Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations
Abstract
:1. Introduction
2. Important Considerations for Immunotherapy Vector Selection
3. Viral Vector Platforms for Cancer Therapy
3.1. DNA Virus Vectors
3.1.1. Adenoviruses
3.1.2. Poxviruses
3.1.3. Herpesviruses
3.2. RNA Virus Vectors
3.2.1. Rhabdovirus
3.2.2. Alphaviruses
3.2.3. Arenaviruses
3.2.4. Enteroviruses
3.2.5. Reoviruses
3.2.6. Paramyxoviruses
4. Immunogenic Tumour Cell Death
5. Tumour Microenvironment
5.1. Tumour-Associated Macrophages
5.2. Dendritic Cells
5.3. Myeloid-Derived Suppressor Cells (MDSCs)
5.4. Natural Killer Cells
5.5. T Cells
5.6. CAFs and Vascular Endothelial cells
6. Therapeutic Strategies for Therapeutic Programming of TME
6.1. Programming of Tumour-Associated Immune Cells (Strategy 1)
6.2. Programming of Tumour Stroma and Vasculature (Strategy 2)
6.3. Simultaneous Targeting of Different Immune Cell Sub-Sets and/or Stroma (Combination of Two Strategies)
7. Viral Vectors Used for TME Programming
7.1. Promotion of Professional APCs
7.2. Reprogramming of Tumour-Associated Macrophages
7.3. Activation of T and NK Cells
7.4. Targeting Extracellular Matrix and Vasculature
7.5. Simultaneous Targeting of Multiple Pathways
7.5.1. Combined Activation of T cells/NK Cells and DCs/Macrophages
7.5.2. Combined Activation of Immune Cells and Stroma
8. Summary
9. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
- Woller, N.; Gürlevik, E.; Fleischmann-Mundt, B.; Schumacher, A.; Knocke, S.; Kloos, A.M.; Saborowski, M.; Geffers, R.; Manns, M.P.; Wirth, T.C.; et al. Viral Infection of Tumors Overcomes Resistance to PD-1-Immunotherapy by Broadening Neoantigenome-Directed T-Cell Responses. Mol. Ther. 2015, 23, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kang, X.; Chen, K.S.; Jehng, T.; Jones, L.; Chen, J.; Huang, X.F.; Chen, S.-Y. An Engineered Oncolytic Virus Expressing PD-L1 Inhibitors Activates Tumor Neoantigen-Specific T Cell Responses. Nat. Commun. 2020, 11, 1395. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Kimbrough, E.M.O.; Lou, Y. Next Generation of Immune Checkpoint Inhibitors and Beyond. J. Hematol. Oncol. 2021, 14, 1–29. [Google Scholar] [CrossRef]
- Robert, C. A Decade of Immune-Checkpoint Inhibitors in Cancer Therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Carrascon, V.; Siurala, M.; Santos, J.M.; Havunen, R.; Tähtinen, S.; Karell, P.; Sorsa, S.; Kanerva, A.; Hemminki, A. TNFa and IL-2 Armed Adenoviruses Enable Complete Responses by Anti-PD-1 Checkpoint Blockade. Oncoimmunology 2018, 7, e1412902. [Google Scholar] [CrossRef]
- Handy, C.E.; Antonarakis, E.S. Sipuleucel-T for the Treatment of Prostate Cancer: Novel Insights and Future Directions. Futur. Oncol. 2018, 14, 907–917. [Google Scholar] [CrossRef]
- Vansteenkiste, J.F.; Cho, B.C.; Vanakesa, T.; De Pas, T.; Zielinski, M.; Kim, M.S.; Jassem, J.; Yoshimura, M.; Dahabreh, J.; Nakayama, H.; et al. Efficacy of the MAGE-A3 Cancer Immunotherapeutic as Adjuvant Therapy in Patients with Resected MAGE-A3-Positive Non-Small-Cell Lung Cancer (MAGRIT): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2016, 17, 822–835. [Google Scholar] [CrossRef]
- Tahtinen, S.; Feola, S.; Capasso, C.; Laustio, N.; Groeneveldt, C.; Ylosmaki, E.O.; Ylosmaki, L.; Martins, B.; Fusciello, M.; Medeot, M.; et al. Exploiting Preexisting Immunity to Enhance Oncolytic Cancer Immunotherapy. Cancer Res. 2020, 80, 2575–2585. [Google Scholar] [CrossRef]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer Vaccines as Promising Immuno-Therapeutics: Platforms and Current Progress. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef]
