High Tumor Mutation Burden Is Associated with Poor Clinical Outcome in EGFR-Mutated Lung Adenocarcinomas Treated with Targeted Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects and Data Collection
2.2. Next-Generation Sequencing and Calculation of TMB
2.3. EGFR Mutation Testing
2.4. Statistical Analyses
3. Results
3.1. Clinicopathological Characteristics of Patients
3.2. TMB and Molecular Landscape
3.3. Association between Clinicopathological Parameters and TMB
3.4. Distribution of Co-Mutations according to TMB Levels
3.5. Response Rate and PFS According to TMB Level
3.6. OS According to TMB Level
3.7. Frequency of Acquired T790M Mutation According to TMB Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, M.; Garassino, M.C.; Mok, T.; Mitsudomi, T. Treatment strategies and outcomes for patients with EGFR-mutant non-small cell lung cancer resistant to EGFR tyrosine kinase inhibitors: Focus on novel therapies. Lung Cancer 2022, 170, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Tsuji, F.; Linke, R.; Rosell, R.; Corral, J.; et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 1454–1466. [Google Scholar] [CrossRef] [PubMed]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Choi, C.M.; Lee, J.C. Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma. Tuberc. Respir. Dis. 2016, 79, 248–256. [Google Scholar] [CrossRef]
- Nagano, T.; Tachihara, M.; Nishimura, Y. Mechanism of Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors and a Potential Treatment Strategy. Cells 2018, 7, 212. [Google Scholar] [CrossRef]
- Le, X.; Puri, S.; Negrao, M.V.; Nilsson, M.B.; Robichaux, J.; Boyle, T.; Hicks, J.K.; Lovinger, K.L.; Roarty, E.; Rinsurongkawong, W.; et al. Landscape of EGFR-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in EGFR-Mutant NSCLC. Clin. Cancer Res. 2018, 24, 6195–6203. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- De Maglio, G.; Pasello, G.; Dono, M.; Fiorentino, M.; Follador, A.; Sciortino, M.; Malapelle, U.; Tiseo, M. The storm of NGS in NSCLC diagnostic-therapeutic pathway: How to sun the real clinical practice. Crit. Rev. Oncol. Hematol. 2022, 169, 103561. [Google Scholar] [CrossRef]
- Campbell, B.B.; Light, N.; Fabrizio, D.; Zatzman, M.; Fuligni, F.; de Borja, R.; Davidson, S.; Edwards, M.; Elvin, J.A.; Hodel, K.P.; et al. Comprehensive Analysis of Hypermutation in Human Cancer. Cell 2017, 171, 1042–1056.e10. [Google Scholar] [CrossRef]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.; Makarov, V.; Merghoub, T.; Yuan, J.; Zaretsky, J.M.; Desrichard, A.; Walsh, L.A.; Postow, M.A.; Wong, P.; Ho, T.S.; et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 2014, 371, 2189–2199. [Google Scholar] [CrossRef]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [PubMed]
