446 (0.241–8.66) | 1 | |
Tth111I allele | ||||||||
C | 89 | 72.95% | 74 | 66.07% | C vs. T | 1.383 (0.762–2.52) | 0.259 | |
T | 33 | 27.05% | 38 | 33.93% | ||||
N363S genotype | ||||||||
AA | 57 | 93.44% | 53 | 94.64% | AA vs. AG + GG | 0.808 (0.113–5.02) | 1 | |
AG | 3 | 4.92% | 3 | 5.36% | ||||
GG | 1 | 1.64% | ||||||
N363S allele | ||||||||
A | 117 | 95.90% | 109 | 97.32% | A vs. G | 0.645 (0.098–3.406) | 1 | |
G | 5 | 4.10% | 3 | 2.68% | ||||
ER22/ER23EK genotype | ||||||||
AG | 1 | 1.79% | ||||||
GG | 61 | 100.00% | 55 | 98.21% | ||||
ER22/ER23EK allele | ||||||||
A | 1 | 0.89% | ||||||
G | 122 | 100.00% | 111 | 99.11% | ||||
Tth111I/N363S/ ER22/23EK haplotype | - | |||||||
CAG | 84 | 68.85% | 72 | 64.29% | CAG vs. other | 1.227 (0.687–2.195) | 0.490 | |
TAG | 33 | 27.05% | 36 | 32.14% | TAG vs. other | 0.784 (0.428–1.429) | 0.473 | |
CGG | 5 | 4.10% | 2 | 1.79% | CGG vs. other | 2.342 (0.374–25.078) | 0.449 | |
TAA | 1 | 0.89% | ||||||
TGG | 1 | 0.89% |
Polymorphism | CS&nHT (n = 16) | CS&HT (n = 101) | CS&nHT vs. CS&HT | |||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | p a | Compared Genotypes or Alleles | OR (95% CI) | p b | |
Tth111I genotype | 0.397 | |||||||
CC | 5 | 31.25% | 49 | 48.51% | CC + CT vs. TT | 1.116 (0.128–53.657) | 1 | |
CT | 10 | 62.50% | 45 | 44.55% | CC vs. CT + TT | 0.485 (0.123–1.65) | 0.281 | |
TT | 1 | 6.25% | 7 | 6.93% | CC vs. TT | 0.719 (0.064–38.552) | 0.58 | |
Tth111I allele | ||||||||
C | 20 | 62.50% | 143 | 70.79% | C vs. T | 0.689 (0.298–1.65) | 0.408 | |
T | 12 | 37.50% | 59 | 29.21% | ||||
N363S genotype | ||||||||
AA | 15 | 93.75% | 95 | 94.06% | AA vs. AG + GG | 0.948 (0.103–46.446) | 1 | |
AG | 1 | 6.25% | 5 | 4.95% | ||||
GG | 1 | 0.99% | ||||||
N363S allele | ||||||||
A | 31 | 96.88% | 195 | 96.53% | A vs. G | 1.112 (0.135–51.751) | 1 | |
G | 1 | 3.12% | 7 | 3.47% | ||||
ER22/ER23EK genotype | ||||||||
AA | ||||||||
AG | 1 | 0.99% | ||||||
GG | 16 | 100% | 100 | 99.01% | ||||
ER22/ER23EK allele | ||||||||
A | 1 | 0.50% | ||||||
G | 32 | 100% | 201 | 99.50% | ||||
Tth111I/N363S/ ER22/23EK haplotype | ||||||||
CAG | 19 | 59.38% | 137 | 67.82% | CAG vs. other | 0.695 (0.304–1.631) | 0.42 | |
TAG | 12 | 37.50% | 57 | 28.22% | TAG vs. other | 1.523 (0.635–3.524) | 0.301 | |
CGG | 1 | 3.13% | 6 | 2.97% | CGG vs. other | 1.054 (0.022–9.15) | 1 | |
TAA | 1 | 0.50% | ||||||
TGG | 1 | 0.50% |
Polymorphism | CG&M (n = 35) | CS&M (n = 76) | CG&M vs. CS&M | |||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | p a | Compared
Genotypes or Alleles | OR (95% CI) | p b | |
Tth111I
genotype | 0.913 | |||||||
CC | 16 | 45.71% | 34 | 44.74% | CC + CT vs. TT | 0.753 (0.137–5.144) | 0.705 | |
CT | 16 | 45.71% | 37 | 48.68% | CC vs. CT + TT | 1.04 (0.429–2.505) | 1 | |
TT | 3 | 8.57% | 5 | 6.58% | CC vs. TT | 0.788 (0.133–5.7) | 1 | |
Tth111I allele | ||||||||
C | 48 | 68.57% | 105 | 69.08% | C vs. T | 0.977 (0.51–1.9) | 1 | |
T | 22 | 31.43% | 47 | 30.92% | ||||
N363S
genotype | ||||||||
AA | 33 | 94.29% | 72 | 94.74% | AA vs. AG + GG | 0.917 (0.124–10.621) | 1 | |
AG | 2 | 5.71% | 3 | 3.95% | ||||
GG | 0 | 0.00% | 1 | 1.32% | ||||
N363S allele | ||||||||
A | 68 | 97.14% | 147 | 96.71% | A vs. G | 1.156 (0.184–12.428) | 1 | |
G | 2 | 2.86% | 5 | 3.29% | ||||
