Adverse Neonatal Outcome of Pregnancies Complicated by Preeclampsia
Abstract
:1. Introduction
2. Patients and Methods
- (1)
- Hematological disorders (thrombocytopenia, DIC, hemolysis),
- (2)
- Serum creatinine content >1.1 mg/dL or a 2-fold increase in its baseline level where no other kidney disease found observed,
- (3)
- Increased serum liver enzymes ≥2 times the upper limit of the standard or severe right upper quadrant or epigastric pain,
- (4)
- Neurological signs or visual impairment,
- (5)
- Pulmonary edema,
- (6)
- Intrauterine growth restriction.
- (1)
- Congenital or late-onset infections—diagnosed based on clinical signs, laboratory test results, and/or blood cultures,
- (2)
- Respiratory distress syndrome (RDS)—diagnosed based on clinical signs and a chest X-ray,
- (3)
- Patent ductus arteriosus (PDA)—diagnosed based on echocardiography and clinical signs,
- (4)
- Necrotizing enterocolitis (NEC)—diagnosed based on clinical signs and pathological radiological signs,
- (5)
- Intraventricular hemorrhage (IVH)—diagnosed based on brain ultrasound results
- (6)
- Retinopathy of prematurity (ROP)—diagnosed based on ophthalmological examination results,
- (7)
- Bronchopulmonary dysplasia (BPD)—diagnosed based on oxygen dependence persisting beyond 28 days of age,
- (8)
- Death of the infant.
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abalos, E.; Cuesta, C.; Carroli, G.; Qureshi, Z.; Widmer, M.; Vogel, J.P.; Souza, J.P. Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: A secondary analysis of the World Health Organization Multicountry Survey on Maternal and Newborn Health. BJOG Int. J. Obstet. Gynaecol. 2014, 121, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tranquilli, A.L.; Dekker, G.; Magee, L.; Roberts, J.; Sibai, B.M.; Steyn, W.; Brown, M.A. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens. 2014, 4, 97–104. [Google Scholar] [CrossRef]
- Hendrix, M.L.E.; Bons, J.A.P.; van Haren, A.; van Kuijk, S.M.J.; van Doorn, W.P.T.M.; Kimenai, D.M.; Al-Nasiry, S. Role of sFlt-1 and PlGF in the screening of small-for-gestational age neonates during pregnancy: A systematic review. Ann. Clin. Biochem. 2020, 57, 44–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrachnis, N.; Kalampokas, E.; Sifakis, S.; Vitoratos, N.; Kalampokas, T.; Botsis, D.; Iliodromiti, Z. Placental growth factor (PlGF): A key to optimizing fetal growth. J. Matern.-Fetal Neonatal Med. 2013, 26, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, T.M.; Tran, C.; Kaitu’u-Lino, T.J.; Brennecke, S.P.; Hiscock, R.J.; Hui, L.; Dane, K.M.; Middleton, A.L.; Cannon, P.; Walker, S.P.; et al. Assessing the sensitivity of placental growth factor and soluble fms-like tyrosine kinase 1 at 36weeks’ gestation to predict small-for-gestational-age infants or late-onset preeclampsia: A prospective nested case-control study. BMC Pregnancy Childbirth 2018, 18, 354. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.S.; Chen, C.N.; Jeng, S.F.; Su, Y.N.; Chen, C.Y.; Chou, H.C.; Hsieh, W.S. The sFlt-1/PlGF ratio as a predictor for poor pregnancy and neonatal outcomes. Pediatrics Neonatol. 2017, 58, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Masoura, S.; Kalogiannidis, I.; Makedou, K.; Theodoridis, T.; Koiou, K.; Gerou, S.; Agorastos, T. Biomarkers of endothelial dysfunction in preeclampsia and neonatal morbidity: A case-control study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 175, 119–123. [Google Scholar] [CrossRef]