- Shien, K.; Papadimitrakopoulou, V.A.; Wistuba, I.I. Predictive biomarkers of response to PD-1/PD-L1 immune checkpoint inhibitors in non-small cell lung cancer. Lung Cancer 2016, 99, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Lyu, Z.; Cai, J.; Zheng, N.; Li, Y.; Xu, T.; Zeng, H. The co-mutation of EGFR and tumor-related genes leads to a worse prognosis and a higher level of tumor mutational burden in Chinese non-small cell lung cancer patients. J. Thorac. Dis. 2022, 14, 185–193. [Google Scholar] [CrossRef]
- Offin, M.; Rizvi, H.; Tenet, M.; Ni, A.; Sanchez-Vega, F.; Li, B.T.; Drilon, A.; Kris, M.G.; Rudin, C.M.; Schultz, N.; et al. Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Lung Cancers. Clin. Cancer Res. 2019, 25, 1063–1069. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Ciuleanu, T.E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef]
- Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J. Clin. Oncol. 2018, 36, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.D.; He, X.; Qin, B.D.; Liu, K.; Wu, Y.; Liu, J.; Hou, T.; Zang, Y.S. The prognostic value of tumor mutation burden in EGFR-mutant advanced lung adenocarcinoma, an analysis based on cBioPortal data base. J. Thorac. Dis. 2019, 11, 4507–4515. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, C.; Donisi, C.; Liscia, N.; Lai, E.; Scartozzi, M.; Maccio, A. EGFR-Mutated Non-Small Cell Lung Cancer and Resistance to Immunotherapy: Role of the Tumor Microenvironment. Int. J. Mol. Sci. 2022, 23, 6489. [Google Scholar] [CrossRef] [PubMed]
- Scoccianti, C.; Vesin, A.; Martel, G.; Olivier, M.; Brambilla, E.; Timsit, J.F.; Tavecchio, L.; Brambilla, C.; Field, J.K.; Hainaut, P.; et al. Prognostic value of TP53, KRAS and EGFR mutations in nonsmall cell lung cancer: The EUELC cohort. Eur. Respir. J. 2012, 40, 177–184. [Google Scholar] [CrossRef]
- Halvorsen, A.R.; Silwal-Pandit, L.; Meza-Zepeda, L.A.; Vodak, D.; Vu, P.; Sagerup, C.; Hovig, E.; Myklebost, O.; Borresen-Dale, A.L.; Brustugun, O.T.; et al. TP53 Mutation Spectrum in Smokers and Never Smoking Lung Cancer Patients. Front. Genet. 2016, 7, 85. [Google Scholar] [CrossRef]
- Kandioler, D.; Stamatis, G.; Eberhardt, W.; Kappel, S.; Zochbauer-Muller, S.; Kuhrer, I.; Mittlbock, M.; Zwrtek, R.; Aigner, C.; Bichler, C.; et al. Growing clinical evidence for the interaction of the p53 genotype and response to induction chemotherapy in advanced non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2008, 135, 1036–1041. [Google Scholar] [CrossRef]
- Mitsudomi, T.; Hamajima, N.; Ogawa, M.; Takahashi, T. Prognostic significance of p53 alterations in patients with non-small cell lung cancer: A meta-analysis. Clin. Cancer Res. 2000, 6, 4055–4063. [Google Scholar]
- Canale, M.; Petracci, E.; Delmonte, A.; Chiadini, E.; Dazzi, C.; Papi, M.; Capelli, L.; Casanova, C.; De Luigi, N.; Mariotti, M.; et al. Impact of TP53 Mutations on Outcome in EGFR-Mutated Patients Treated with First-Line Tyrosine Kinase Inhibitors. Clin. Cancer Res. 2017, 23, 2195–2202. [Google Scholar] [CrossRef]
