Safety Profile and Outcomes of Early COVID-19 Treatments in Immunocompromised Patients: A Single-Centre Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Virologic Analyses
2.3. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Statement on Omicron Sublineage BA.2; World Health Organization: Geneva, Switzerland, 2022. Available online: https://www.who.int/news/item/22-02-2022-statement-on-omicron-sublineage-ba.2 (accessed on 2 April 2022).
- Collie, S.; Champion, J.; Moultrie, H.; Bekker, L.-G.; Gray, G. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N. Engl. J. Med. 2021, 386, 494–496. [Google Scholar] [CrossRef]
- Liu, J.; Chandrashekar, A.; Sellers, D.; Barrett, J.; Jacob-Dolan, C.; Lifton, M.; McMahan, K.; Sciacca, M.; VanWyk, H.; Wu, C.; et al. Vaccines Elicit Highly Conserved Cellular Immunity to SARS-CoV-2 Omicron. Nature 2022, 603, 493–496. [Google Scholar] [CrossRef]
- Luxi, N.; Giovanazzi, A.; Capuano, A.; Crisafulli, S.; Cutroneo, P.M.; Fantini, M.P.; Ferrajolo, C.; Moretti, U.; Poluzzi, E.; Raschi, E.; et al. COVID-19 Vaccination in Pregnancy, Paediatrics, Immunocompromised Patients, and Persons with History of Allergy or Prior SARS-CoV-2 Infection: Overview of Current Recommendations and Pre- and Post-Marketing Evidence for Vaccine Efficacy and Safety. Drug Saf. 2021, 44, 1247–1269. [Google Scholar] [CrossRef]
- Benotmane, I.; Gautier-Vargas, G.; Cognard, N.; Olagne, J.; Heibel, F.; Braun-Parvez, L.; Martzloff, J.; Perrin, P.; Moulin, B.; Fafi-Kremer, S.; et al. Low immunization rates among kidney transplant recipients who received 2 doses of the mRNA-1273 SARS-CoV-2 vaccine. Kidney Int. 2021, 99, 1498. [Google Scholar] [CrossRef]
- Stumpf, J.; Siepmann, T.; Lindner, T.; Karger, C.; Schwöbel, J.; Anders, L.; Faulhaber-Walter, R.; Schewe, J.; Martin, H.; Schirutschke, H.; et al. Humoral and cellular immunity to SARS-CoV-2 vaccination in renal transplant versus dialysis patients: A prospective, multicenter observational study using mRNA-1273 or BNT162b2 mRNA vaccine. Lancet Reg. Health Eur. 2021, 9, 100178. [Google Scholar] [CrossRef]
- Marion, O.; Del Bello, A.; Abravanel, F.; Couat, C.; Faguer, S.; Esposito, L.; Hebral, A.L.; Izopet, J.; Kamar, N. Safety and Immunogenicity of Anti-SARS-CoV-2 Messenger RNA Vaccines in Recipients of Solid Organ Transplants. Ann. Intern. Med. 2021, 174, 1336–1338. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Ruddy, J.A.; Connolly, C.M.; Ou, M.T.; Werbel, W.A.; Garonzik-Wang, J.M.; Segev, D.L.; Paik, J.J. Antibody response to a single dose of SARS-CoV-2 mRNA vaccine in patients with rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 80, 1098–1099. [Google Scholar] [CrossRef]
- Tsigrelis, C.; Ljungman, P. Vaccinations in patients with hematological malignancies. Blood Rev. 2016, 30, 139–147. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Casal, M.C.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Buehrle, D.J.; Sutton, R.R.; McCann, E.L.; Lucas, A.E. A Review of Treatment and Prevention of Coronavirus Disease 2019 among Solid Organ Transplant Recipients. Viruses 2021, 13, 1706. [Google Scholar] [CrossRef]
- A Safety and Tolerability Study of Sotrovimab (VIR-7831) Prophylaxis against COVID-19 in Immunocompromised Individuals—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05210101?term=sotrovimab+immunocompromised&cond=COVID-19&draw=2&rank=1 (accessed on 5 February 2022).