- Hacker, U.T.; Bentler, M.; Kaniowska, D.; Morgan, M.; Büning, H. Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers 2020, 12, 1889. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.; Guo, J.; He, P.; Zhou, D. Recent Advances of Oncolytic Virus in Cancer Therapy. Hum. Vaccin. Immunother. 2020, 16, 2389–2402. [Google Scholar] [CrossRef] [PubMed]
- Liechtenstein, T.; Perez-Janices, N.; Escors, D. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications. Cancers 2013, 5, 815–837. [Google Scholar] [CrossRef]
- Sasso, E.; D’Alise, A.M.; Zambrano, N.; Scarselli, E.; Folgori, A.; Nicosia, A.; D’Alise, A.M.; Zambrano, N.; Scarselli, E.; Folgori, A.; et al. New Viral Vectors for Infectious Diseases and Cancer. Semin. Immunol. 2020, 50, 101430. [Google Scholar] [CrossRef]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral Vector Platforms within the Gene Therapy Landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef]
- Shin, D.H.; Nguyen, T.; Ozpolat, B.; Lang, F.; Alonso, M.; Gomez-Manzano, C.; Fueyo, J. Current Strategies to Circumvent the Antiviral Immunity to Optimize Cancer Virotherapy. J. Immunother. Cancer 2021, 9, e002086. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-S. Oncolytic Immunotherapy for Metastatic Cancer: Lessons and Future Strategies. Ann. Transl. Med. 2020, 8, 1113. [Google Scholar] [CrossRef]
- Choi, I.K.; Strauss, R.; Richter, M.; Yun, C.O.; Lieber, A. Strategies to Increase Drug Penetration in Solid Tumors. Front. Oncol. 2013, 3, 193. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Agrawal, B. Adenoviral Vector-Based Vaccines and Gene Therapies: Current Status and Future Prospects. In Adenoviruses; IntechOpen: London, UK, 2018. [Google Scholar]
- Anderson, B.D.; Nakamura, T.; Russell, S.J.; Peng, K.W. High CD46 Receptor Density Determines Preferential Killing of Tumor Cells by Oncolytic Measles Virus. Cancer Res. 2004, 64, 4919–4926. [Google Scholar] [CrossRef]
- Watanabe, M.; Nishikawaji, Y.; Kawakami, H.; Kosai, K.I. Adenovirus Biology, Recombinant Adenovirus, and Adenovirus Usage in Gene Therapy. Viruses 2021, 13, 2502. [Google Scholar] [CrossRef]
- Tessarollo, N.G.; Domingues, A.C.M.; Antunes, F.; da Luz, J.C.D.S.; Rodrigues, O.A.; Cerqueira, O.L.D.; Strauss, B.E. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers 2021, 13, 1863. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Liu, J.; Junn, H.J.; Lee, E.-J.; Jeong, K.-S.; Seol, D.-W. No More Helper Adenovirus: Production of Gutless Adenovirus (GLAd) Free of Adenovirus and Replication-Competent Adenovirus (RCA) Contaminants. Exp. Mol. Med. 2019, 51, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Mast, T.C.; Kierstead, L.; Gupta, S.B.; Nikas, A.A.; Kallas, E.G.; Novitsky, V.; Mbewe, B.; Pitisuttithum, P.; Schechter, M.; Vardas, E.; et al. International Epidemiology of Human Pre-Existing Adenovirus (Ad) Type-5, Type-6, Type-26 and Type-36 Neutralizing Antibodies: Correlates of High Ad5 Titers and Implications for Potential HIV Vaccine Trials. Vaccine 2010, 28, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Wold, W.S.M.; Toth, K. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy. Curr. Gene Ther. 2013, 13, 421–433. [Google Scholar] [CrossRef]
- Yu, W.; Fang, H. Clinical Trials with Oncolytic Adenovirus in China. Curr. Cancer Drug Targets 2007, 7, 141–148. [Google Scholar] [CrossRef]
- Capone, S.; Naddeo, M.; D’Alise, A.M.; Abbate, A.; Grazioli, F.; Del Gaudio, A.; Del Sorbo, M.; Esposito, M.L.; Ammendola, V.; Perretta, G.; et al. Fusion of HCV Nonstructural Antigen to MHC Class II-Associated Invariant Chain Enhances T-Cell Responses Induced by Vectored Vaccines in Nonhuman Primates. Mol. Ther. 2014, 22, 1039–1047. [Google Scholar] [CrossRef]