- Jiao, X.D.; Qin, B.D.; You, P.; Cai, J.; Zang, Y.S. The prognostic value of TP53 and its correlation with EGFR mutation in advanced non-small cell lung cancer, an analysis based on cBioPortal data base. Lung Cancer 2018, 123, 70–75. [Google Scholar] [CrossRef]
- Hou, H.; Qin, K.; Liang, Y.; Zhang, C.; Liu, D.; Jiang, H.; Liu, K.; Zhu, J.; Lv, H.; Li, T.; et al. Concurrent TP53 mutations predict poor outcomes of EGFR-TKI treatments in Chinese patients with advanced NSCLC. Cancer Manag. Res. 2019, 11, 5665–5675. [Google Scholar] [CrossRef]
- Jung, S.; Kim, D.H.; Choi, Y.J.; Kim, S.Y.; Park, H.; Lee, H.; Choi, C.M.; Sung, Y.H.; Lee, J.C.; Rho, J.K. Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci. Rep. 2021, 11, 19667. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Tamiya, A.; Nakahama, K.; Naoki, Y.; Kanazu, M.; Omachi, N.; Okishio, K.; Kasai, T.; Atagi, S. Impact of metastatic status on the prognosis of EGFR mutation-positive non-small cell lung cancer patients treated with first-generation EGFR-tyrosine kinase inhibitors. Oncol. Lett. 2017, 14, 7589–7596. [Google Scholar] [CrossRef] [PubMed]
- Ulivi, P.; Chiadini, E.; Dazzi, C.; Dubini, A.; Costantini, M.; Medri, L.; Puccetti, M.; Capelli, L.; Calistri, D.; Verlicchi, A.; et al. Nonsquamous, Non-Small-Cell Lung Cancer Patients Who Carry a Double Mutation of EGFR, EML4-ALK or KRAS: Frequency, Clinical-Pathological Characteristics, and Response to Therapy. Clin. Lung Cancer 2016, 17, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Mordant, P.; Arame, A.; De Dominicis, F.; Pricopi, C.; Foucault, C.; Dujon, A.; Le Pimpec-Barthes, F.; Riquet, M. Which metastasis management allows long-term survival of synchronous solitary M1b non-small cell lung cancer? Eur. J. Cardiothorac. Surg. 2012, 41, 617–622. [Google Scholar] [CrossRef]
- Gen, S.; Tanaka, I.; Morise, M.; Koyama, J.; Kodama, Y.; Matsui, A.; Miyazawa, A.; Hase, T.; Hibino, Y.; Yokoyama, T.; et al. Clinical efficacy of osimertinib in EGFR-mutant non-small cell lung cancer with distant metastasis. BMC Cancer 2022, 22, 654. [Google Scholar] [CrossRef]
- Lindblad, K.E.; Lujambio, A. Liver metastases inhibit immunotherapy efficacy. Nat. Med. 2021, 27, 25–27. [Google Scholar] [CrossRef]
- Le, X.; Nilsson, M.; Goldman, J.; Reck, M.; Nakagawa, K.; Kato, T.; Ares, L.P.; Frimodt-Moller, B.; Wolff, K.; Visseren-Grul, C.; et al. Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients With EGFR-Mutant NSCLC. J. Thorac. Oncol. 2021, 16, 205–215. [Google Scholar] [CrossRef]
- Nakagawa, K.; Garon, E.B.; Seto, T.; Nishio, M.; Ponce Aix, S.; Paz-Ares, L.; Chiu, C.H.; Park, K.; Novello, S.; Nadal, E.; et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1655–1669. [Google Scholar] [CrossRef]
- Tumeh, P.C.; Hellmann, M.D.; Hamid, O.; Tsai, K.K.; Loo, K.L.; Gubens, M.A.; Rosenblum, M.; Harview, C.L.; Taube, J.M.; Handley, N.; et al. Liver Metastasis and Treatment Outcome with Anti-PD-1 Monoclonal Antibody in Patients with Melanoma and NSCLC. Cancer Immunol. Res. 2017, 5, 417–424. [Google Scholar] [CrossRef]