- Lombardi, A.; Renisi, G.; Consonni, D.; Oggioni, M.; Bono, P.; Renteria, S.U.; Piatti, A.; Pesatori, A.C.; Castaldi, S.; Muscatello, A.; et al. Clinical characteristics of healthcare workers with SARS-CoV-2 infection after vaccination with BNT162b2 vaccine. BMC Infect. Dis. 2022, 22, 97. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Remdesivir (Veklury) Summary of Product Characteristics; Taylor & Francis Group: Abingdon, UK, 2022. [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Casal, M.C.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Effect of Sotrovimab on Hospitalization or Death among High-risk Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2022, 327, 1236–1246. [Google Scholar] [CrossRef]
- Dougan, M.; Nirula, A.; Azizad, M.; Mocherla, B.; Gottlieb, R.L.; Chen, P.; Hebert, C.; Perry, R.; Boscia, J.; Heller, B.; et al. Bamlanivimab plus Etesevimab in Mild or Moderate COVID-19. N. Engl. J. Med. 2021, 385, 1382–1392. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Sarrell, B.A.; Bloch, K.; El Chediak, A.; Kumm, K.; Tracy, K.; Forbes, R.C.; Langone, A.; Thomas, L.; Schlendorf, K.; Trindade, A.J.; et al. Monoclonal antibody treatment for COVID-19 in solid organ transplant recipients. Transplant. Infect. Dis. 2022, 24, e13759. [Google Scholar] [CrossRef]
- Yetmar, Z.A.; Beam, E.; O’Horo, J.C.; Ganesh, R.; Bierle, D.M.; Brumble, L.; Seville, M.T.; Razonable, R.R. Monoclonal Antibody Therapy for COVID-19 in Solid Organ Transplant Recipients. Open Forum. Infect. Dis. 2021, 8, ofab255. [Google Scholar] [CrossRef]
- Ahearn, A.J.; Maw, T.T.; Mehta, R.; Emamaullee, J.; Kim, J.; Blodget, E.; Kahn, J.; Sher, L.; Genyk, Y. A Programmatic Response, Including Bamlanivimab or Casirivimab-imdevimab Administration, Reduces Hospitalization and Death in COVID-19 Positive Abdominal Transplant Recipients. Transplantation 2022, 106, E153–E157. [Google Scholar] [CrossRef]
- Weinbergerová, B.; Demel, I.; Víšek, B.; Válka, J.; Čerňan, M.; Jindra, P.; Novák, J.; Stejskal, L.; Kovácsová, F.; Kabut, T.; et al. Successful early use of anti-SARS-CoV-2 monoclonal neutralizing antibodies in SARS-CoV-2 infected hematological patients—A Czech multicenter experience. Hematol. Oncol. 2022, 40, 280–286. [Google Scholar] [CrossRef]
- Puing, A.G.; Ho, S.; Frankel, P.; Tegtmeier, B.; Martin, A.; Ross, J.; Nanayakkara, D.; Dickter, J.; Seto, T.; Nakamura, R.; et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Monoclonal Antibody for the Treatment of Mild to Moderate Coronavirus Disease 2019 in Cancer Patients: A Single-Center Experience. J. Infect. Dis. 2022, 225, 352–354. [Google Scholar] [CrossRef]
- Beran, A.; Zink, E.; Mhanna, M.; Abugharbyeh, A.; Do, J.H.; Duggan, J.; Assaly, R. Transmissibility and viral replication of SARS-COV-2 in immunocompromised patients. J. Med. Virol. 2021, 93, 4156. [Google Scholar] [CrossRef]
