Genomic-Analysis-Oriented Drug Repurposing in the Search for Novel Antidepressants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Genes Associated with Depression
2.3. Five Sets of Functional Annotations for Prioritizing Genes Associated with Depression
2.4. STRING and DrugBank Analysis
2.5. Validation of Target Genes for Depression
3. Results
3.1. Depression Risk Genes Identified Using Functional Annotations
3.2. STRING Database for Gene Set Expansion
3.3. Prioritization of Drug Repurposing Candidates for Depression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Other Common Mental Disorders: Global Health Estimates. 2017, pp. 1–24. Available online: https://apps.who.int/iris/handle/10665/254610 (accessed on 9 March 2022).
- Liu, P.-C.; Chung, M.-S. The prevalence and correlates of depression of the elderly in local community centers in Nantou, Taiwan. Taiwan. J. Psychiatry 2019, 33, 110–113. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wu, C.-S.; Tseng, H.-Y.; Lee, C.-Y.; Wu, I.C.; Hsu, C.-C.; Chang, H.-Y.; Chiu, Y.-F.; Hsiung, C.A. Assessment of incident frailty hazard associated with depressive symptoms in a Taiwanese longitudinal study. Int. Psychogeriatr. 2022, 34, 61–70. [Google Scholar] [CrossRef]
- Giannakopoulou, O.; Lin, K.; Meng, X.; Su, M.-H.; Kuo, P.-H.; Peterson, R.E.; Awasthi, S.; Moscati, A.; Coleman, J.R.I.; Bass, N.; et al. The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study. JAMA Psychiatry 2021, 78, 1258–1269. [Google Scholar] [CrossRef]
- Hyde, J.S.; Mezulis, A.H. Gender Differences in Depression: Biological, Affective, Cognitive, and Sociocultural Factors. Harv. Rev. Psychiatry 2020, 28, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.-H.; Zhu, F.; Qin, T.-T. Relationships between Chronic Diseases and Depression among Middle-aged and Elderly People in China: A Prospective Study from CHARLS. Curr. Med. Sci. 2020, 40, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Sheerin, C.M.; Lind, M.J.; Brown, E.A.; Gardner, C.O.; Kendler, K.S.; Amstadter, A.B. The impact of resilience and subsequent stressful life events on MDD and GAD. Depress. Anxiety 2018, 35, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Zuelke, A.E.; Luck, T.; Schroeter, M.L.; Witte, A.V.; Hinz, A.; Engel, C.; Enzenbach, C.; Zachariae, S.; Loeffler, M.; Thiery, J.; et al. The association between unemployment and depression–Results from the population-based LIFE-adult-study. J. Affect. Disord. 2018, 235, 399–406. [Google Scholar] [CrossRef]
- Matsumura, K.; Hamazaki, K.; Tsuchida, A.; Kasamatsu, H.; Inadera, H.; Kamijima, M.; Yamazaki, S.; Ohya, Y.; Kishi, R.; Yaegashi, N.; et al. Education level and risk of postpartum depression: Results from the Japan Environment and Children’s Study (JECS). BMC Psychiatry 2019, 19, 419. [Google Scholar] [CrossRef] [Green Version]
- Kandola, A.; Ashdown-Franks, G.; Hendrikse, J.; Sabiston, C.M.; Stubbs, B. Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neurosci. Biobehav. Rev. 2019, 107, 525–539. [Google Scholar] [CrossRef]
- Shih, T.-Y.; Cheng, S.-L.; Chang, S.-H.; Sun, H.-F. Perceived social support and depression symptoms in patients with major depressive disorder in Taiwan: An association study. Arch. Psychiatr. Nurs. 2020, 34, 384–390. [Google Scholar] [CrossRef]
- Gładka, A.; Zatoński, T.; Rymaszewska, J. Association between the long-term exposure to air pollution and depression. Adv. Clin. Exp. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Engel, L.; Chen, G.; Richardson, J.; Mihalopoulos, C. The impact of depression on health-related quality of life and wellbeing: Identifying important dimensions and assessing their inclusion in multi-attribute utility instruments. Qual. Life Res. 2018, 27, 2873–2884. [Google Scholar] [CrossRef] [PubMed]
- Komulainen, K.; Gluschkoff, K.; García Velázquez, R.; Airaksinen, J.; Szmulewicz, A.; Jokela, M. Association of depressive symptoms with health care utilization in older adults: Longitudinal evidence from the Survey of Health, Aging, and Retirement in Europe. Int. J. Geriatr. Psychiatry 2021, 36, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Alwhaibi, M.; Alhawassi, T.M. Humanistic and economic burden of depression and anxiety among adults with migraine: A systematic review. Depress. Anxiety 2020, 37, 1146–1159. [Google Scholar] [CrossRef]
- Fuster, J.N.M. The Prefrontal Cortex—An Update: Time Is of the Essence. Neuron 2001, 30, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Hiser, J.; Koenigs, M. The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology. Biol. Psychiatry 2018, 83, 638–647. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Siemer, M.; Gotlib, I.H. Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Mol. Psychiatry 2008, 13, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Yuan, Y.; Hou, Z.; Jiang, W.; Bai, F.; Zhang, Z. Abnormal functional connectivity of amygdala in late-onset depression was associated with cognitive deficits. PLoS ONE 2013, 8, e75058. [Google Scholar] [CrossRef] [Green Version]