- Taniguchi, H.; Yamada, T.; Wang, R.; Tanimura, K.; Adachi, Y.; Nishiyama, A.; Tanimoto, A.; Takeuchi, S.; Araujo, L.H.; Boroni, M.; et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat. Commun. 2019, 10, 259. [Google Scholar] [CrossRef]
- Daud, A.I.; Loo, K.; Pauli, M.L.; Sanchez-Rodriguez, R.; Sandoval, P.M.; Taravati, K.; Tsai, K.; Nosrati, A.; Nardo, L.; Alvarado, M.D.; et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Investig. 2016, 126, 3447–3452. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wu, Z.; Qi, Y.; Wu, B.; Zhu, X. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges. Biomed. Pharmacother. 2021, 138, 111450. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Hua, X.; Zhu, B.; Ravichandran, S.; Wang, M.; Nguyen, C.; Brodie, S.A.; Palleschi, A.; Alloisio, M.; Pariscenti, G.; et al. Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study. PLoS Med. 2016, 13, e1002162. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Fang, Z.; Tang, S.; Cheng, R.; Li, Y.; Ren, S.; Su, C.; Min, W.; Guo, X.; Zhu, W.; et al. Mutational Landscape and Evolutionary Pattern of Liver and Brain Metastasis in Lung Adenocarcinoma. J. Thorac. Oncol. 2021, 16, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.; Fong, C.; Luthra, A.; Smith, S.A.; DiNatale, R.G.; Nandakumar, S.; Walch, H.; Chatila, W.K.; Madupuri, R.; Kundra, R.; et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 2022, 185, 563–575.e11. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef]
- Ahn, M.J.; Han, J.Y.; Lee, K.H.; Kim, S.W.; Kim, D.W.; Lee, Y.G.; Cho, E.K.; Kim, J.H.; Lee, G.W.; Lee, J.S.; et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1–2 study. Lancet Oncol. 2019, 20, 1681–1690. [Google Scholar] [CrossRef]
- Nosaki, K.; Satouchi, M.; Kurata, T.; Yoshida, T.; Okamoto, I.; Katakami, N.; Imamura, F.; Tanaka, K.; Yamane, Y.; Yamamoto, N.; et al. Re-biopsy status among non-small cell lung cancer patients in Japan: A retrospective study. Lung Cancer 2016, 101, 1–8. [Google Scholar] [CrossRef]
- Matsuo, N.; Azuma, K.; Sakai, K.; Hattori, S.; Kawahara, A.; Ishii, H.; Tokito, T.; Kinoshita, T.; Yamada, K.; Nishio, K.; et al. Association of EGFR Exon 19 Deletion and EGFR-TKI Treatment Duration with Frequency of T790M Mutation in EGFR-Mutant Lung Cancer Patients. Sci. Rep. 2016, 6, 36458. [Google Scholar] [CrossRef]
- Goag, E.K.; Lee, J.M.; Chung, K.S.; Kim, S.Y.; Leem, A.Y.; Song, J.H.; Jung, J.Y.; Park, M.S.; Chang, Y.S.; Kim, Y.S.; et al. Usefulness of Bronchoscopic Rebiopsy of Non-Small Cell Lung Cancer with Acquired Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor. J. Cancer 2018, 9, 1113–1120. [Google Scholar] [CrossRef]
- Lee, C.K.; Kim, S.; Lee, J.S.; Lee, J.E.; Kim, S.M.; Yang, I.S.; Kim, H.R.; Lee, J.H.; Kim, S.; Cho, B.C. Next-generation sequencing reveals novel resistance mechanisms and molecular heterogeneity in EGFR-mutant non-small cell lung cancer with acquired resistance to EGFR-TKIs. Lung Cancer 2017, 113, 106–114. [Google Scholar] [CrossRef]