- Bednarek-Jędrzejek, M.; Kwiatkowski, S.; Ksel-Hryciów, J.; Tousty, P.; Nurek, K.; Kwiatkowska, E.; Torbé, A. The sFlt-1/PlGF ratio values within the <38, 38–85 and >85 brackets as compared to perinatal outcomes. J. Perinat. Med. 2019, 47, 732–740. [Google Scholar] [CrossRef]
- Fantone, S.; Mazzucchelli, R.; Giannubilo, S.R.; Ciavattini, A.; Marzioni, D.; Tossetta, G. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia. Histochem. Cell Biol. 2020, 154, 339–346. [Google Scholar] [CrossRef]
- Tagliaferro, T.; Jain, D.; Vanbuskirk, S.; Bancalari, E.; Claure, N. Maternal preeclampsia and respiratory outcomes in extremely premature infants. Pediatric Res. 2019, 85, 693–696. [Google Scholar] [CrossRef]
- Hansen, A.R.; Barnés, C.M.; Folkman, J.; McElrath, T.F. Maternal Preeclampsia Predicts the Development of Bronchopulmonary Dysplasia. J. Pediatrics 2010, 156, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, H.; Cetinkaya, M.; Koksal, N. Increased incidence of bronchopulmonary dysplasia in preterm infants exposed to preeclampsia. J. Matern.-Fetal Neonatal Med. 2012, 25, 2681–2685. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, M.; Ozkan, H.; Koksal, N. 282 Maternal Preeclampsia is Associated with Increased Risk of Necrotizing Enterocolitis in Preterm Infants. Arch. Dis. Child. 2012, 97, A82–A83. [Google Scholar] [CrossRef] [Green Version]
- Backes, C.H.; Markham, K.; Moorehead, P.; Cordero, L.; Nankervis, C.A.; Giannone, P.J. Maternal preeclampsia and neonatal outcomes. J. Pregnancy 2011, 2011, 214365. [Google Scholar] [CrossRef]
- Mouna, K.; Doddagowda, S.M.; Junjegowda, K.; Krishnamurthy, L. Changes in hematological parameters in newborns born to preeclamptic mothers—A case control study in a rural hospital. J. Clin. Diagn. Res. 2017, 11, EC26–EC29. [Google Scholar] [CrossRef]
- Prakash, P.L.; Kumar, P.S.; Murthy, M.V.; Haricharan, K.R. Assessment of hematological profile of newborn at birth, born to mothers with gestational hypertension, preeclampsia and eclampsia syndrome. J. Evol. Med. Dent. Sci. 2013, 2, 6360–6369. [Google Scholar] [CrossRef]
- Kalagiri, R.; Choudhury, S.; Carder, T.; Govande, V.; Beeram, M.; Uddin, M. Neonatal Thrombocytopenia as a Consequence of Maternal Preeclampsia. Am. J. Perinatol. Rep. 2015, 6, e42–e47. [Google Scholar] [CrossRef] [Green Version]
- Soliman, Y.; Alshaikh, B.; Alawad, E.; Akierman, A.; Elsharkawy, A.; Yusuf, K. Respiratory outcomes of late preterm infants of mothers with early and late onset preeclampsia. J. Perinatol. 2020, 40, 39–45. [Google Scholar] [CrossRef]
- Habli, M.; Levine, R.J.; Qian, C.; Sibai, B. Neonatal outcomes in pregnancies with preeclampsia or gestational hypertension and in normotensive pregnancies that delivered at 35, 36, or 37 weeks of gestation. Am. J. Obstet. Gynecol. 2007, 197, 406.e1–406.e7. [Google Scholar] [CrossRef]