- Murialdo, G.; Barreca, A.; Nobili, F.; Rollero, A.; Timossi, G.; Gianelli, M.V.; Copello, F.; Rodriguez, G.; Polleri, A. Relationships between cortisol, dehydroepiandrosterone sulphate and insulin-like growth factor-I system in dementia. J. Endocrinol. Investig. 2001, 24, 139–146. [Google Scholar] [CrossRef]
- Squire, L.; Knowlton, B.; Gazzaniga. The New Cognitive Neurosciences, 2nd ed.; MIT Press: Cambridge, MA, USA, 1999; pp. 765–779. [Google Scholar]
- Mifsud, K.R.; Reul, J.M.H.M. Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. Proc. Natl. Acad. Sci. USA 2016, 113, 11336–11341. [Google Scholar] [CrossRef] [Green Version]
- Yirmiya, R.; Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 2011, 25, 181–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Yau, S.Y.; Lau, B.W.; Ma, H.; Lee, T.M.; Chang, R.C.; So, K.F. Synaptic plasticity, but not hippocampal neurogenesis, mediated the counteractive effect of wolfberry on depression in rats(1). Cell Transplant. 2012, 21, 2635–2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stawski, R.S.; Almeida, D.M.; Lachman, M.E.; Tun, P.A.; Rosnick, C.B.; Seeman, T. Associations between Cognitive Function and Naturally Occurring Daily Cortisol during Middle Adulthood: Timing Is Everything. J. Gerontol. B Psychol. 2011, 66, i71–i81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles, S.T.; Mogle, J.; Piazza, J.R.; Karlamangla, A.; Almeida, D.M. Going the distance: The diurnal range of cortisol and its association with cognitive and physiological functioning. Psychoneuroendocrinology 2020, 112, 104516. [Google Scholar] [CrossRef] [PubMed]
- Hansson, P.B.; Murison, R.; Lund, A.; Hammar, Å. Cognitive functioning and cortisol profiles in first episode major depression. Scand. J. Psychol. 2015, 56, 379–383. [Google Scholar] [CrossRef]
- Barchas, J.; Altemus, M. Monoamine hypotheses of mood disorders. In Basic Neurochemistry Molecular, Cellular and Medical Apects, 6th ed.; Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1999. [Google Scholar]
- Massart, R.; Mongeau, R.; Lanfumey, L. Beyond the monoaminergic hypothesis: Neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 2485–2494. [Google Scholar] [CrossRef] [Green Version]
- Zunszain, P.A.; Hepgul, N.; Pariante, C.M. Inflammation and Depression. In Behavioral Neurobiology of Depression and Its Treatment; Cowen, P.J., Sharp, T., Lau, J.Y.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 135–151. [Google Scholar]
- Roohi, E.; Jaafari, N.; Hashemian, F. On inflammatory hypothesis of depression: What is the role of IL-6 in the middle of the chaos? J. Neuroinflamm. 2021, 18, 45. [Google Scholar] [CrossRef]
- Young, J.J.; Bruno, D.; Pomara, N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J. Affect. Disord. 2014, 169, 15–20. [Google Scholar] [CrossRef]
- Dudek, K.A.; Dion-Albert, L.; Lebel, M.; LeClair, K.; Labrecque, S.; Tuck, E.; Ferrer Perez, C.; Golden, S.A.; Tamminga, C.; Turecki, G.; et al. Molecular adaptations of the blood–brain barrier promote stress resilience vs. depression. Proc. Natl. Acad. Sci. USA 2020, 117, 3326–3336. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-H.; Zhang, G.-Z.; Li, B.; Li, M.; Woelfer, M.; Walter, M.; Wang, L. Role of inflammation in depression relapse. J. Neuroinflamm. 2019, 16, 90. [Google Scholar] [CrossRef] [Green Version]
- Kiecolt-Glaser, J.K.; Derry, H.M.; Fagundes, C.P. Inflammation: Depression fans the flames and feasts on the heat. Am. J. Psychiatry 2015, 172, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, J.; Juszczyk, G.; Gawrońska-Grzywacz, M.; Herbet, M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021, 11, 1298. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Tóth, F.; Polyák, H.; Szabó, Á.; Mándi, Y.; Vécsei, L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021, 9, 734. [Google Scholar] [CrossRef] [PubMed]
- Giollabhui, N.M.; Ng, T.H.; Ellman, L.M.; Alloy, L.B. The longitudinal associations of inflammatory biomarkers and depression revisited: Systematic review, meta-analysis, and meta-regression. Mol. Psychiatry 2020, 26, 3302–3314. [Google Scholar] [CrossRef] [PubMed]
- Jokela, M.; Virtanen, M.; Batty, G.D.; Kivimäki, M. Inflammation and Specific Symptoms of Depression. JAMA Psychiatry 2016, 73, 87–88. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.J.; Au, B.; Ollis, L.; Schmitz, N. The association between C-reactive protein, Interleukin-6 and depression among older adults in the community: A systematic review and meta-analysis. Exp. Gerontol. 2018, 102, 109–132. [Google Scholar] [CrossRef]
- Palazidou, E. Traditional and novel possible targets for antidepressant drugs. In Herbal Medicine in Depression; Springer: Berlin/Heidelberg, Germany, 2016; pp. 43–73. [Google Scholar]
- Perez-Caballero, L.; Torres-Sanchez, S.; Romero-López-Alberca, C.; González-Saiz, F.; Mico, J.A.; Berrocoso, E. Monoaminergic system and depression. Cell Tissue Res. 2019, 377, 107–113. [Google Scholar] [CrossRef]
- National Institute for Clinical Excellence (NICE): Depression: Management of Depression in Primary and Secondary Care. Available online: https://www.nice.org.uk/guidance/cg23 (accessed on 7 August 2022).
- Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J.; et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. Am. J. Psychiatry 2006, 163, 28–40. [Google Scholar] [CrossRef]
- Dodd, S.; Bauer, M.; Carvalho, A.F.; Eyre, H.; Fava, M.; Kasper, S.; Kennedy, S.H.; Khoo, J.-P.; Lopez Jaramillo, C.; Malhi, G.S.; et al. A clinical approach to treatment resistance in depressed patients: What to do when the usual treatments don’t work well enough? World J. Biol. Psychiatry 2021, 22, 483–494. [Google Scholar] [CrossRef]
- Köhler-Forsberg, O.; Cusin, C.; Nierenberg, A.A. Evolving Issues in the Treatment of Depression. JAMA 2019, 321, 2401–2402. [Google Scholar] [CrossRef]
- Mohammad Sadeghi, H.; Adeli, I.; Mousavi, T.; Daniali, M.; Nikfar, S.; Abdollahi, M. Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Life 2021, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Török, N.; Vécsei, L. Novel Pharmaceutical Approaches in Dementia. In NeuroPsychopharmacotherapy; Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Kaur, U.; Pathak, B.K.; Singh, A.; Chakrabarti, S.S. Esketamine: A glimmer of hope in treatment-resistant depression. Eur. Arch. Psychiatry 2021, 271, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Gautam, C.S.; Mahajan, S.S.; Sharma, J.; Singh, H.; Singh, J. Repurposing Potential of Ketamine: Opportunities and Challenges. Indian J. Psychol. Med. 2020, 42, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M.; Sankaranarayanan, M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. Eur. J. Med. Chem. 2020, 195, 112275. [Google Scholar] [CrossRef]
- Sonehara, K.; Okada, Y. Genomics-driven drug discovery based on disease-susceptibility genes. Inflamm. Regen. 2021, 41, 8. [Google Scholar] [CrossRef]
- Okada, Y.; Wu, D.; Trynka, G.; Raj, T.; Terao, C.; Ikari, K.; Kochi, Y.; Ohmura, K.; Suzuki, A.; Yoshida, S.; et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014, 506, 376–381. [Google Scholar] [CrossRef]
- Adikusuma, W.; Irham, L.M.; Chou, W.-H.; Wong, H.S.-C.; Mugiyanto, E.; Ting, J.; Perwitasari, D.A.; Chang, W.-P.; Chang, W.-C. Drug Repurposing for Atopic Dermatitis by Integration of Gene Networking and Genomic Information. Front. Immunol. 2021, 12, 724277. [Google Scholar] [CrossRef]
- Adikusuma, W.; Chou, W.-H.; Lin, M.-R.; Ting, J.; Irham, L.M.; Perwitasari, D.A.; Chang, W.-P.; Chang, W.-C. Identification of Druggable Genes for Asthma by Integrated Genomic Network Analysis. Biomedicines 2022, 10, 113. [Google Scholar] [CrossRef]
- Zhou, X.; Iversen, E.S., Jr.; Parmigiani, G. Classification of Missense Mutations of Disease Genes. J. Am. Stat. Assoc. 2005, 100, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Battle, A.; Brown, C.D.; Engelhardt, B.E.; Montgomery, S.B. Genetic effects on gene expression across human tissues. Nature 2017, 550, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.P.; Smith, B.; McAndrews-Hill, M.S.; Blake, J.A. Gene Ontology annotations: What they mean and where they come from. BMC Bioinform. 2008, 9 (Suppl. S5), S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paczkowska, M.; Barenboim, J.; Sintupisut, N.; Fox, N.S.; Zhu, H.; Abd-Rabbo, D.; Mee, M.W.; Boutros, P.C.; Reimand, J. Integrative pathway enrichment analysis of multivariate omics data. Nat. Commun. 2020, 11, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, H.A.; Gerring, Z.; Hübel, C.; Middeldorp, C.M.; Derks, E.M.; Breen, G.; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Using genetic drug-target networks to develop new drug hypotheses for major depressive disorder. Transl. Psychiatry 2019, 9, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef]
- Zhbannikov, I.Y.; Arbeev, K.; Ukraintseva, S.; Yashin, A.I. haploR: An R package for querying web-based annotation tools. F1000Research 2017, 6, 97. [Google Scholar] [CrossRef]