- Chmielecki, J.; Foo, J.; Oxnard, G.R.; Hutchinson, K.; Ohashi, K.; Somwar, R.; Wang, L.; Amato, K.R.; Arcila, M.; Sos, M.L.; et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci. Transl. Med. 2011, 3, 90ra59. [Google Scholar] [CrossRef]
- Iwama, E.; Takayama, K.; Harada, T.; Okamoto, I.; Ookubo, F.; Kishimoto, J.; Baba, E.; Oda, Y.; Nakanishi, Y. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR. Oncotarget 2015, 6, 20466–20473. [Google Scholar] [CrossRef]
- Zheng, D.; Ye, X.; Zhang, M.Z.; Sun, Y.; Wang, J.Y.; Ni, J.; Zhang, H.P.; Zhang, L.; Luo, J.; Zhang, J.; et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance. Sci. Rep. 2016, 6, 20913. [Google Scholar] [CrossRef]
- Hata, A.; Katakami, N.; Yoshioka, H.; Takeshita, J.; Tanaka, K.; Nanjo, S.; Fujita, S.; Kaji, R.; Imai, Y.; Monden, K.; et al. Rebiopsy of non-small cell lung cancer patients with acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor: Comparison between T790M mutation-positive and mutation-negative populations. Cancer 2013, 119, 4325–4332. [Google Scholar] [CrossRef]
- Hosomi, Y.; Morita, S.; Sugawara, S.; Kato, T.; Fukuhara, T.; Gemma, A.; Takahashi, K.; Fujita, Y.; Harada, T.; Minato, K.; et al. Gefitinib Alone Versus Gefitinib Plus Chemotherapy for Non-Small-Cell Lung Cancer With Mutated Epidermal Growth Factor Receptor: NEJ009 Study. J. Clin. Oncol. 2020, 38, 115–123. [Google Scholar] [CrossRef]
- Cho, B.C.; Felip, E.; Hayashi, H.; Thomas, M.; Lu, S.; Besse, B.; Sun, T.; Martinez, M.; Sethi, S.N.; Shreeve, S.M.; et al. MARIPOSA: Phase 3 study of first-line amivantamab + lazertinib versus osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncol. 2022, 18, 639–647. [Google Scholar] [CrossRef]
- Chaudhary, R.; Quagliata, L.; Martin, J.P.; Alborelli, I.; Cyanam, D.; Mittal, V.; Tom, W.; Au-Young, J.; Sadis, S.; Hyland, F. A scalable solution for tumor mutational burden from formalin-fixed, paraffin-embedded samples using the Oncomine Tumor Mutation Load Assay. Transl. Lung Cancer Res. 2018, 7, 616–630. [Google Scholar] [CrossRef]
- Heeke, S.; Benzaquen, J.; Hofman, V.; Long-Mira, E.; Lespinet, V.; Bordone, O.; Marquette, C.H.; Delingette, H.; Ilie, M.; Hofman, P. Comparison of Three Sequencing Panels Used for the Assessment of Tumor Mutational Burden in NSCLC Reveals Low Comparability. J. Thorac. Oncol. 2020, 15, 1535–1540. [Google Scholar] [CrossRef]
- Fenizia, F.; Alborelli, I.; Costa, J.L.; Vollbrecht, C.; Bellosillo, B.; Dinjens, W.; Endris, V.; Heydt, C.; Leonards, K.; Merkelback-Bruse, S.; et al. Validation of a Targeted Next-Generation Sequencing Panel for Tumor Mutation Burden Analysis: Results from the Onconetwork Immuno-Oncology Consortium. J. Mol. Diagn. 2021, 23, 882–893. [Google Scholar] [CrossRef]