- Bilano, V.L.; Ota, E.; Ganchimeg, T.; Mori, R.; Souza, J.P. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: A WHO secondary analysis. PLoS ONE 2014, 9, e91198. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, W.; Lin, J.; Liu, H.; Yang, Z.; Teng, Y.; Duan, S.; Li, Y.; Xie, Y.; Lin, X.; et al. Preterm birth, low birthweight, and small for gestational age among women with preeclampsia: Does maternal age matter? Pregnancy Hypertens. 2018, 13, 260–266. [Google Scholar] [CrossRef]
- Davies, E.L.; Bell, J.S.; Bhattacharya, S. Preeclampsia and preterm delivery: A population-based case–control study. Hypertens. Pregnancy 2016, 35, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Phipps, E.; Prasanna, D.; Brima, W.; Jim, B. Preeclampsia: Updates in pathogenesis, definitions, and guidelines Vol. 11, Clinical Journal of the American Society of Nephrology. Am. Soc. Nephrol. 2016, 11, 1102–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hod, T.; Cerdeira, A.S.; Ananth Karumanchi, S. Molecular mechanisms of preeclampsia. Cold Spring Harb. Perspect. Med. 2015, 5, a023473. [Google Scholar] [CrossRef] [Green Version]
- Langenveld, J.; Ravelli, A.C.J.; van Kaam, A.H.; van der Ham, D.P.; van Pampus, M.G.; Porath, M.; Ganzevoort, W. Neonatal outcome of pregnancies complicated by hypertensive disorders between 34 and 37 weeks of gestation: A 7 year retrospective analysis of a national registry. Am. J. Obstet. Gynecol. 2011, 205, 540.e1–540.e7. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.H.; Yang, H.I.; Chou, H.C.; Chen, C.Y.; Hsieh, W.S.; Tsou, K.I.; Tsao, P.N. Association of Maternal Preeclampsia with Neonatal Respiratory Distress Syndrome in Very-Low-Birth-Weight Infants. Sci. Rep. 2019, 9, 13212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassus, P.; Ristimäki, A.; Ylikorkala, O.; Viinikka, L.; Andersson, S. Vascular endothelial growth factor in human preterm lung. Am. J. Respir. Crit. Care Med. 1999, 159, 1429–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, T.; Wang, L.; Ye, R.; Liu, J.; Ren, A. Maternal hypertension, preeclampsia, and risk of neonatal respiratory disorders in a large-prospective cohort study. Pregnancy Hypertens. 2020, 19, 131–137. [Google Scholar] [CrossRef]
- Procianoy, R.S.; Silveira, R.C.; Mussi-Pinhata, M.M.; Souza Rugolo, L.M.S.; Leone, C.R.; de Andrade Lopes, J.M.; De Almeida, M.F.B. Sepsis and neutropenia in very low birth weight infants delivered of mothers with preeclampsia. J. Pediatrics 2010, 157, 434–438. [Google Scholar] [CrossRef]
- Garcia-Manau, P.; Mendoza, M.; Bonacina, E.; Garrido-Gimenez, C.; Fernandez-Oliva, A.; Zanini, J.; Carreras, E. Soluble fms-like tyrosine kinase to placental growth factor ratio in different stages of early-onset fetal growth restriction and small for gestational age. Acta Obstet. Gynecol. Scand. 2021, 100, 119–128. [Google Scholar] [CrossRef]
- Valiño, N.; Giunta, G.; Gallo, D.M.; Akolekar, R.; Nicolaides, K.H. Biophysical and biochemical markers at 30–34 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet. Gynecol. 2016, 47, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuovinen, S.; Räikkönen, K.; Kajantie, E.; Pesonen, A.K.; Heinonen, K.; Osmond, C.; Eriksson, J.G. Depressive symptoms in adulthood and intrauterine exposure to pre-eclampsia: The Helsinki birth cohort study. BJOG Int. J. Obstet. Gynaecol. 2010, 117, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Tuovinen, S.; Räikkönen, K.; Pesonen, A.K.; Lahti, M.; Heinonen, K.; Wahlbeck, K.; Kajantie, E.; Osmond, C.; Barker, D.J.P.; Eriksson, J.G. Hypertensive disorders in pregnancy and risk of severe mental disorders in the offspring in adulthood: The Helsinki Birth Cohort Study. J. Psychiatr. Res. 2012, 46, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.S.; Nohr, E.A.; Bech, B.H.; Vestergaard, M.; Catov, J.M.; Olsen, J. Health of children born to mothers who had preeclampsia: A population-based cohort study. Am. J. Obstet. Gynecol. 2009, 201, 269.e1–269.e10. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef]
- Poon, L.C.; Wright, D.; Rolnik, D.L.; Syngelaki, A.; Delgado, J.L.; Tsokaki, T.; Leipold, G.; Akolekar, R.; Shearing, S.; de Stefani, L.; et al. Aspirin for Evidence-Based Preeclampsia Prevention trial: Effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am. J. Obstet. Gynecol. 2017, 217, 586. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.; Rolnik, D.L.; Syngelaki, A.; de Paco Matallana, C.; Machuca, M.; de Alvarado, M.; Mastrodima, S.; Tan, M.Y.; Shearing, S.; Persico, N.; et al. Aspirin for Evidence-Based Preeclampsia Prevention trial: Effect of aspirin on length of stay in the neonatal intensive care unit. Am. J. Obstet. Gynecol. 2018, 218, 612.e1–612.e6. [Google Scholar] [CrossRef] [Green Version]
sFlt-1/PlGF ratio | 153.7 (3.5–1460.5) | duration of hospitalization (days) | 6 (2–87) |
Gestational age (weeks) | 35 (26–39) | adverse neonatal outcome | 22 (28.6%) |
birth weight (g) | 2250 (510–4690) | congenital infection | 15 (19.5%) |
birth weight < 10 pc | 20 (26%) | late-onset infection | 7 (9.1%) |
birth weight < 3 pc | 9 (11.7%) | ROP | 3 (3.9%) |
5-min Apgar score | 9 (6–10) | IVH | 6 (7.8%) |
Sex (male) | 32 (41.5%) | NEC | 1 (1.3%) |
chronic hypertension | 13 (16.9%) | RDS | 14 (18.2%) |
eo-PE | 32 (41.5%) | PDA | 5 (6.5%) |
lo-PE | 45 (58.5%) | BPD | 8 (10.4%) |
C-section | 73 (95%) | death of the infant | 2 (2.6%) |
sFlt-1/PlGF Ratio | |||
---|---|---|---|
≥204 (n = 27) | <204 (n = 50) | p | |
sFlt-1/PlGF ratio | 338.7 (208.7–1460.5) | 83 (3.5–203.8) | <0.001 |
Gestational age (weeks) | 33 (26–38) | 36 (27–39) | <0.001 |
birth weight (g) | 1470 (510–2820) | 2585 (855–4690) | <0.001 |
birth weight < 10 pc | 13 (48%) | 7 (14%) | <0.001 |
birth weight < 3 pc | 7 (26%) | 2 (4%) | 0.01 |
5-min Apgar score | 8 (7–10) | 9 (6–10) | 0.01 |
Sex (male) | 11 (41%) | 21 (42%) | ns |
chronic hypertension | 2 (7%) | 11 (22%) | ns |
eo-PE | 18 (67%) | 14 (28%) | 0.001 |
lo-PE | 9 (33%) | 36 (72%) | 0.001 |
C-section | 26 (96%) | 47 (94%) | ns |
duration of hospitalization (days) | 23 (2–87) | 5 (2–76) | <0.001 |
any of the following neonatal adverse outcomes | 13 (48%) | 9 (18%) | 0.005 |
congenital infection | 8 (30%) | 7 (14%) | ns |
late-onset infection | 5 (19%) | 2 (4%) | ns |
ROP | 2 (7%) | 1 (2%) | ns |
IVH | 4 (15%) | 2 (4%) | ns |
NEC | 1 (4%) | 0 | ns |
RDS | 8 (30%) | 6 (12%) | ns |
PDA | 3 (11%) | 2 (4%) | ns |
BPD | 6 (22%) | 2 (4%) | 0.03 |
Gestational Age | |||
---|---|---|---|
≤32 (n = 20) | >32 (n = 57) | p | |
sFlt-1/PlGF ratio | 232.7 (8.1–1460.5) | 105.9 (3.5–949.7) | 0.006 |
Gestational age (weeks) | 30 (26–32) | 36 (33–39) | <0.001 |
birth weight (g) | 1070 (510–1915) | 2570 (1230–4690) | <0.001 |
birth weight < 10 pc | 8 (40%) | 12 (21%) | ns |
birth weight < 3 pc | 4 (20%) | 5 (9%) | ns |
5-min Apgar score | 8 (6–10) | 10 (7–10) | <0.001 |
sex (male) | 8 (40%) | 24 (42%) | ns |
chronic hypertension | 5 (25%) | 8 (14%) | ns |
eo-PE | 20 (100%) | 12 (21%) | <0.001 |
lo-PE | 0 | 45 (79%) | <0.001 |
C-section | 19 (95%) | 54 (95%) | ns |
duration of hospitalization (days) | 45 (2–87) | 5 (2–23) | <0.001 |
any of the following neonatal adverse outcome | 17 (85%) | 5 (9%) | <0.001 |
congenital infection | 12 (60%) | 3 (5%) | <0.001 |
late-onset infection | 6 (30%) | 1 (2%) | <0.001 |
ROP | 3 (15%) | 0 | 0.02. |
IVH | 6 (30%) | 0 | <0.001 |
NEC | 1 (5%) | 0 | ns |
RDS | 12 (60%) | 2 (4%) | <0.001 |
PDA | 5 (25%) | 0 | <0.001 |
BPD | 8 (40%) | 0 | <0.001 |
Gestational Age | |||
---|---|---|---|
≥204 (n = 13) | <204 (n = 7) | p | |
sFlt-1/PlGF ratio | 313.3 (208–1460.5) | 94.7 (8.1–203.8) | <0.001 |
Gestational age (weeks) | 28 (26–31) | 31 (27–32) | 0.12 |
birth weight (g) | 1035 (510–1850) | 1200 (855–1915) | 0.17 |
birth weight < 10 pc | 6 (46.1%) | 2 (28.6%) | ns |
birth weight < 3 pc | 4 (30.1%) | 0 | ns |
5-min Apgar score | 8 (7–9) | 8 (6–10) | ns |
sex (male) | 3 (23.1%) | 5 (71.4%) | ns |
chronic hypertension | 2 (15.4%) | 3 (42.9%) | ns |
C-section | 13 (100%) | 6 (95%) | ns |
duration of hospitalization (days) | 51 (27–87) | 27 (2–76) | 0.15 |
any of the following neonatal adverse outcome | 13 (100%) | 4 (57.1%) | 0.01 |
congenital infection | 8 (61.5%) | 4 (57.1%) | ns |
late-onset infection | 5 (38%) | 1 (14.3%) | ns |
ROP | 2 (15.3%) | 1 (14.3) | ns |
IVH | 4 (30.7%) | 2 (28.6%) | ns |
NEC | 1 (7.7%) | 0 | ns |
RDS | 8 (61.5%) | 4 (57.1%) | ns |
PDA | 3 (23%) | 2 (28.6%) | ns |
BPD | 6 (46%) | 2 (28.6%) | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tousty, P.; Fraszczyk-Tousty, M.; Ksel-Hryciów, J.; Łoniewska, B.; Tousty, J.; Dzidek, S.; Michalczyk, K.; Kwiatkowska, E.; Cymbaluk-Płoska, A.; Torbé, A.; et al. Adverse Neonatal Outcome of Pregnancies Complicated by Preeclampsia. Biomedicines 2022, 10, 2048. https://doi.org/10.3390/biomedicines10082048
Tousty P, Fraszczyk-Tousty M, Ksel-Hryciów J, Łoniewska B, Tousty J, Dzidek S, Michalczyk K, Kwiatkowska E, Cymbaluk-Płoska A, Torbé A, et al. Adverse Neonatal Outcome of Pregnancies Complicated by Preeclampsia. Biomedicines. 2022; 10(8):2048. https://doi.org/10.3390/biomedicines10082048
Chicago/Turabian StyleTousty, Piotr, Magda Fraszczyk-Tousty, Joanna Ksel-Hryciów, Beata Łoniewska, Joanna Tousty, Sylwia Dzidek, Kaja Michalczyk, Ewa Kwiatkowska, Aneta Cymbaluk-Płoska, Andrzej Torbé, and et al. 2022. "Adverse Neonatal Outcome of Pregnancies Complicated by Preeclampsia" Biomedicines 10, no. 8: 2048. https://doi.org/10.3390/biomedicines10082048
APA StyleTousty, P., Fraszczyk-Tousty, M., Ksel-Hryciów, J., Łoniewska, B., Tousty, J., Dzidek, S., Michalczyk, K., Kwiatkowska, E., Cymbaluk-Płoska, A., Torbé, A., & Kwiatkowski, S. (2022). Adverse Neonatal Outcome of Pregnancies Complicated by Preeclampsia. Biomedicines, 10(8), 2048. https://doi.org/10.3390/biomedicines10082048