- Chen, L.; Page, G.P.; Mehta, T.; Feng, R.; Cui, X. Single nucleotide polymorphisms affect both cis-and trans-eQTLs. Genomics 2009, 93, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015, 44, D457–D462. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics 2005, 21, 3439–3440. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, G.M.; Zammit, S.; Burgess, S.; Lewis, G.; Jones, P.B. Association between a functional interleukin 6 receptor genetic variant and risk of depression and psychosis in a population-based birth cohort. Brain Behav. Immun. 2018, 69, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Ting, E.Y.; Yang, A.C.; Tsai, S.J. Role of interleukin-6 in depressive disorder. Int. J. Mol. Sci. 2020, 21, 2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Money, K.M.; Olah, Z.; Korade, Z.; Garbett, K.A.; Shelton, R.C.; Mirnics, K. An altered peripheral IL6 response in major depressive disorder. Neurobiol. Dis. 2016, 89, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, N.; Butterworth, A.S.; Freitag, D.F.; Gregson, J.; Willeit, P.; Gorman, D.N.; Gao, P.; Saleheen, D.; Rendon, A.; Nelson, C.P.; et al. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet 2012, 379, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Hodes, G.E.; Ménard, C.; Russo, S.J. Integrating interleukin-6 into depression diagnosis and treatment. Neurobiol. Stress 2016, 4, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Schaper, F.; Rose-John, S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015, 26, 475–487. [Google Scholar] [CrossRef]
- Wolf, J.; Rose-John, S.; Garbers, C. Interleukin-6 and its receptors: A highly regulated and dynamic system. Cytokine 2014, 70, 11–20. [Google Scholar] [CrossRef]
- Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237. [Google Scholar] [CrossRef]
- Capuron, L.; Miller, A.H. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther. 2011, 130, 226–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuboi, H.; Sakakibara, H.; Tatsumi, A.; Yamakawa-Kobayashi, K.; Matsunaga, M.; Kaneko, H.; Shimoi, K. Serum IL-6 levels and oxidation rate of LDL cholesterol were related to depressive symptoms independent of omega-3 fatty acids among female hospital and nursing home workers in Japan. J. Affect. Disord. 2019, 249, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Escrig, A.; Molinero, A.; Méndez, B.; Giralt, M.; Comes, G.; Sanchis, P.; Fernández-Gayol, O.; Giménez-Llort, L.; Becker-Pauly, C.; Rose-John, S.; et al. IL-6 Trans-signaling in the brain influences the metabolic phenotype of the 3xTg-AD mouse model of Alzheimer’s disease. Cells 2020, 9, 1605. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, H.O. Novel treatment targets based on insights in the rtiology of depression: Role of IL-6 trans-signaling and stress-induced elevation of glutamate and ATP. Pharmaceuticals 2019, 12, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, K.M.; Smith, J.A.; Mezuk, B. Depression and interleukin-6 signaling: A Mendelian Randomization study. Brain Behav. Immun. 2021, 95, 106–114. [Google Scholar] [CrossRef]
- Calabrese, L.H.; Rose-John, S. IL-6 biology: Implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol. 2014, 10, 720–727. [Google Scholar] [CrossRef]
- Traki, L.; Rostom, S.; Tahiri, L.; Bahiri, R.; Harzy, T.; Abouqal, R.; Hajjaj-Hassouni, N. Responsiveness of the EuroQol EQ-5D and Hospital Anxiety and Depression Scale (HADS) in rheumatoid arthritis patients receiving tocilizumab. Clin. Rheumatol. 2014, 33, 1055–1060. [Google Scholar] [CrossRef]
- Tiosano, S.; Yavne, Y.; Watad, A.; Langevitz, P.; Lidar, M.; Feld, J.; Tishler, M.; Aamar, S.; Elkayam, O.; Balbir-Gurman, A.; et al. The impact of tocilizumab on anxiety and depression in patients with rheumatoid arthritis. Eur. J. Clin. Investig. 2020, 50, e13268. [Google Scholar] [CrossRef]
- Levine, S.J.; Wenzel, S.E. Narrative review: The role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann. Intern. Med. 2010, 152, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Pavón, L.; Sandoval-López, G.; Eugenia Hernández, M.; Loría, F.; Estrada, I.; Pérez, M.; Moreno, J.; Avila, U.; Leff, P.; Antón, B.; et al. Th2 cytokine response in Major Depressive Disorder patients before treatment. J. Neuroimmunol. 2006, 172, 156–165. [Google Scholar] [CrossRef]