- Sholl, L.M.; Hirsch, F.R.; Hwang, D.; Botling, J.; Lopez-Rios, F.; Bubendorf, L.; Mino-Kenudson, M.; Roden, A.C.; Beasley, M.B.; Borczuk, A.; et al. The Promises and Challenges of Tumor Mutation Burden as an Immunotherapy Biomarker: A Perspective from the International Association for the Study of Lung Cancer Pathology Committee. J. Thorac. Oncol. 2020, 15, 1409–1424. [Google Scholar] [CrossRef]
No. of Patients (%) | TMB | p-Value | ||
---|---|---|---|---|
Low (≤2.53, n = 52) | High (>2.53, n = 36) | |||
Age | 0.7370 | |||
<70 | 41 (46.6) | 25 (48.1) | 16 (44.4) | |
≥70 | 47 (53.4) | 27 (51.9) | 20 (55.6) | |
Sex | 0.1933 | |||
Male | 44 (50.0) | 29 (55.8) | 15 (41.7) | |
Female | 44 (50.0) | 23 (44.2) | 21 (58.3) | |
Smoking history | 0.1840 | |||
Never | 62 (70.5) | 35 (67.3) | 27 (75.0) | |
Ever | 26 (29.5) | 17 (32.7) | 9 (25.0) | |
Smoking intensity | 0.7591 | |||
<30 pack-years | 72 (81.8) | 42 (80.8) | 30 (83.3) | |
≥30 pack-years | 16 (18.2) | 10 (19.2) | 6 (16.7) | |
ECOG PS | 0.3791 | |||
0, 1 | 70 (79.5) | 43 (82.7) | 27 (75.0) | |
≥2 | 18 (20.5) | 9 (17.3) | 9 (25.0) | |
Stage | 0.0171 | |||
III | 15 (17.0) | 13 (25.0) | 2 (5.6) | |
IV | 73 (83.0) | 39 (75.0) | 34 (94.4) | |
Involved organ | 0.0249 | |||
<3 | 67 (76.1) | 44 (84.6) | 23 (63.9) | |
≥3 | 21 (23.9) | 8 (15.4) | 13 (36.1) | |
Brain metastasis | 0.6532 | |||
No | 60 (68.2) | 35 (67.3) | 25 (69.4) | |
Yes | 28 (31.8) | 17 (32.7) | 11 (30.6) | |
Liver metastasis | 0.0210 | |||
No | 74 (84.1) | 47 (90.3) | 27 (75.0) | |
Yes | 14 (15.9) | 5 (9.7) | 9 (25.0) | |
EGFR subtypes | 0.1898 | |||
19del | 52 (59.1) | 29 (52.7) | 22 (61.1) | |
L858R | 31 (35.2) | 20 (38.4) | 12 (33.3) | |
Others | 5 (5.7) | 3 (5.7) | 2 (5.5) | |
First-line TKI | 0.2451 | |||
Gefitinib | 14 (15.9) | 8 (15.3) | 6 (16.7) | |
Erlotinib | 6 (6.8) | 3 (5.7) | 3 (8.3) | |
Afatinib | 68 (77.2) | 41 (78.8) | 27 (75.0) |
No. of Patients (%) | p-Value | ||
---|---|---|---|
Low TMB (n = 52) | High TMB (n = 36) | ||
Response rate (CR + PR) | 42 (80.7) | 18 (50.0) | 0.0384 |
CR | 3 (5.8) | 0 (0) | |
PR | 40 (76.9) | 18 (50.0) | |
SD | 8 (15.4) | 12 (33.3) | |
PD | 1 (1.9) | 6 (16.7) |
Median PFS (Months) | Univariate | Multivariate | |||
---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
All | 17.7 | ||||
Age | 0.4534 | NA | |||
<70 | 18.9 | reference | |||
≥70 | 16.6 | 1.2 (0.75–1.93) | |||
Sex | 0.0323 | 0.0214 | |||
Male | 15.1 | 1.68 (1.04–2.69) | 1.83 (1.11–3.22) | ||
Female | 20.9 | reference | reference | ||
Smoking history | 0.6920 | NA | |||
Never | 18.6 | reference | |||
Ever | 16.1 | 1.11 (0.66–1.87) | |||
Smoking intensity | 0.1567 | 0.3650 | |||
<30 pack-years | 18.3 | reference | reference | ||
≥30 pack-years | 13.8 | 1.55 (0.85–2.84) | 1.26 (0.74–2.79) | ||
ECOG PS | 0.3045 | ||||
0, 1 | 19.3 | reference | |||
≥2 | 16.2 | 1.34 (0.77–2.36) | |||
Stage | 0.1771 | 0.8555 | |||
III | 19.3 | reference | reference | ||
IV | 16.4 | 1.57 (0.82–3.04) | 1.21 (0.56–2.37) | ||
Involved organ | 0.0172 | 0.3258 | |||