ER22/ER23EK genotype | ||||||||
AA | 0 | 0.00% | 0 | 0.00% | ||||
AG | 0 | 0.00% | 0 | 0.00% | ||||
GG | 35 | 100.00% | 76 | 100.00% | ||||
ER22/ER23EK allele | ||||||||
A | 0 | 0.00% | 0 | 0.00% | ||||
G | 70 | 100.00% | 152 | 100.00% | ||||
Tth111I/N363S/ER22/23EK haplotype | ||||||||
CAG | 46 | 65.71% | 101 | 66.45% | CAG vs. other | 0.968 (0.513–1.851) | 1 | |
TAG | 22 | 31.43% | 46 | 30.26% | TAG vs. other | 1.056 (0.542–2.024) | 0.876 | |
CGG | 2 | 2.86% | 4 | 2.63% | CGG vs. other | 1.088 (0.096–7.801) | 1 | |
TGG | 1 | 0.66% |
Polymorphism | CG&W (n = 53) | CS&W (n = 41) | CG&W vs. CS&W | |||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | p a | Compared
Genotypes or Alleles | OR (95% CI) | p b | |
Tth111I
genotype | 0.944 | |||||||
CC | 24 | 45.28% | 20 | 48.78% | CC + CT vs. TT | 0.967 (0.134–6.096) | 1 | |
CT | 25 | 47.17% | 18 | 43.90% | CC vs. CT + TT | 0.87 (0.355–2.129) | 0.836 | |
TT | 4 | 7.55% | 3 | 7.32% | CC vs. TT | 0.902 (0.118–6.035) | 1 | |
Tth111I allele | ||||||||
C | 73 | 68.87% | 58 | 70.73% | C vs. T | 0.916 (0.463–1.795) | 0.873 | |
T | 33 | 31.13% | 24 | 29.27% | ||||
N363S genotype | ||||||||
AA | 49 | 92.45% | 38 | 92.68% | AA vs. AG | 0.967 (0.134–6.096) | 1 | |
AG | 4 | 7.55% | 3 | 7.32% | ||||
GG | 0 | 0.00% | 0 | 0.00% | ||||
N363S allele | ||||||||
A | 102 | 96.23% | 79 | 96.34% | A vs. G | 0.969 (0.138–5.905) | 1 | |
G | 4 | 3.77% | 3 | 3.66% | ||||
ER22/ER23EK genotype | ||||||||
AA | 0 | 0.00% | 0 | 0.00% | AG vs. GG | 1.561 (0.079–94.772) | 1 | |
AG | 2 | 3.77% | 1 | 2.44% | ||||
GG | 51 | 96.23% | 40 | 97.56% | ||||
ER22/ER23EK allele | ||||||||
A | 2 | 1.89% | 1 | 1.22% | A vs. G | 1.554 (0.08–92.968) | 1 | |
G | 104 | 98.11% | 81 | 98.78% | ||||
Tth111I/N363S/
ER22/23EK haplotype | ||||||||
CAG | 68 | 64.15% | 55 | 67.07% | CAG vs. other | 0.879 (0.456–1.684) | 0.758 | |
TAG | 32 | 30.19% | 23 | 28.05% | TAG vs. other | 1.109 (0.561–2.212) | 0.872 | |
CGG | 4 | 3.77% | 3 | 3.66% | CGG vs. other | 1.033 (0.169–7.252) | 1 | |
TAA | 1 | 0.94% | 1 | 1.22% | TAA vs. other | 0.773 (0.01–61.267) | 1 | |
CAA | 1 | 0.94% |
Parameter | Tth111I Genotype | N363S Genotype | ER22/ER23EK Genotype |
---|---|---|---|
BMI (kg/m2) | 0.411 | 0.168 | 0.738 |
Dyslipidemia | 0.475 | 0.325 | 0.584 |
DM | 0.454 | 0.671 | 0.573 |
HT | 0.496 | 0.741 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorący, J.; Gorący, A.; Wójcik-Grzeszczuk, A.; Gorący, I.; Rosik, J. Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease. Biomedicines 2022, 10, 1912. https://doi.org/10.3390/biomedicines10081912
Gorący J, Gorący A, Wójcik-Grzeszczuk A, Gorący I, Rosik J. Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease. Biomedicines. 2022; 10(8):1912. https://doi.org/10.3390/biomedicines10081912
Chicago/Turabian StyleGorący, Jarosław, Anna Gorący, Aldona Wójcik-Grzeszczuk, Iwona Gorący, and Jakub Rosik. 2022. "Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease" Biomedicines 10, no. 8: 1912. https://doi.org/10.3390/biomedicines10081912
APA StyleGorący, J., Gorący, A., Wójcik-Grzeszczuk, A., Gorący, I., & Rosik, J. (2022). Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease. Biomedicines, 10(8), 1912. https://doi.org/10.3390/biomedicines10081912