- Shelton, R.C.; Claiborne, J.; Sidoryk-Wegrzynowicz, M.; Reddy, R.; Aschner, M.; Lewis, D.A.; Mirnics, K. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol. Psychiatry 2011, 16, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Tzang, B.S.; Chen, V.C.; Hsieh, C.C.; Wang, W.K.; Weng, Y.P.; Ho, H.Y.; Hsu, Y.T.; Hsaio, H.P.; Weng, J.C.; Chen, Y.L. Differential associations of proinflammatory and anti-inflammatory cytokines with depression severity from noncancer status to breast cancer course and subsequent chemotherapy. BMC Cancer 2020, 20, 686. [Google Scholar] [CrossRef] [PubMed]
- Elomaa, A.P.; Niskanen, L.; Herzig, K.H.; Viinamäki, H.; Hintikka, J.; Koivumaa-Honkanen, H.; Honkalampi, K.; Valkonen-Korhonen, M.; Harvima, I.T.; Lehto, S.M. Elevated levels of serum IL-5 are associated with an increased likelihood of major depressive disorder. BMC Psychiatry 2012, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, G.M. Mepolizumab: First global approval. Drugs 2015, 75, 2163–2169. [Google Scholar] [CrossRef] [PubMed]
- Molfino, N.; Casale, T.; Silver, J.; Bogart, M.; Packnett, E.; McMorrow, D.; Wu, J.; Hahn, B. Managing patients with severe asthma and common comorbidities of atopy, obesity & depression/anxiety: Real-world effectiveness of mepolizumab. J. Allergy Clin. Immunol. 2021, 147, AB56. [Google Scholar] [CrossRef]
- Demontis, D.; Rajagopal, V.M.; Thorgeirsson, T.E.; Als, T.D.; Grove, J.; Leppälä, K.; Gudbjartsson, D.F.; Pallesen, J.; Hjorthøj, C.; Reginsson, G.W.; et al. Genome-wide association study implicates CHRNA2 in cannabis use disorder. Nat. Neurosci. 2019, 22, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Gurling, H.M.D.; Kalsi, G.; Brynjolfson, J.; Sigmundsson, T.; Sherrington, R.; Mankoo, B.S.; Read, T.; Murphy, P.; Blaveri, E.; McQuillin, A.; et al. Genomewide genetic linkage analysis aonfirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am. J. Hum. Genet. 2001, 68, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Ophoff, R.A.; Escamilla, M.A.; Service, S.K.; Spesny, M.; Meshi, D.B.; Poon, W.; Molina, J.; Fournier, E.; Gallegos, A.; Mathews, C.; et al. Genomewide linkage disequilibrium mapping of severe bipolar disorder in a population isolate. Am. J. Hum. Genet. 2002, 71, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Tabarés-Seisdedos, R.; Rubenstein, J.L. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: Implications for schizophrenia, autism and cancer. Mol. Psychiatry 2009, 14, 563–589. [Google Scholar] [CrossRef]
- Schroeder, J.W.; Smith, A.K.; Brennan, P.A.; Conneely, K.N.; Kilaru, V.; Knight, B.T.; Newport, D.J.; Cubells, J.F.; Stowe, Z.N. DNA methylation in neonates born to women receiving psychiatric care. Epigenetics 2012, 7, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Nickell, J.R.; Grinevich, V.P.; Siripurapu, K.B.; Smith, A.M.; Dwoskin, L.P. Potential therapeutic uses of mecamylamine and its stereoisomers. Pharmacol. Biochem. Behav. 2013, 108, 28–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postaci, A.; Tiryaki, C.; Sacan, O.; Ornek, D.; Kalyoncu, M.; Dikmen, B. Rocuronium-Sugammadex Decreases the Severity of Post–Electroconvulsive Therapy Agitation. J. ECT 2013, 29, e2–e3. [Google Scholar] [CrossRef] [PubMed]
- Saricicek, V.; Sahin, L.; Bulbul, F.; Ucar, S.; Sahin, M. Does rocuronium-sugammadex reduce myalgia and headache after electroconvulsive therapy in patients with major depression? J. ECT 2014, 30, 30–33. [Google Scholar] [CrossRef]