- Helleberg, M.; Niemann, C.U.; Moestrup, K.S.; Kirk, O.; Lebech, A.-M.; Lane, C.; Lundgren, J. Persistent COVID-19 in an immunocompromised patient temporarily responsive to two courses of remdesivir therapy. J. Infect. Dis. 2020, 222, 1103–1107. [Google Scholar] [CrossRef]
- Camprubí, D.; Gaya, A.; Marcos, M.A.; Martí-Soler, H.; Soriano, A.; Mosquera, M.D.M.; Oliver, A.; Santos, M.; Muñoz, J.; García-Vidal, C. Persistent replication of SARS-CoV-2 in a severely immunocompromised patient treated with several courses of remdesivir. Int. J. Infect. Dis. 2021, 104, 379–381. [Google Scholar] [CrossRef]
- Buckland, M.S.; Galloway, J.B.; Fhogartaigh, C.N.; Meredith, L.; Provine, N.M.; Bloor, S.; Ogbe, A.; Zelek, W.M.; Smielewska, A.; Yakovleva, A.; et al. Treatment of COVID-19 with remdesivir in the absence of humoral immunity: A case report. Nat. Commun. 2020, 11, 6385. [Google Scholar] [CrossRef]
- Kemp, S.A.; Collier, D.A.; Datir, R.P.; Ferreira, I.A.T.M.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C.; Mlcochova, P.; Lumb, I.U.; et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021, 592, 277–282. [Google Scholar] [CrossRef]
Immunocompromised | |||||
---|---|---|---|---|---|
N | Overall, N = 143 * | No, N = 37 * | Yes, N = 106 * | p-Value † | |
Age (years) | 143 | <0.001 | |||
20–64 | 76 (53%) | 5 (14%) | 71 (67%) | ||
65+ | 67 (47%) | 32 (86%) | 35 (33%) | ||
Gender | 143 | 0.451 | |||
M | 81 (57%) | 19 (51%) | 62 (58%) | ||
F | 62 (43%) | 18 (49%) | 44 (42%) | ||
Ethnic group | 143 | 0.603 | |||
Caucasian | 136 (95%) | 37 (100%) | 99 (93%) | ||
African | 3 (2.1%) | 0 (0%) | 3 (2.8%) | ||
Asian | 3 (2.1%) | 0 (0%) | 3 (2.8%) | ||
Hispanic | 1 (0.7%) | 0 (0%) | 1 (0.9%) | ||
Vaccine dose (s) | 140 | 0.607 | |||
0 | 9 (6.4%) | 1 (4.8%) | 8 (6.7%) | ||
1 | 4 (2.9%) | 1 (4.8%) | 3 (2.5%) | ||
2 | 46 (33%) | 5 (24%) | 41 (34%) | ||
3 | 81 (58%) | 14 (67%) | 67 (56%) | ||
BMI (Kg/m2) | 138 | 24.0 (22.0, 26.0) | 25.0 (23.0, 28.0) | 24.0 (21.0, 26.0) | 0.032 |
Time from last vaccine dose to COVID-19 (days) | 131 | 85 (49, 162) | 115 (63, 174) | 80 (47, 154) | 0.248 |
SARS-CoV-2 variant | 93 | >0.999 | |||
Omicron | 88 (95%) | 14 (93%) | 74 (95%) | ||
Delta | 5 (5%) | 1 (7%) | 4 (5%) | ||
Previous SARS-CoV-2 infection | 142 | 8 (5.6%) | 1 (2.7%) | 7 (6.7%) | 0.680 |
Immunosuppressive Condition | N = 143 * |
---|---|
Connective tissue disease | 11 (7.7%) |
Solid tumour | 8 (5.6%) |
Local | 5 (3.5%) |
Metastatic | 3 (2.1%) |
Leukaemia | 7 (4.9%) |
Lymphoma | 13 (9.1%) |
HIV infection | 2 (1.4%) |
AIDS | 0 (0%) |
Splenectomy | 2 (1.4%) |
Neutropenia | 1 (0.7%) |
Primary immunodeficiency | 22 (15.4%) |
Autoimmune disease | 13 (9.1%) |
Bone marrow transplant recipients | 6 (4.2%) |
Autologous | 5 (3.5%) |
Allogenic | 1 (0.7%) |
Solid-organ transplant recipients | 42 (29.4%) |
Kidney | 23 (16.1%) |
Liver | 12 (8.5%) |
Lungs | 5 (3.5%) |
Long term steroid therapy † | 51 (35.7%) |
<20 mg/day | 48 (33.6%) |
≥20 mg/day | 3 (2.1%) |
Biological immunosuppressor | |
Anti TNF-alfa | 3 (2.1%) |
Anti IL6 | 1 (0.7%) |