<3 | 19.5 | reference | reference | ||
≥3 | 15.4 | 1.97 (1.13–3.43) | 1.50 (0.78–2.98) | ||
Brain metastasis | 0.6139 | NA | |||
No | 19.2 | reference | |||
Yes | 15.5 | 1.14 (0.69–1.87) | |||
Liver metastasis | 0.0189 | 0.0371 | |||
No | 19.1 | reference | reference | ||
Yes | 14.7 | 2.15 (1.46–5.19) | 2.05 (1.09–5.86) | ||
EGFR subtypes * | 0.2630 | NA | |||
19del | 18.7 | reference | |||
L858R | 17.1 | 1.23 (0.23–2.44) | |||
First-line TKI | 0.0735 | 0.1321 | |||
Gefitinib/erlotinib | 17.3 | 1.66 (0.97–4.16) | 1.52 (0.89–6.73) | ||
Afatinib | 20.6 | reference | reference | ||
TP53 mutation | 0.0311 | 0.0894 | |||
Negative | 19.1 | reference | reference | ||
Positive | 14.5 | 1.88 (1.12–3.09) | 1.56 (0.26–4.15) | ||
TMB level | 0.0205 | 0.0427 | |||
Low (<2.53) | 20.1 | reference | reference | ||
High (≥2.53) | 13.4 | 1.98 (1.09–2.89) | 1.80 (1.17–4.43) |
Median OS (Months) | Univariate | Multivariate | |||
---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | * p-Value | ||
All | 35.5 | ||||
Age | 0.7403 | NA | |||
<70 | 36.8 | reference | |||
≥70 | 32.2 | 1.12 (0.47–1.99) | |||
Sex | 0.4781 | NA | |||
Male | 32.6 | 1.22 (0.70–2.13) | |||
Female | 36.9 | reference | |||
Smoking history | 0.4489 | NA | |||
Never | 36.8 | reference | |||
Ever | 32.2 | 1.26 (0.69–2.31) | |||
Smoking intensity | 0.5614 | NA | |||
<30 pack-years | 36.8 | reference | |||
≥30 pack-years | 32.6 | 1.24 (0.60–2.55) | |||
ECOG PS | 0.6378 | NA | |||
0, 1 | 37.7 | reference | |||
≥2 | 32.5 | 1.15 (0.73–2.22) | |||
Stage | 0.1443 | 0.5604 | |||
III | 37.5 | reference | reference | ||
IV | 32.2 | 2.01 (0.79–5.04) | 1.35 (0.49–3.76) | ||
Involved organ | 0.0346 | 0.4893 | |||
<3 | 36.9 | reference | reference | ||
≥3 | 21.4 | 1.94 (1.05–3.57) | 1.28 (0.64–2.56) | ||
Brain metastasis | 0.1690 | 0.3589 | |||
No | 37.1 | reference | 1.35 (0.71–2.59) | ||
Yes | 30.4 | 1.53 (0.83–2.81) | reference | ||
Liver metastasis | 0.0097 | 0.0314 | |||
No | 36.9 | reference | Reference | ||
Yes | 21.9 | 2.34 (1.25–4.40) | 2.17 (1.14–4.57) | ||
EGFR subtypes * | 0.2154 | NA | |||
19del | 36.9 | reference | |||
L858R | 30.8 | 1.56 (0.36–6.73) | |||
First-line TKIs | 0.2019 | ||||
Gefitinib/erlotinib | 30.2 | 1.70 (0.95–3.57) | 0.0847 | 1.41 (0.69–3.27) | |
Afatinib | 36.1 | reference | reference | ||
TP53 mutation | 0.3142 | NA | |||
Negative | 35.7 | reference | |||
Positive | 30.3 | 1.47 (0.89–5.23) | |||
TMB level | 0.0080 | 0.0397 | |||
Low (<2.53) | 37.1 | reference | reference | ||
High (≥2.53) | 21.9 | 2.65 (1.50–4.67) | 2.05 (1.04–4.07) |
T790M | p-Value * | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|---|
Negative (n = 30) | Positive (n- = 22) | OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Age | 0.3710 | 0.2513 | NA | ||||
<70 | 15 (55.5) | 12 (45.5) | 0.62 (0.12–1.87) | ||||
≥70 | 15 (40.0) | 10 (60.0) | reference | ||||
Sex | 0.5956 | 0.6947 | NA | ||||
Male | 19 (65.5) | 10 (34.5) | 0.82 (0.11–2.23) | ||||
Female | 11 (47.8) | 12 (52.2) | reference | ||||
Smoking history | 0.1781 | 0.2413 | NA | ||||
Never | 19 (54.2) | 16 (45.8) | 0.86 (0.23–4.57) | ||||
Ever | 11 (64.7) | 6 (35.3) | reference | ||||
Smoking intensity | 0.3124 | 0.2991 | NA | ||||
<30 pack-years | 18 (51.4) | 17 (48.6) | 0.75 (0.13–3.46) | ||||
≥30 pack-years | 12 (70.5) | 5 (29.6) | reference | ||||
ECOG PS | 0.4136 | 0.5660 | NA | ||||
0, 1 | 16 (42.1) | 12 (57.9) | reference | ||||
≥2 | 14 (58.3) | 10 (41.7) | 0.41 (0.23–3.62) | ||||
Stage | 0.5480 | 0.9608 | NA | ||||
III | 4 (44.4) | 5 (55.6) | reference | ||||
IV | 26 (60.4) | 17 (39.6) | 0.78 (0.37–4.95) | ||||
Involved organ | 0.9618 | 0.8068 | NA | ||||
<3 | 20 (58.8) | 14 (41.2) | reference | ||||
≥3 | 10 (55.5) | 8 (44.5) | 0.95 (0.32–3.57) | ||||
Brain metastasis | 0.2176 | 0.1425 | 0.9816 | ||||
No | 20 (64.5) | 11 (35.5) | reference | reference | |||
Yes | 10 (47.6) | 11 (52.4) | 0.66 (0.17–3.05) | 0.98 (0.25–3.89) | |||
Liver metastasis | 0.6902 | 0.5346 | NA | ||||
No | 22 (59.5) | 17 (40.5) | reference | ||||
Yes | 8 (61.5) | 5 (38.5) | 0.70 (0.22–3.39) | ||||
EGFR subtypes | 0.0471 | 0.0334 | 0.0406 | ||||
19del | 11 (50.0) | 11 (50.0) | reference | reference | |||
L858R | 19 (63.3) | 11 (36.7) | 0.38 (0.17–0.99) | 0.46 (0.08–0.94) | |||
First-line TKIs * | 0.8460 | 0.6291 | NA | ||||
Gefitinib/erlotinib | 11 (55.0) | 8 (45.0) | reference | ||||
Afatinib | 19 (57.7) | 14 (42.3) | 0.75 (0.51–2.78) | ||||
Duration of TKI use | 0.0324 | 0.0397 | 0.0423 | ||||
<12 months | 15 (75.0) | 5 (25.0) | 0.32 (0.10–0.91) | 0.28 (0.14–0.85) | |||
≥12months | 15 (46.8) | 17 (53.2) | reference | reference | |||
TMB expression | 0.0377 | 0.0416 | 0.0479 | ||||
Low (<2.53) | 16 (48.8) | 17 (51.2) | reference | reference | |||
High (≥2.52) | 14 (73.6) | 5 (26.4) | 0.30 (0.07–0.88) | 0.42 (0.17–0.96) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, J.-Y.; Park, D.-W.; Lee, S.-H. High Tumor Mutation Burden Is Associated with Poor Clinical Outcome in EGFR-Mutated Lung Adenocarcinomas Treated with Targeted Therapy. Biomedicines 2022, 10, 2109. https://doi.org/10.3390/biomedicines10092109
Sung J-Y, Park D-W, Lee S-H. High Tumor Mutation Burden Is Associated with Poor Clinical Outcome in EGFR-Mutated Lung Adenocarcinomas Treated with Targeted Therapy. Biomedicines. 2022; 10(9):2109. https://doi.org/10.3390/biomedicines10092109
Chicago/Turabian StyleSung, Ji-Youn, Dong-Won Park, and Seung-Hyeun Lee. 2022. "High Tumor Mutation Burden Is Associated with Poor Clinical Outcome in EGFR-Mutated Lung Adenocarcinomas Treated with Targeted Therapy" Biomedicines 10, no. 9: 2109. https://doi.org/10.3390/biomedicines10092109
APA StyleSung, J. -Y., Park, D. -W., & Lee, S. -H. (2022). High Tumor Mutation Burden Is Associated with Poor Clinical Outcome in EGFR-Mutated Lung Adenocarcinomas Treated with Targeted Therapy. Biomedicines, 10(9), 2109. https://doi.org/10.3390/biomedicines10092109