- Rijo-Ferreira, F.; Bjorness, T.E.; Cox, K.H.; Sonneborn, A.; Greene, R.W.; Takahashi, J.S. Sleeping sickness disrupts the sleep-regulating adenosine system. J. Neurosci. Res. 2020, 40, 9306. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.I.; Sims, R.E.; Dale, N.; Haydon, P.G. Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J. Neurosci. 2012, 32, 4417–4425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deckert, J.; Nöthen, M.M.; Franke, P.; Delmo, C.; Fritze, J.; Knapp, M.; Maier, W.; Beckmann, H.; Propping, P. Systematic mutation screening and association study of the A1 and A2a adenosine receptor genes in panic disorder suggest a contribution of the A2a gene to the development of disease. Mol. Psychiatry 1998, 3, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohoff, C.; Kroll, T.; Zhao, B.; Kerkenberg, N.; Lang, I.; Schwarte, K.; Elmenhorst, D.; Elmenhorst, E.-M.; Aeschbach, D.; Zhang, W.; et al. ADORA2A variation and adenosine A1 receptor availability in the human brain with a focus on anxiety-related brain regions: Modulation by ADORA1 variation. Transl. Psychiatry 2020, 10, 406. [Google Scholar] [CrossRef]
- Gomes, J.I.; Farinha-Ferreira, M.; Rei, N.; Gonçalves-Ribeiro, J.; Ribeiro, J.A.; Sebastião, A.M.; Vaz, S.H. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol. Res. 2021, 163, 105363. [Google Scholar] [CrossRef]
- Marek, G.J. Activation of adenosine1 receptors induces antidepressant-like, anti-impulsive effects on differential reinforcement of low-rate 72-s behavior in rats. J. Pharmacol. Exp. Ther. 2012, 341, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Szopa, A.; Poleszak, E.; Doboszewska, U.; Herbet, M.; Świąder, K.; Wyska, E.; Serefko, A.; Wlaź, A.; Korga, A.; Ostrowska, M.; et al. Withdrawal of caffeine after its chronic administration modifies the antidepressant-like activity of atypical antidepressants in mice. Changes in cortical expression of Comt, Slc6a15 and Adora1 genes. Psychopharmacology 2018, 235, 2423–2434. [Google Scholar] [CrossRef]
- Serchov, T.; Clement, H.W.; Schwarz, M.K.; Iasevoli, F.; Tosh, D.K.; Idzko, M.; Jacobson, K.A.; de Bartolomeis, A.; Normann, C.; Biber, K.; et al. Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron 2015, 87, 549–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Calker, D.; Biber, K. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders. Neurochem. Res. 2005, 30, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Szopa, A.; Bogatko, K.; Herbet, M.; Serefko, A.; Ostrowska, M.; Wośko, S.; Świąder, K.; Szewczyk, B.; Wlaź, A.; Skałecki, P.; et al. The interaction of selective A1 and A2A adenosine receptor antagonists with magnesium and zinc ions in mice: Behavioural, biochemical and molecular studies. Int. J. Mol. Sci. 2021, 22, 1840. [Google Scholar] [CrossRef] [PubMed]
- Bumpus, J.A. Low-Dose Tramadol as an Off-Label Antidepressant: A Data Mining Analysis from the Patients’ Perspective. ACS Pharmacol. Transl. Sci. 2020, 3, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Rougemont-Bücking, A.; Gamma, F.; Panksepp, J. Use of tramadol in psychiatric care: A comprehensive review and report of two cases. Swiss Med. Wkly. 2017, 19, 147. [Google Scholar] [CrossRef]
- Barnes, J.; Mondelli, V.; Pariante, C.M. Genetic Contributions of Inflammation to Depression. Neuropsychopharmacology 2017, 42, 81–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilloux, J.-P.; Bassi, S.; Ding, Y.; Walsh, C.; Turecki, G.; Tseng, G.; Cyranowski, J.M.; Sibille, E. Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression. Neuropsychopharmacology 2015, 40, 701–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatemi, S.H.; Folsom, T.D.; Thuras, P.D. Deficits in GABA(B) receptor system in schizophrenia and mood disorders: A postmortem study. Schizophr. Res. 2011, 128, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Cryan, J.F.; Kaupmann, K. Don’t worry ‘B’happy!: A role for GABAB receptors in anxiety and depression. Trends Pharmacol. Sci. 2005, 26, 36–43. [Google Scholar] [CrossRef]
- Yukawa, K.; Iso, H.; Tanaka, T.; Tsubota, Y.; Owada-Makabe, K.; Bai, T.; Takeda, K.; Akira, S.; Maeda, M. Down-regulation of dopamine transporter and abnormal behavior in STAT6-deficient mice. Int. J. Mol. Med. 2005, 15, 819–825. [Google Scholar] [CrossRef]