Anti CD20 | 4 (2.8%) |
Other(s) | 10 (7.0%) |
Ongoing chemotherapy | 6 (4.2%) |
Ongoing antirejection therapy | 44 (30.8%) |
(a) | |||||
Immunocompromised | |||||
Remdesivir | N | Overall, N = 23 * | No, N = 6 * | Yes, N = 17 * | p-Value † |
Early ADRs | 22 | 0 (0%) | 0 (0%) | 0 (0%) | >0.999 |
Late ADRs | 22 | 4 (18%) | 1 (17%) | 3 (19%) | >0.999 |
ADRs grade | 4 | ||||
Grade 1 | 4 (100%) | 1 (100%) | 3 (100%) | ||
(b) | |||||
Immunocompromised | |||||
mAbs | N | Overall, N = 122 * | No, N = 32 * | Yes, N = 90 * | p-Value † |
Early ADRs | 122 | 1 (0.8%) | 0 (0%) | 1 (1.1%) | >0.999 |
ADRs grade | 1 | ||||
Grade 1 | 1 (100%) | 0 (0%) | 1 (100%) | ||
Late ADRs | 119 | 19 (16%) | 5 (16%) | 14 (16%) | >0.999 |
ADRs grade | 19 | ||||
Grade 1 | 18 (95%) | 5 (100%) | 13 (93%) | ||
Grade 5 | 1 (5.3%) | 0 (0%) | 1 (7.1%) |
Immunocompromised | |||||
---|---|---|---|---|---|
N | Overall, N = 143 * | No, N = 37 * | Yes, N = 106 * | p-Value † | |
Emergency department admission within 14 days from infusion | 138 | 6 (4.3%) | 1 (2.8%) | 5 (4.9%) | >0.999 |
COVID-19 related | 5 | 0 | 5 | ||
Hospital admission within 14 days from infusion | 139 | 8 (5.8%) | 0 (0%) | 8 (7.8%) | 0.109 |
COVID-19 related | 5 | 0 | 5 | ||
ICU admission within 14 days from infusion | 138 | 0 (0%) | 0 (0%) | 0 (0%) | |
Death within 14 days from infusion | 138 | 1 (0.7%) | 0 (0%) | 1 (1.0%) | >0.999 |
COVID-19 related | 1 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biscarini, S.; Villa, S.; Genovese, C.; Tomasello, M.; Tonizzo, A.; Fava, M.; Iannotti, N.; Bolis, M.; Mariani, B.; Valzano, A.G.; et al. Safety Profile and Outcomes of Early COVID-19 Treatments in Immunocompromised Patients: A Single-Centre Cohort Study. Biomedicines 2022, 10, 2002. https://doi.org/10.3390/biomedicines10082002
Biscarini S, Villa S, Genovese C, Tomasello M, Tonizzo A, Fava M, Iannotti N, Bolis M, Mariani B, Valzano AG, et al. Safety Profile and Outcomes of Early COVID-19 Treatments in Immunocompromised Patients: A Single-Centre Cohort Study. Biomedicines. 2022; 10(8):2002. https://doi.org/10.3390/biomedicines10082002
Chicago/Turabian StyleBiscarini, Simona, Simone Villa, Camilla Genovese, Mara Tomasello, Anna Tonizzo, Marco Fava, Nathalie Iannotti, Matteo Bolis, Bianca Mariani, Antonia Grazia Valzano, and et al. 2022. "Safety Profile and Outcomes of Early COVID-19 Treatments in Immunocompromised Patients: A Single-Centre Cohort Study" Biomedicines 10, no. 8: 2002. https://doi.org/10.3390/biomedicines10082002
APA StyleBiscarini, S., Villa, S., Genovese, C., Tomasello, M., Tonizzo, A., Fava, M., Iannotti, N., Bolis, M., Mariani, B., Valzano, A. G., Morlacchi, L. C., Donato, F., Castellano, G., Cassin, R., Carrabba, M., Muscatello, A., Gori, A., Bandera, A., & Lombardi, A. (2022). Safety Profile and Outcomes of Early COVID-19 Treatments in Immunocompromised Patients: A Single-Centre Cohort Study. Biomedicines, 10(8), 2002. https://doi.org/10.3390/biomedicines10082002