- Smith, G.L.; Moss, B. Infectious Poxvirus Vectors Have Capacity for at Least 25,000 Base Pairs of Foreign DNA. Gene 1983, 25, 21–28. [Google Scholar] [CrossRef]
- Yu, Y.A.; Shabahang, S.; Timiryasova, T.M.; Zhang, Q.; Beltz, R.; Gentschev, I.; Goebel, W.; Szalay, A.A. Visualization of Tumors and Metastases in Live Animals with Bacteria and Vaccinia Virus Encoding Light-Emitting Proteins. Nat. Biotechnol. 2004, 22, 313–320. [Google Scholar] [CrossRef]
- Thorne, S.H.; Hwang, T.-H.H.; O’Gorman, W.E.; Bartlett, D.L.; Sei, S.; Kanji, F.; Brown, C.; Werier, J.; Cho, J.-H.; Lee, D.-E.; et al. Rational Strain Selection and Engineering Creates a Broad-Spectrum, Systemically Effective Oncolytic Poxvirus, JX-963. J. Clin. Investig. 2007, 117, 3350–3358. [Google Scholar] [CrossRef]
- Parato, K.A.; Breitbach, C.J.; Le Boeuf, F.; Wang, J.; Storbeck, C.; Ilkow, C.; Diallo, J.-S.; Falls, T.; Burns, J.; Garcia, V.; et al. The Oncolytic Poxvirus JX-594 Selectively Replicates in and Destroys Cancer Cells Driven by Genetic Pathways Commonly Activated in Cancers. Mol. Ther. 2012, 20, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Breitbach, C.J.; Bell, J.C.; Hwang, T.-H.; Kirn, D.H.; Burke, J. The Emerging Therapeutic Potential of the Oncolytic Immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virotherapy 2015, 4, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Swadling, L.; Capone, S.; Antrobus, R.D.; Brown, A.; Richardson, R.; Newell, E.W.; Halliday, J.; Kelly, C.; Bowen, D.; Fergusson, J.; et al. A Human Vaccine Strategy Based on Chimpanzee Adenoviral and MVA Vectors That Primes, Boosts, and Sustains Functional HCV-Specific T Cell Memory. Sci. Transl. Med. 2014, 6, 261ra153. [Google Scholar] [CrossRef] [PubMed]
- Vanderplasschen, A.; Mathew, E.; Hollinshead, M.; Sim, R.B.; Smith, G.L. Extracellular Enveloped Vaccinia Virus Is Resistant to Complement Because of Incorporation of Host Complement Control Proteins into Its Envelope. Proc. Natl. Acad. Sci. USA 1998, 95, 7544–7549. [Google Scholar] [CrossRef]
- Pütz, M.M.; Midgley, C.M.; Law, M.; Smith, G.L. Quantification of Antibody Responses against Multiple Antigens of the Two Infectious Forms of Vaccinia Virus Provides a Benchmark for Smallpox Vaccination. Nat. Med. 2006, 12, 1310–1315. [Google Scholar] [CrossRef]
- Bell, E.; Shamim, M.; Whitbeck, J.C.; Sfyroera, G.; Lambris, J.D.; Isaacs, S.N. Antibodies against the Extracellular Enveloped Virus B5R Protein Are Mainly Responsible for the EEV Neutralizing Capacity of Vaccinia Immune Globulin. Virology 2004, 325, 425–431. [Google Scholar] [CrossRef]
- Kirn, D.H.; Wang, Y.; Le Boeuf, F.; Bell, J.; Thorne, S.H. Targeting of Interferon-Beta to Produce a Specific, Multi-Mechanistic Oncolytic Vaccinia Virus. PLoS Med. 2007, 4, e353. [Google Scholar] [CrossRef]
- Mody, P.H.; Pathak, S.; Hanson, L.K.; Spencer, J.V. Herpes Simplex Virus: A Versatile Tool for Insights Into Evolution, Gene Delivery, and Tumor Immunotherapy. Virology 2020, 11, 1178122X20913274. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.G.; Longnecker, R. Herpesvirus Entry Mediator and Ocular Herpesvirus Infection: More than Meets the Eye. J. Virol. 2017, 91, e00115–e00117. [Google Scholar] [CrossRef] [PubMed]
- Cassady, K.A.; Parker, J.N. Herpesvirus Vectors for Therapy of Brain Tumors. Open Virol. J. 2010, 4, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.-M.; Saha, D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virotherapy 2021, 10, 1–27. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.J.; Sun, J.; Depalo, D.; Rothermel, L.D.; Song, Y.; Straker, R.J.; Baecher, K.; Louie, R.J.; Stahlie, E.H.A.; Wright, G.P.; et al. Talimogene Laherparepvec (T-VEC) for the Treatment of Advanced Locoregional Melanoma After Failure of Immunotherapy: An International Multi-Institutional Experience. Ann. Surg. Oncol. 2022, 29, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Rong, L.; Li, N.; Zhang, Z. Emerging Therapies for Glioblastoma: Current State and Future Directions. J. Exp. Clin. Cancer Res. 2022, 41, 142. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.K.; Hendry, R.M.; Singh, V.; Rose, J.K.; Seligman, S.J.; Klug, B.; Kochhar, S.; Mac, L.M.; Carbery, B.; Chen, R.T. Live Virus Vaccines Based on a Vesicular Stomatitis Virus (VSV) Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment. Vaccine 2016, 34, 6597–6609. [Google Scholar] [CrossRef]
- Jiang, B.; Huang, D.; He, W.; Guo, W.; Yin, X.; Forsyth, P.; Lun, X.; Wang, Z. Inhibition of Glioma Using a Novel Non-Neurotoxic Vesicular Stomatitis Virus. Neurosurg. Focus 2021, 50, E9. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, S.; Tiwari, R.; Gupta, S.; Byrareddy, S.N.; Nayak, D. Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy. Viruses 2018, 10, 90. [Google Scholar] [CrossRef]
- Abdullahi, S.; Jäkel, M.; Behrend, S.J.; Steiger, K.; Topping, G.; Krabbe, T.; Colombo, A.; Sandig, V.; Schiergens, T.S.; Thasler, W.E.; et al. A Novel Chimeric Oncolytic Virus Vector for Improved Safety and Efficacy as a Platform for the Treatment of Hepatocellular Carcinoma. J. Virol. 2018, 92, 23. [Google Scholar] [CrossRef]
- Shen, W.; Patnaik, M.M.; Ruiz, A.; Russell, S.J.; Peng, K.-W. Immunovirotherapy with Vesicular Stomatitis Virus and PD-L1 Blockade Enhances Therapeutic Outcome in Murine Acute Myeloid Leukemia. Blood 2016, 127, 1449–1458. [Google Scholar] [CrossRef]
- Leveille, S.; Goulet, M.-L.; Lichty, B.D.; Hiscott, J. Vesicular Stomatitis Virus Oncolytic Treatment Interferes with Tumor-Associated Dendritic Cell Functions and Abrogates Tumor Antigen Presentation. J. Virol. 2011, 85, 12160–12169. [Google Scholar] [CrossRef]
- Jose, J.; Snyder, J.E.; Kuhn, R. A Structural and Functional Perspective of Alphavirus Replication and Assembly. Future Microbiol. 2009, 4, 837–856. [Google Scholar] [CrossRef] [Green Version]
- Zajakina, A.; Spunde, K.; Lundstrom, K. Application of Alphaviral Vectors for Immunomodulation in Cancer Therapy. Curr. Pharm. Des. 2017, 23, 4906–4932. [Google Scholar] [CrossRef]
- Mathilda Sjoberg, E.; Suomalainen, M.; Garoff, H. A Significantly Improved Semliki Forest Virus Expression System Based on Translation Enhancer Segments from the Viral Capsid Gene. Bio/Technology 1994, 12, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Stelter, L.; Tseng, J.C.; Torosjan, A.; Levin, B.; Longo, V.A.; Pillarsetty, N.; Zanzonico, P.; Meruelo, D.; Larson, S.M. Tumor-Specific Targeting With Modified Sindbis Viral Vectors: Evaluation with Optical Imaging and Positron Emission Tomography In Vivo. Mol. Imaging Biol. 2013, 15, 166. [Google Scholar] [CrossRef] [PubMed]
- Tseng, J.C.; Levin, B.; Hurtado, A.; Yee, H.; De Castro, I.P.; Jimenez, M.; Shamamian, P.; Jin, R.; Novick, R.P.; Pellicer, A.; et al. Systemic Tumor Targeting and Killing by Sindbis Viral Vectors. Nat. Biotechnol. 2004, 22, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Zajakina, A.; Vasilevska, J.; Zhulenkovs, D.; Skrastina, D.; Spaks, A.; Plotniece, A.; Kozlovska, T. High Efficiency of Alphaviral Gene Transfer in Combination with 5-Fluorouracil in a Mouse Mammary Tumor Model. BMC Cancer 2014, 14, 460. [Google Scholar] [CrossRef] [PubMed]
- Kurena, B.; Müller, E.; Christopoulos, P.F.; Johnsen, I.B.; Stankovic, B.; Øynebråten, I.; Corthay, A.; Zajakina, A. Generation and Functional In Vitro Analysis of Semliki Forest Virus Vectors Encoding TNF-α and IFN-γ. Front. Immunol. 2017, 8, 1667. [Google Scholar] [CrossRef]
- Lundstrom, K. Alphavirus Vectors for Gene Therapy Applications. Gene Ther. Cancer 2007, 1, 109–119. [Google Scholar]
- Clark, L.E.; Clark, S.A.; Lin, C.Y.; Liu, J.; Coscia, A.; Nabel, K.G.; Yang, P.; Neel, D.V.; Lee, H.; Brusic, V.; et al. VLDLR and ApoER2 Are Receptors for Multiple Alphaviruses. Nature 2021, 602, 475–480. [Google Scholar] [CrossRef]
- Dlugosz, P.; Nimpf, J. The Reelin Receptors Apolipoprotein E Receptor 2 (ApoER2) and VLDL Receptor. Int. J. Mol. Sci. 2018, 19, 3090. [Google Scholar] [CrossRef]
- He, L.; Lu, Y.; Wang, P.; Zhang, J.; Yin, C.; Qu, S. Up-Regulated Expression of Type II Very Low Density Lipoprotein Receptor Correlates with Cancer Metastasis and Has a Potential Link to β-Catenin in Different Cancers. BMC Cancer 2010, 10, 601. [Google Scholar] [CrossRef]
- Campion, O.; Al Khalifa, T.; Langlois, B.; Thevenard-Devy, J.; Salesse, S.; Savary, K.; Schneider, C.; Etique, N.; Dedieu, S.; Devy, J. Contribution of the Low-Density Lipoprotein Receptor Family to Breast Cancer Progression. Front. Oncol. 2020, 10, 882. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ramachandran, M.; Jin, C.; Quijano-Rubio, C.; Martikainen, M.; Yu, D.; Essand, M. Characterization of Virus-Mediated Immunogenic Cancer Cell Death and the Consequences for Oncolytic Virus-Based Immunotherapy of Cancer. Cell Death Dis. 2020, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Oncolytic Alphaviruses in Cancer Immunotherapy. Vaccines 2017, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Knipe, D.M.; Howley, P.M. Fields Virology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Oldstone, M.B.A.; Campbell, K.P. Decoding Arenavirus Pathogenesis: Essential Roles for Alpha-Dystroglycan-Virus Interactions and the Immune Response. Virology 2011, 411, 170. [Google Scholar] [CrossRef]
- Flatz, L.; Hegazy, A.N.; Bergthaler, A.; Verschoor, A.; Claus, C.; Fernandez, M.; Gattinoni, L.; Johnson, S.; Kreppel, F.; Kochanek, S.; et al. Development of Replication-Defective Lymphocytic Choriomeningitis Virus Vectors for the Induction of Potent CD8+ T Cell Immunity. Nat. Med. 2010, 16, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Kallert, S.M.; Darbre, S.; Bonilla, W.V.; Kreutzfeldt, M.; Page, N.; Müller, P.; Kreuzaler, M.; Lu, M.; Favre, S.; Kreppel, F.; et al. Replicating Viral Vector Platform Exploits Alarmin Signals for Potent CD8+ T Cell-Mediated Tumour Immunotherapy. Nat. Commun. 2017, 8, 15327. [Google Scholar] [CrossRef]
- Emonet, S.F.; Garidou, L.; Mcgavern, D.B.; De La Torre, J.C. Generation of Recombinant Lymphocytic Choriomeningitis Viruses with Trisegmented Genomes Stably Expressing Two Additional Genes of Interest. Proc. Natl. Acad. Sci. USA 2009, 106, 3473–3478. [Google Scholar] [CrossRef]
- Sommerstein, R.; Flatz, L.; Remy, M.M.; Malinge, P.; Magistrelli, G.; Fischer, N.; Sahin, M.; Bergthaler, A.; Igonet, S.; ter Meulen, J.; et al. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection. PLoS Pathog. 2015, 11, e1005276. [Google Scholar] [CrossRef]
- A Phase 1/2 Study in Patients With HPV16+ Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma and Other Cancers (NCT04180215). Available online: https://clinicaltrials.gov/ct2/show/NCT04180215 (accessed on 29 July 2022).
- Ylä-Pelto, J.; Tripathi, L.; Susi, P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016, 8, 57. [Google Scholar] [CrossRef]
- Sinclair, W.; Omar, M. Enterovirus; StatPearls: Tampa, FL, USA, 2021. [Google Scholar]
- Tuthill, T.J.; Groppelli, E.; Hogle, J.M.; Rowlands, D.J. Picornaviruses. In Cell Entry by Non-Enveloped Viruses. Current Topics in Microbiology and Immunology; Johnson, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 43–89. [Google Scholar]
- Van Kuppeveld, F.J.M.; de Jong, A.; Dijkman, H.B.P.M.; Andino, R.; Melchers, W.J.G. Studies towards the Potential of Poliovirus as a Vector for the Expression of HPV 16 Virus-like-Particles. FEMS Immunol. Med. Microbiol. 2002, 34, 201–208. [Google Scholar] [CrossRef]
- Dudek, T.; Knipe, D.M. Replication-Defective Viruses as Vaccines and Vaccine Vectors. Virology 2006, 344, 230–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetz, C.; Dobrikova, E.; Shveygert, M.; Dobrikov, M.; Gromeier, M. Oncolytic Poliovirus against Malignant Glioma. Future Virol. 2011, 6, 1045. [Google Scholar] [CrossRef]
- Williams, Ç.H.; Kajander, T.; Hyypiä, T.; Jackson, T.; Sheppard, D.; Stanway, G. Integrin Avβ6 Is an RGD-Dependent Receptor for Coxsackievirus A9. J. Virol. 2004, 78, 6967–6973. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, F.; Chen, X. Integrin Avβ3-Targeted Cancer Therapy. Drug Dev. Res. 2008, 69, 329–339. [Google Scholar] [CrossRef]
- Tyler, K.L. Mammalian Reoviruses. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 2001; pp. 1729–1745. [Google Scholar]
- Kim, M.; Garant, K.; zur Nieden, N.; Alain, T.; Loken, S.; Urbanski, S.; Forsyth, P.; Rancourt, D.; Lee, P.; Johnston, R. Attenuated Reovirus Displays Oncolysis with Reduced Host Toxicity. Br. J. Cancer 2011, 104, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Berkeley, R.; Barr, T.; Ilett, E.; Errington-Mais, F. Past, Present and Future of Oncolytic Reovirus. Cancers 2020, 12, 3219. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.L.; Hirasawa, K.; Yang, A.D.; Shields, M.A.; Lee, P.W.K. Reovirus Oncolysis: The Ras/RalGEF/P38 Pathway Dictates Host Cell Permissiveness to Reovirus Infection. Proc. Natl. Acad. Sci. USA 2004, 101, 11099. [Google Scholar] [CrossRef]
- Van Den Wollenberg, D.J.M.; Dautzenberg, I.J.C.; Ros, W.; Lipińska, A.D.; Van Den Hengel, S.K.; Hoeben, R.C. Replicating Reoviruses with a Transgene Replacing the Codons for the Head Domain of the Viral Spike. Gene Ther. 2015, 22, 267–279. [Google Scholar] [CrossRef]
- Demidenko, A.A.; Blattman, J.N.; Blattman, N.N.; Greenberg, P.D.; Nibert, M.L. Engineering Recombinant Reoviruses with Tandem Repeats and a Tetravirus 2A-like Element for Exogenous Polypeptide Expression. Proc. Natl. Acad. Sci. USA 2013, 110, E1867–E1876. [Google Scholar] [CrossRef]
- Pfaller, C.K.; Cattaneo, R.; Schnell, M.J. Reverse Genetics of Mononegavirales: How They Work, New Vaccines, and New Cancer Therapeutics. Virology 2015, 479–480, 331–344. [Google Scholar] [CrossRef]
- Frantz, P.N.; Teeravechyan, S.; Tangy, F. Measles-Derived Vaccines to Prevent Emerging Viral Diseases. Microbes Infect. 2018, 20, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; Peng, K.W. Measles Virus for Cancer Therapy. Curr. Top. Microbiol. Immunol. 2009, 330, 213–241. [Google Scholar] [PubMed]
- Msaouel, P.; Opyrchal, M.; Domingo Musibay, E.; Galanis, E. Oncolytic Measles Virus Strains as Novel Anticancer Agents. Expert Opin. Biol. Ther. 2013, 13, 483–502. [Google Scholar] [CrossRef]
- Engeland, C.E.; Ungerechts, G. Measles Virus as an Oncolytic Immunotherapy. Cancers 2021, 13, 544. [Google Scholar] [CrossRef]
- Guillerme, J.-B.; Boisgerault, N.; Roulois, D.; Ménager, J.; Combredet, C.; Tangy, F.; Fonteneau, J.-F.; Gregoire, M. Measles Virus Vaccine–Infected Tumor Cells Induce Tumor Antigen Cross-Presentation by Human Plasmacytoid Dendritic Cells. Clin. Cancer Res. 2013, 19, 1147–1158. [Google Scholar] [CrossRef]
- Knuchel, M.C.; Marty, R.R.; Morin, T.N.A.; Ilter, O.; Zuniga, A.; Naim, H.Y. Relevance of a Pre-Existing Measles Immunity Prior Immunization with a Recombinant Measles Virus Vector. Hum. Vaccin. Immunother. 2013, 9, 599–606. [Google Scholar] [CrossRef]
- Samal, S.K. Newcastle Disease and Related Avian Paramyxoviruses. In The Biology of Paramyxoviruses; Samal, S.K., Ed.; Caister Academic Press: Wymondham, UK, 2011. [Google Scholar]
- Kim, S.-H.; Samal, S. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016, 8, 183. [Google Scholar] [CrossRef]
- Freeman, A.I.; Zakay-Rones, Z.; Gomori, J.M.; Linetsky, E.; Rasooly, L.; Greenbaum, E.; Rozenman-Yair, S.; Panet, A.; Libson, E.; Irving, C.S.; et al. Phase I/II Trial of Intravenous NDV-HUJ Oncolytic Virus in Recurrent Glioblastoma Multiforme. Mol. Ther. 2006, 13, 221–228. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, G.; Chen, Y.; Wang, H.; Hua, Y.; Cai, Z. Immunogenic Cell Death in Cancer Therapy: Present and Emerging Inducers. J. Cell. Mol. Med. 2019, 23, 4854–4865. [Google Scholar] [CrossRef]
- Fucikova, J.; Kepp, O.; Kasikova, L.; Petroni, G.; Yamazaki, T.; Liu, P.; Zhao, L.; Spisek, R.; Kroemer, G.; Galluzzi, L. Detection of Immunogenic Cell Death and Its Relevance for Cancer Therapy. Cell Death Dis. 2020, 11, 1013. [Google Scholar] [CrossRef]
- Lamberti, M.J.; Nigro, A.; Mentucci, F.M.; Vittar, N.B.R.; Casolaro, V.; Col, J.D. Dendritic Cells and Immunogenic Cancer Cell Death: A Combination for Improving Antitumor Immunity. Pharmaceutics 2020, 12, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, O.G.; Errington-Mais, F.; Steele, L.; Hadac, E.; Jennings, V.; Scott, K.; Peach, H.; Phillips, R.M.; Bond, J.; Pandha, H.; et al. Measles Virus Causes Immunogenic Cell Death in Human Melanoma. Gene Ther. 2013, 20, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Koks, C.A.; Garg, A.D.; Ehrhardt, M.; Riva, M.; Vandenberk, L.; Boon, L.; De Vleeschouwer, S.; Agostinis, P.; Graf, N.; Van Gool, S.W. Newcastle Disease Virotherapy Induces Long-term Survival and Tumor-specific Immune Memory in Orthotopic Glioma through the Induction of Immunogenic Cell Death. Int. J. Cancer 2015, 136, E313–E325. [Google Scholar] [CrossRef]
- Miyamoto, S.; Inoue, H.; Nakamura, T.; Yamada, M.; Sakamoto, C.; Urata, Y.; Okazaki, T.; Marumoto, T.; Takahashi, A.; Takayama, K.; et al. Coxsackievirus B3 Is an Oncolytic Virus with Immunostimulatory Properties That Is Active against Lung Adenocarcinoma. Cancer Res. 2012, 72, 2609–2621. [Google Scholar] [CrossRef]
- Diaconu, I.; Cerullo, V.; Hirvinen, M.L.M.; Escutenaire, S.; Ugolini, M.; Pesonen, S.K.; Bramante, S.; Parviainen, S.; Kanerva, A.; Loskog, A.S.I.; et al. Immune Response Is an Important Aspect of the Antitumor Effect Produced by a CD40L-Encoding Oncolytic Adenovirus. Cancer Res. 2012, 72, 2327–2338. [Google Scholar] [CrossRef]
- Matveeva, O.V.; Chumakov, P.M. Defects in Interferon Pathways as Potential Biomarkers of Sensitivity to Oncolytic Viruses. Rev. Med. Virol. 2018, 28, e2008. [Google Scholar] [CrossRef]
- Ren, X.; Guo, S.; Guan, X.; Kang, Y.; Liu, J.; Yang, X. Immunological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Front. Immunol. 2022, 13, 535. [Google Scholar] [CrossRef]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019, 10, 168. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, Z.; Gao, S.; Li, C.; Feng, Y.; Zhou, X.; Kaina, B.; Grösch, S.; Decote-Ricardo, D.; Zhou, J.; et al. Tumor-Associated Macrophages: Recent Insights and Therapies. Front. Oncol. 2020, 10, 188. [Google Scholar] [CrossRef]
- Mahmoud, S.M.A.; Lee, A.H.S.; Paish, E.C.; Macmillan, R.D.; Ellis, I.O.; Green, A.R. Tumour-Infiltrating Macrophages and Clinical Outcome in Breast Cancer. J. Clin. Pathol. 2012, 65, 159–163. [Google Scholar] [CrossRef]
- Tsutsui, S.; Yasuda, K.; Suzuki, K.; Tahara, K.; Higashi, H.; Era, S. Macrophage Infiltration and Its Prognostic Implications in Breast Cancer: The Relationship with VEGF Expression and Microvessel Density. Oncol. Rep. 2005, 14, 425–431. [Google Scholar] [CrossRef]
- Pukrop, T.; Klemm, F.; Hagemann, T.; Gradl, D.; Schulz, M.; Siemes, S.; Trümper, L.; Binder, C. Wnt 5a Signaling Is Critical for Macrophage-Induced Invasion of Breast Cancer Cell Lines. Proc. Natl. Acad. Sci. USA 2006, 103, 5454–5459. [Google Scholar] [CrossRef]
- Li, C.; Levin, M.; Kaplan, D.L. Bioelectric Modulation of Macrophage Polarization. Sci. Rep. 2016, 6, 21044. [Google Scholar] [CrossRef]
- Jaguin, M.; Houlbert, N.; Fardel, O.; Lecureur, V. Polarization Profiles of Human M-CSF-Generated Macrophages and Comparison of M1-Markers in Classically Activated Macrophages from GM-CSF and M-CSF Origin. Cell. Immunol. 2013, 281, 51–61. [Google Scholar] [CrossRef]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The Chemokine System in Diverse Forms of Macrophage Activation and Polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef]
- Lin, E.Y.; Li, J.-F.; Gnatovskiy, L.; Deng, Y.; Zhu, L.; Grzesik, D.A.; Qian, H.; Xue, X.; Pollard, J.W. Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer. Cancer Res. 2006, 66, 11238–11246. [Google Scholar] [CrossRef]
- Biswas, S.K. A Distinct and Unique Transcriptional Program Expressed by Tumor-Associated Macrophages (Defective NF- B and Enhanced IRF-3/STAT1 Activation). Blood 2006, 107, 2112–2122. [Google Scholar] [CrossRef]
- Doedens, A.L.; Stockmann, C.; Rubinstein, M.P.; Liao, D.; Zhang, N.; DeNardo, D.G.; Coussens, L.M.; Karin, M.; Goldrath, A.W.; Johnson, R.S. Macrophage Expression of Hypoxia-Inducible Factor-1α Suppresses T-Cell Function and Promotes Tumor Progression. Cancer Res. 2010, 70, 7465–7475. [Google Scholar] [CrossRef]
- Hasegawa, H.; Matsumoto, T. Mechanisms of Tolerance Induction by Dendritic Cells in Vivo. Front. Immunol. 2018, 9, 350. [Google Scholar] [CrossRef]
- Reichert, T.E.; Scheuer, C.; Day, R.; Wagner, W.; Whiteside, T.L. The Number of Intratumoral Dendritic Cells And-Chain Expression in T Cells as Prognostic and Survival Biomarkers in Patients with Oral Carcinoma BACKGROUND. Dendritic Cells (DCs) Are Antigen-Presenting Cells with a Unique. Cancer 2001, 91, 2136–2147. [Google Scholar] [CrossRef]
- Binsfeld, M.; Muller, J.; Lamour, V.; De Veirman, K.; De Raeve, H.; Bellahcène, A.; Van Valckenborgh, E.; Baron, F.; Beguin, Y.; Caers, J.; et al. Granulocytic Myeloid-Derived Suppressor Cells Promote Angiogenesis in the Context of Multiple Myeloma. Oncotarget 2016, 7, 37931–37943. [Google Scholar] [CrossRef] [Green Version]
- Panni, R.Z.; Sanford, D.E.; Belt, B.A.; Mitchem, J.B.; Worley, L.A.; Goetz, B.D.; Mukherjee, P.; Wang-Gillam, A.; Link, D.C.; Denardo, D.G.; et al. Tumor-Induced STAT3 Activation in Monocytic Myeloid-Derived Suppressor Cells Enhances Stemness and Mesenchymal Properties in Human Pancreatic Cancer. Cancer Immunol. Immunother. 2014, 3, 513–528. [Google Scholar] [CrossRef]
- Huang, B.; Pan, P.-Y.; Li, Q.; Sato, A.I.; Levy, D.E.; Bromberg, J.; Divino, C.M.; Chen, S.-H. Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host. Cancer Res. 2006, 66, 1123–1131. [Google Scholar] [CrossRef]
- Holmgaard, R.B.; Zamarin, D.; Li, Y.; Gasmi, B.; Munn, D.H.; Allison, J.P.; Merghoub, T.; Wolchok, J.D. Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Rep. 2015, 13, 412–424. [Google Scholar] [CrossRef]
- Mao, Y.; Poschke, I.; Wennerberg, E.; Pico de Coaña, Y.; Egyhazi Brage, S.; Schultz, I.; Hansson, J.; Masucci, G.; Lundqvist, A.; Kiessling, R. Melanoma-Educated CD14+ Cells Acquire a Myeloid-Derived Suppressor Cell Phenotype through COX-2–Dependent Mechanisms. Cancer Res. 2013, 73, 3877–3887. [Google Scholar] [CrossRef]
- Cerullo, V.; Diaconu, I.; Romano, V.; Hirvinen, M.; Ugolini, M.; Escutenaire, S.; Holm, S.-L.; Kipar, A.; Kanerva, A.; Hemminki, A. An Oncolytic Adenovirus Enhanced for Toll-like Receptor 9 Stimulation Increases Antitumor Immune Responses and Tumor Clearance. