Unbiased In Silico Analysis of Gene Expression Pinpoints Circulating miRNAs Targeting KIAA1324, a New Gene Drastically Downregulated in Ovarian Endometriosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Computer-Assisted Analysis, RNA Extraction and qPCR Analyses
2.3. Isolation and Primary Culture of Endometrial Stromal and Epithelial Cells
2.4. Cell transfection, Total RNA Extraction and qPCR for KIAA1324 Gene
2.5. Immunohistochemistry and Western Blot for KIAA1234 Protein
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Patients
3.2. Bioinformatic Identification of miRNAs Associated with Endometrioma
3.3. Quantitative Evaluation of Eight miRNAs in Tissue and Plasma
3.4. Correlation between miRNA Expression, Phases of the Menstrual Cycle and Clinical Symptoms
3.5. miRNAs Signature of Endometriosis
3.6. KIAA1324, a Potential Target Gene for miRNAs in Endometriosis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Chapron, C.; Marcellin, L.; Borghese, B.; Santulli, P. Rethinking mechanisms, diagnosis and management of endometriosis. Nat. Rev. Endocrinol. 2019, 15, 666–682. [Google Scholar] [CrossRef]
- Guerriero, S.; Saba, L.; Pascual, M.A.; Ajossa, S.; Rodriguez, I.; Mais, V.; Alcazar, J.L. Transvaginal ultrasound vs magnetic resonance imaging for diagnosing deep infiltrating endometriosis: Systematic review and meta-analysis. Ultrasound Obs. Gynecol. 2018, 51, 586–595. [Google Scholar] [CrossRef]
- Guerriero, S.; Condous, G.; van den Bosch, T.; Valentin, L.; Leone, F.P.; Van Schoubroeck, D.; Exacoustos, C.; Installe, A.J.; Martins, W.P.; Abrao, M.S.; et al. Systematic approach to sonographic evaluation of the pelvis in women with suspected endometriosis, including terms, definitions and measurements: A consensus opinion from the International Deep Endometriosis Analysis (IDEA) group. Ultrasound Obs. Gynecol. 2016, 48, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Van den Bosch, T.; Van Schoubroeck, D. Ultrasound diagnosis of endometriosis and adenomyosis: State of the art. Best Pract. Res Clin. Obs. Gynaecol. 2018, 51, 16–24. [Google Scholar] [CrossRef]
- Nisenblat, V.; Bossuyt, P.M.; Farquhar, C.; Johnson, N.; Hull, M.L. Imaging modalities for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016, 2, CD009591. [Google Scholar] [CrossRef] [PubMed]
- Ghai, V.; Jan, H.; Shakir, F.; Haines, P.; Kent, A. Diagnostic delay for superficial and deep endometriosis in the United Kingdom. J. Obs. Gynaecol. 2020, 40, 83–89. [Google Scholar] [CrossRef]
- Ohlsson Teague, E.M.; Van der Hoek, K.H.; Van der Hoek, M.B.; Perry, N.; Wagaarachchi, P.; Robertson, S.A.; Print, C.G.; Hull, L.M. MicroRNA-regulated pathways associated with endometriosis. Mol. Endocrinol. 2009, 23, 265–275. [Google Scholar] [CrossRef]
- Panir, K.; Schjenken, J.E.; Robertson, S.A.; Hull, M.L. Non-coding RNAs in endometriosis: A narrative review. Hum. Reprod. Update 2018, 24, 497–515. [Google Scholar] [CrossRef]
- Borghese, B.; Zondervan, K.T.; Abrao, M.S.; Chapron, C.; Vaiman, D. Recent insights on the genetics and epigenetics of endometriosis. Clin. Genet. 2017, 91, 254–264. [Google Scholar] [CrossRef]
- Borghese, B.; Mondon, F.; Noel, J.C.; Fayt, I.; Mignot, T.M.; Vaiman, D.; Chapron, C. Gene expression profile for ectopic versus eutopic endometrium provides new insights into endometriosis oncogenic potential. Mol. Endocrinol. 2008, 22, 2557–2562. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Feng, J.; Broaddus, R.R. The novel estrogen-induced gene EIG121 regulates autophagy and promotes cell survival under stress. Cell Death Dis. 2010, 1, e32. [Google Scholar] [CrossRef] [PubMed]
- Chapron, C.; Lafay-Pillet, M.C.; Monceau, E.; Borghese, B.; Ngo, C.; Souza, C.; de Ziegler, D. Questioning patients about their adolescent history can identify markers associated with deep infiltrating endometriosis. Fertil. Steril. 2011, 95, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Dweep, H.; Gretz, N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat. Methods 2015, 12, 697. [Google Scholar] [CrossRef]
- Ngo, C.; Chereau, C.; Nicco, C.; Weill, B.; Chapron, C.; Batteux, F. Reactive oxygen species controls endometriosis progression. Am. J. Pathol. 2009, 175, 225–234. [Google Scholar] [CrossRef]
- Deng, L.; Broaddus, R.R.; McCampbell, A.; Shipley, G.L.; Loose, D.S.; Stancel, G.M.; Pickar, J.H.; Davies, P.J. Identification of a novel estrogen-regulated gene, EIG121, induced by hormone replacement therapy and differentially expressed in type I and type II endometrial cancer. Clin. Cancer Res. 2005, 11, 8258–8264. [Google Scholar] [CrossRef]
- Braza-Boïls, A.; Salloum-Asfar, S.; Marí-Alexandre, J.; Arroyo, A.B.; González-Conejero, R.; Barceló-Molina, M.; García-Oms, J.; Vicente, V.; Estellés, A.; Gilabert-Estellés, J.; et al. Peritoneal fluid modifies the microRNA expressionprofile in endometrial and endometriotic cells from women with endometriosis. Hum. Reprod. 2015, 10, 2292–2302. [Google Scholar] [CrossRef]
- Papari, E.; Noruzinia, M.; Kashani, L.; Foster, W.G. Identification of candidate microRNA markers of endometriosis with the use of next-generation sequencing and quantitative real-time polymerase chain reaction. Fertil. Steril. 2020, 113, 1232–1241. [Google Scholar] [CrossRef]
- Lv, X.; Chen, P.; Liu, W. Down regulation of MiR-93 contributes to endometriosis through targeting MMP3 and VEGFA. Am. J. Cancer Res. 2015, 5, 1706–1717. [Google Scholar]
- Ramón, L.A.; Braza-Boïls, A.; Gilabert-Estellés, J.; Gilabert, J.; España, F.; Chirivella, M.; Estellés, A. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum. Reprod. 2011, 26, 1082–1090. [Google Scholar] [CrossRef]
- Goksuluk, D.; Korkmaz, S.O.; Zararsiz, G.; Karaagaoglu, A. easyROC: An Interactive Web-tool for ROC Curve Analysis Using R Language Environment. R. J. 2016, 8, 213–230. [Google Scholar] [CrossRef]
- Nisenblat, V.; Sharkey, D.J.; Wang, Z.; Evans, S.F.; Healey, M.; Ohlsson Teague, E.M.C.; Print, C.G.; Robertson, S.A.; Hull, M.L. Plasma miRNAs Display Limited Potential as Diagnostic Tools for Endometriosis. J. Clin. Endocrinol. Metab. 2019, 104, 1999–2022. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, S.; Burn, M.; Mamillapalli, R.; Nematian, S.; Flores, V.; Taylor, H.S. Accurate diagnosis of endometriosis using serum microRNAs. Am. J. Obstet. Gynecol. 2020, 223, 557.e1–557.e11. [Google Scholar] [CrossRef] [PubMed]
- Vanhie, A.; O, D.; Peterse, D.; Beckers, A.; Cuellar, A.; Fassbender, A.; Meuleman, C.; Mestdagh, P.; D’Hooghe, T. Plasma miRNAs as biomarkers for endometriosis. Hum. Reprod. 2019, 34, 1650–1660. [Google Scholar] [CrossRef] [PubMed]
- Kloten, V.; Neumann, M.H.D.; Di Pasquale, F.; Sprenger-Haussels, M.; Shaffer, J.M.; Schlumpberger, M.; Herdean, A.; Betsou, F.; Ammerlaan, W.; Af Hallstrom, T.; et al. Multicenter Evaluation of Circulating Plasma MicroRNA Extraction Technologies for the Development of Clinically Feasible Reverse Transcription Quantitative PCR and Next-Generation Sequencing Analytical Work Flows. Clin. Chem. 2019, 65, 1132–1140. [Google Scholar] [CrossRef]
- Wong, R.K.Y.; MacMahon, M.; Woodside, J.V.; Simpson, D.A. A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genom. 2019, 20, 446. [Google Scholar] [CrossRef]
- Zhong, Q.; Fan, J.; Chu, H.; Pang, M.; Li, J.; Fan, Y.; Liu, P.; Wu, C.; Qiao, J.; Li, R.; et al. Integrative analysis of genomic and epigenetic regulation of endometrial cancer. Aging 2020, 12, 9260–9274. [Google Scholar] [CrossRef]
- Siracusa, R.; D’Amico, R.; Impellizzeri, D.; Cordaro, M.; Peritore, A.F.; Gugliandolo, E.; Crupi, R.; Salinaro, A.T.; Raffone, E.; Genovese, T.; et al. Autophagy and Mitophagy Promotion in a Rat Model of Endometriosis. Int. J. Mol. Sci. 2021, 22, 5074. [Google Scholar] [CrossRef]
- Yang, H.L.; Mei, J.; Chang, K.K.; Zhou, W.J.; Huang, L.Q.; Li, M.Q. Autophagy in endometriosis. Am. J. Transl. Res. 2017, 9, 4707–4725. [Google Scholar]
- Zhan, L.; Li, J.; Wei, B. Autophagy in endometriosis: Friend or foe? Biochem. Biophys. Res. Commun. 2018, 495, 60–63. [Google Scholar] [CrossRef]
- Cho, S.; Mutlu, L.; Zhou, Y.; Taylor, H.S. Aromatase inhibitor regulates let-7 expression and let-7f-induced cell migration in endometrial cells from women with endometriosis. Fertil. Steril. 2016, 106, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Nematian, S.E.; Mamillapalli, R.; Kadakia, T.S.; Majidi Zolbin, M.; Moustafa, S.; Taylor, H.S. Systemic Inflammation Induced by microRNAs: Endometriosis-Derived Alterations in Circulating microRNA 125b-5p and Let-7b-5p Regulate Macrophage Cytokine Production. J. Clin. Endocrinol. Metab. 2018, 103, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Peng, J.; Shi, Y.; Sun, P. miR-92a promotes progesterone resistance in endometriosis through PTEN/AKT pathway. Life Sci. 2020, 242, 117190. [Google Scholar] [CrossRef] [PubMed]
Control Group (n = 103) | Endometriosis Group (n = 113) | Entire Population (n = 216) | p-Value | |
---|---|---|---|---|
Age (years, mean ± SD) | 30.6 ± 6.2 | 31.9 ± 5.1 | 31.3 ± 5.7 | 0.094 |
BMI (kg/m2, mean ± SD) | 22.4 ± 4.0 | 21.6 ± 4.0 | 22.0 ± 4.0 | 0.220 |
Smoking, n (%) | 39 (38%) | 45 (40%) | 84 (39%) | 0.381 |
Cycle phase, n (%) | ||||
Follicular | 35 (44%) | 34 (50%) | 69 (47%) | 0.395 |
Luteal Missing data | 44 (56%) 24 | 34 (50%) 45 | 78 (53%) 69 | |
Ethnicity | ||||
Caucasian | 72 (70%) | 84 (74%) | 156 (72%) | 0.529 |
African | 16 (15%) | 9 (8%) | 25 (11.6%) | 0.121 |
Asian | 3 (3%) | 1 (1%) | 4 (2%) | 0.312 |
Previous surgery for endometriosis, n (%) | - | 18 (16%) | - | - |
Familial history of endometriosis, n (%) | 3 (3%) | 8 (7%) | 11 (5%) | 0.120 |
Hormonal treatment, n (%) Missing data | 22 (58%) 65 | 5 (19%) 87 | 27 (42%) 152 | 0.002 |
Pain symptoms, n (%) | ||||
Dysmenorrhea, n (%) | 56 (54%) | 75 (66%) | 131 (61%) | 0.003 |
Primary | 35 (34%) | 50 (44%) | 85 (39%) | 0.0001 |
Secondary | 21 (20%) | 25 (22%) | 46 (21%) | 0.498 |
NRS dysmenorrhea (mean ± SD) | 3.9 ± 3.3 | 5.6 ± 3.2 | 4.7 ± 3.4 | 0.0007 |
NRS dyspareunia (mean ± SD) | 1.6 ± 2.8 | 1.5 ± 3.3 | 2.3 ± 3.1 | 0.0097 |
NRS pelvic pain (mean ± SD) | 1.6 ± 2.7 | 1.6 ± 3 | 1.9 ± 2.9 | 0.159 |
Infertility, n (%) | 43 (42%) | 33 (29%) | 76 (35%) | 0.139 |
Primary | 25 (24%) | 26 (23%) | 51 (24%) | 0.869 |
Secondary | 18 (17%) | 7 (6%) | 25 (12%) | 0.018 |
Age (years, mean± SD) | 35.8 ± 3.5 |
BMI (kg/m2, mean± SD) | 22.6 ± 1.2 |
Smoking, n (%) | 2 (33%) |
Cycle phase, n (%) | |
Follicular | 3 (50%) |
Luteal Missing data | 3 (50%) 0 |
Ethnicity | |
Caucasian | 5 (83%) |
African | 1 (17%) |
Asian | 0 (0%) |
Previous surgery for endometriosis, n (%) | 1 (17%) |
Familial history of endometriosis, n (%) | 1 (17%) |
Hormonal treatment, n (%) Missing data | 4 (67%) 0 |
Pain symptoms, n (%) | |
Dysmenorrhea, n (%) | 4 (67%) |
Primary | 3 (50%) |
Secondary | 1 (17%) |
NRS dysmenorrhea (mean ± SD) | 5. ± 2.6 |
NRS dyspareunia (mean ± SD) | 2.3 ± 2.3 |
NRS pelvic pain (mean ± SD) | 2.6 ± 2.1 |
Infertility, n (%) | 2 (33%) |
Primary | 2 (33%) |
Secondary | 0 (0%) |
Age (years, mean ± SD) | 34.2 ± 3.5 |
BMI (kg/m2, mean ± SD) | 22.4 ± 1.6 |
Smoking, n (%) | 3 (30%) |
Cycle phase, n (%) | |
Follicular | 5 (50%) |
Luteal Missing data | 5 (50%) 0 |
Ethnicity | |
Caucasian | 8 (80%) |
African | 1 (10%) |
Asian | 1 (10%) |
Previous surgery for endometriosis, n (%) | 2 (20%) |
Familial history of endometriosis, n (%) | 1 (10%) |
Hormonal treatment, n (%) Missing data | 7 (70%) 0 |
Pain symptoms, n (%) | |
Dysmenorrhea, n (%) | 6 (60%) |
Primary | 5 (50%) |
Secondary | 1 (10%) |
NRS dysmenorrhea (mean ± SD) | 5.4. ± 2.7 |
NRS dyspareunia (mean ± SD) | 2.3 ± 1.9 |
NRS pelvic pain (mean ± SD) | 2.7 ± 2 |
Infertility, n (%) | 4 (40%) |
Primary | 3 (30%) |
Secondary | 1 (10%) |
miRNA | Number of Genes Regulated by miRNA | p-Value ‡ | Reference | ||
---|---|---|---|---|---|
Downregulated † | Unchanged † | Upregulated † | |||
miR-484 | 49 | 708 | 22 | 4.4 × 10−18 | |
miR-92a-3p | 63 | 848 | 38 | 6.4 × 10−17 | |
miR-192-5p | 154 | 727 | 53 | 2.6 × 10−16 | |
miR-16-5p * | 100 | 1003 | 48 | 3.5 × 10−16 | Braza-Boïls, 2015 [17] |
miR-615-3p | 57 | 789 | 36 | 7.2 × 10−16 | |
miR-215-5p | 123 | 543 | 37 | 2.1 × 10−15 | |
let-7b-5p * | 80 | 819 | 33 | 2.1 × 10−15 | Papari et al., 2020 [18] |
miR-193b-3p | 75 | 671 | 27 | 2.3 × 10−12 | |
miR-30a-5p | 53 | 376 | 11 | 5.2 × 10−9 | |
miR-186-5p | 45 | 467 | 22 | 3.5 × 10−8 | |
miR-877-3p | 27 | 357 | 15 | 8.0 × 10−8 | |
miR-335-5p | 306 | 1802 | 348 | 8.8 × 10−8 | |
miR-155-5p | 88 | 589 | 39 | 1.6 × 10−7 | |
miR-320a | 36 | 418 | 0 | 3.9 × 10−7 | |
miR-93-5p * | 38 | 373 | 16 | 4.9 × 10−7 | Lv et al., 2015 [19] |
let-7e-5p | 18 | 269 | 10 | 6.7 × 10−7 | |
miR-149-5p * | 17 | 276 | 13 | 1.7 × 10−6 | Braza-Boïls, 2015 [17] |
miR-744-5p | 20 | 321 | 20 | 4.9 × 10−6 | |
miR-222-3p * | 17 | 259 | 13 | 1.1 × 10−5 | Ramon et al., 2011 [20] |
miR-92b-3p | 11 | 200 | 8 | 1.2 × 10−5 | |
miR-324-3p | 12 | 189 | 6 | 1.5 × 10−5 | |
miR-93-3p * | 9 | 180 | 7 | 1.9 × 10−5 | Lv et al., 2015 [19] |
miR-1 * | 97 | 681 | 59 | 3.4 × 10−5 | Ohlsson Teague et al., 2009 [8] |
miR-125b-5p | 39 | 237 | 12 | 6.3 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abo, C.; Biquard, L.; Girardet, L.; Chouzenoux, S.; Just, P.-A.; Chapron, C.; Vaiman, D.; Borghese, B. Unbiased In Silico Analysis of Gene Expression Pinpoints Circulating miRNAs Targeting KIAA1324, a New Gene Drastically Downregulated in Ovarian Endometriosis. Biomedicines 2022, 10, 2065. https://doi.org/10.3390/biomedicines10092065
Abo C, Biquard L, Girardet L, Chouzenoux S, Just P-A, Chapron C, Vaiman D, Borghese B. Unbiased In Silico Analysis of Gene Expression Pinpoints Circulating miRNAs Targeting KIAA1324, a New Gene Drastically Downregulated in Ovarian Endometriosis. Biomedicines. 2022; 10(9):2065. https://doi.org/10.3390/biomedicines10092065
Chicago/Turabian StyleAbo, Carole, Louise Biquard, Laura Girardet, Sandrine Chouzenoux, Pierre-Alexandre Just, Charles Chapron, Daniel Vaiman, and Bruno Borghese. 2022. "Unbiased In Silico Analysis of Gene Expression Pinpoints Circulating miRNAs Targeting KIAA1324, a New Gene Drastically Downregulated in Ovarian Endometriosis" Biomedicines 10, no. 9: 2065. https://doi.org/10.3390/biomedicines10092065
APA StyleAbo, C., Biquard, L., Girardet, L., Chouzenoux, S., Just, P. -A., Chapron, C., Vaiman, D., & Borghese, B. (2022). Unbiased In Silico Analysis of Gene Expression Pinpoints Circulating miRNAs Targeting KIAA1324, a New Gene Drastically Downregulated in Ovarian Endometriosis. Biomedicines, 10(9), 2065. https://doi.org/10.3390/biomedicines10092065