- Yukawa, K.; Tanaka, T.; Owada-Makabe, K.; Tsubota, Y.; Bai, T.; Maeda, M.; Takeda, K.; Akira, S.; Iso, H. Reduced prepulse inhibition of startle in STAT6-deficient mice. Int. J. Mol. Med. 2005, 16, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.Y.; Kim, H.Y.; Lee, H.E.; Ryu, J.H.; Jang, J.B.; Kim, H.M.; Jeong, H.J. Functions of the Signal Transducer and Activator of Transcription 6 in a Behavioral Animal Model of Depression. Pharmacology 2018, 101, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Deltheil, T.; Guiard, B.P.; Cerdan, J.; David, D.J.; Tanaka, K.F.; Repérant, C.; Guilloux, J.P.; Coudoré, F.; Hen, R.; Gardier, A.M. Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice. Neuropharmacology 2008, 55, 1006–1014. [Google Scholar] [CrossRef]
- Zhang, J.; Rong, P.; Zhang, L.; He, H.; Zhou, T.; Fan, Y.; Mo, L.; Zhao, Q.; Han, Y.; Li, S.; et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci. Adv. 2021, 7, eabb9888. [Google Scholar] [CrossRef] [PubMed]
- Fetro, C.; Scherman, D. Drug repurposing in rare diseases: Myths and reality. Therapies 2020, 75, 157–160. [Google Scholar] [CrossRef]
GENCODE_ID | GENCODE_Name | Missense Variant | Cis-eQTL | KEGG | PPI | KO Mice | Total Score |
---|---|---|---|---|---|---|---|
ENSG00000113520 | IL4 | 0 | 1 | 1 | 1 | 1 | 4 |
ENSG00000115604 | IL18R1 | 0 | 1 | 1 | 1 | 1 | 4 |
ENSG00000160712 | IL6R | 1 | 1 | 0 | 1 | 1 | 4 |
ENSG00000166888 | STAT6 | 0 | 1 | 1 | 1 | 1 | 4 |
ENS G00000166949 | SMAD3 | 0 | 1 | 1 | 1 | 1 | 4 |
ENSG00000169194 | IL13 | 1 | 0 | 1 | 1 | 1 | 4 |
ENSG00000174125 | TLR1 | 1 | 1 | 0 | 1 | 1 | 4 |
ENSG00000020633 | RUNX3 | 0 | 1 | 0 | 1 | 1 | 3 |
ENSG00000069667 | RORA | 0 | 0 | 1 | 1 | 1 | 3 |
ENSG00000107485 | GATA3 | 0 | 0 | 1 | 1 | 1 | 3 |
ENSG00000109471 | IL2 | 0 | 0 | 1 | 1 | 1 | 3 |
ENSG00000113525 | IL5 | 0 | 0 | 1 | 1 | 1 | 3 |
ENSG00000115602 | IL1RL1 | 1 | 0 | 0 | 1 | 1 | 3 |
ENSG00000117586 | TNFSF4 | 0 | 1 | 0 | 1 | 1 | 3 |
ENSG00000125347 | IRF1 | 0 | 1 | 0 | 1 | 1 | 3 |
ENSG00000134215 | VAV3 | 0 | 1 | 0 | 1 | 1 | 3 |
ENSG00000138684 | IL21 | 0 | 0 | 1 | 1 | 1 | 3 |
ENSG00000141736 | ERBB2 | 1 | 0 | 0 | 1 | 1 | 3 |
ENSG00000158869 | FCER1G | 0 | 1 | 0 | 1 | 1 | 3 |
ENSG00000161405 | IKZF3 | 0 | 1 | 0 | 1 | 1 | 3 |
ENSG00000179344 | HLA-DQB1 | 0 | 1 | 1 | 0 | 1 | 3 |
ENSG00000204252 | HLA-DOA | 0 | 0 | 1 | 1 | 1 | 3 |
ENSG00000204287 | HLA-DRA | 1 | 1 | 1 | 0 | 0 | 3 |
ENSG00000231389 | HLA-DPA1 | 0 | 1 | 1 | 1 | 0 | 3 |
ENSG00000073605 | GSDMB | 1 | 1 | 0 | 0 | 0 | 2 |
ENSG00000074047 | GLI2 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000079112 | CDH17 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000087086 | FTL | 0 | 0 | 0 | 1 | 0 | 2 |
ENSG00000087088 | BAX | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000100385 | IL2RB | 0 | 1 | 0 | 0 | 1 | 2 |
ENSG00000100902 | PSMA6 | 0 | 1 | 0 | 0 | 0 | 2 |
ENSG00000106571 | GLI3 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000107957 | SH3PXD2A | 1 | 0 | 0 | 0 | 1 | 2 |
ENSG00000111145 | ELK3 | 1 | 0 | 0 | 1 | 2 | |
ENSG00000111335 | OAS2 | 1 | 1 | 0 | 0 | 2 | |
ENSG00000112130 | RNF8 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000112486 | CCR6 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000113522 | RAD50 | 0 | 0 | 0 | 0 | 1 | 2 |
ENSG00000120903 | CHRNA2 | 0 | 1 | 0 | 0 | 1 | 2 |
ENSG00000124107 | SLPI | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000131507 | NDFIP1 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000134460 | IL2RA | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000134470 | IL15RA | 0 | 1 | 0 | 0 | 1 | 2 |
ENSG00000135905 | DOCK10 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000137033 | IL33 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000142556 | ZNF614 | 1 | 1 | 0 | 0 | 0 | 2 |
ENSG00000143631 | FLG | 1 | 0 | 0 | 0 | 1 | 2 |
ENSG00000145777 | TSLP | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000162104 | ADCY9 | 0 | 1 | 0 | 0 | 1 | 2 |
ENSG00000163485 | ADORA1 | 0 | 1 | 0 | 0 | 1 | 2 |
ENSG00000165280 | VCP | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000167914 | GSDMA | 1 | 1 | 0 | 0 | 0 | 2 |
ENSG00000171132 | PRKCE | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000171608 | PIK3CD | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000172057 | ORMDL3 | 0 | 1 | 0 | 1 | 0 | 2 |
ENSG00000174130 | TLR6 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000179588 | ZFPM1 | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000180902 | D2HGDH | 1 | 1 | 0 | 0 | 0 | 2 |
ENSG00000186265 | BTLA | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000186716 | BCR | 0 | 1 | 0 | 1 | 0 | 2 |
ENSG00000196735 | HLA-DQA1 | 0 | 1 | 1 | 0 | 0 | 2 |
ENSG00000197746 | PSAP | 0 | 0 | 0 | 1 | 1 | 2 |
ENSG00000198821 | CD247 | 0 | 1 | 0 | 0 | 1 | 2 |
ENSG00000204681 | GABBR1 | 1 | 0 | 0 | 0 | 1 | 2 |
ENSG00000215182 | MUC5AC | 1 | 0 | 0 | 0 | 1 | 2 |
Gene | Drug | Original Indication | Identifier * (NCT-0/PMID) |
---|---|---|---|
ClinicalTrials.gov | |||
FTL | Iron Dextran | Iron deficiency | 3373253 |
IL5 | Mepolizumab | Eosinophilic granulomatosis with polyangiitis (EGPA) | 4680611 |
IL6R | Tocilizumab | Rheumatoid arthritis | 3787290 |
ADORA1 | Tramadol | Moderate to severe pain | 3309163 |
ADORA1 | Caffeine | Migraine | 0025792 |
ADORA1 | Theophylline | Chronic asthma | 1263106 |
ADORA1 | Adenosine | Tachycardia | 2902601 |
ADORA1 | Pentoxifylline | Intermittent claudication | 4417049 |
PRKCE | Tamoxifen | Breast cancer | 0667121 |
CHRNA2 | Mecamylamine | Hypertension | 0593879 |
CHRNA2 | Rocuronium | General anesthesia | 4565730 |
GABBR1 | Taurine | Total parenteral nutrition | 0217165 |
PubMed | |||
CD3D | Muromonab | Prevention of organ rejection | 24257035 |
CD247 | Muromonab | Prevention of organ rejection | 24257035 |
ADORA1 | Dyphylline | Asthma | 10064181 |
CHRNA2 | Carbamoylcholine | Open-angle glaucoma | 23603524 |
CHRNA2 | Cisatracurium | General anesthesia | 22092267 |
CHRNA2 | Atracurium besylate | General anesthesia | 8442962 |
CHRNA2 | Mivacurium | General anesthesia | 8346843 |
CHRNA2 | Vecuronium | Muscle relaxant | 8733812 |
Biological Gene | Target Drug | Original Indication | Score |
---|---|---|---|
IL6R | Sarilumab | Rheumatoid arthritis | 4 |
IL6R | Satralizumab | Neuromyelitis optica spectrum disorder (NMOSD) | 4 |
IL5 | Reslizumab | Severe asthma | 3 |
sFTL | Sodium ferric gluconate complex | Iron deficiency anemia | 2 |
FTL | Ferric pyrophosphate citrate | Iron deficiency | 2 |
CD3D | Blinatumomab | Acute lymphoblastic leukemia (ALL) | 2 |
ADORA1 | Aminophylline | Asthma | 2 |
ADORA1 | Oxtriphylline | Asthma | 2 |
CHRNA2 | Metocurine iodide | Muscle contractions | 2 |
CHRNA2 | Doxacurium | General anesthesia | 2 |
CHRNA2 | Tubocurarine | General anesthesia | 2 |
CHRNA2 | Decamethonium | Muscle relaxant | 2 |
CHRNA2 | Metocurine | Muscle relaxant | 2 |
CHRNA2 | Pancuronium | Muscle relaxant | 2 |
CHRNA2 | Pipecuronium | Muscle relaxant | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesmana, M.H.S.; Le, N.Q.K.; Chiu, W.-C.; Chung, K.-H.; Wang, C.-Y.; Irham, L.M.; Chung, M.-H. Genomic-Analysis-Oriented Drug Repurposing in the Search for Novel Antidepressants. Biomedicines 2022, 10, 1947. https://doi.org/10.3390/biomedicines10081947
Lesmana MHS, Le NQK, Chiu W-C, Chung K-H, Wang C-Y, Irham LM, Chung M-H. Genomic-Analysis-Oriented Drug Repurposing in the Search for Novel Antidepressants. Biomedicines. 2022; 10(8):1947. https://doi.org/10.3390/biomedicines10081947
Chicago/Turabian StyleLesmana, Mohammad Hendra Setia, Nguyen Quoc Khanh Le, Wei-Che Chiu, Kuo-Hsuan Chung, Chih-Yang Wang, Lalu Muhammad Irham, and Min-Huey Chung. 2022. "Genomic-Analysis-Oriented Drug Repurposing in the Search for Novel Antidepressants" Biomedicines 10, no. 8: 1947. https://doi.org/10.3390/biomedicines10081947
APA StyleLesmana, M. H. S., Le, N. Q. K., Chiu, W. -C., Chung, K. -H., Wang, C. -Y., Irham, L. M., & Chung, M. -H. (2022). Genomic-Analysis-Oriented Drug Repurposing in the Search for Novel Antidepressants. Biomedicines, 10(8), 1947. https://doi.org/10.3390/biomedicines10081947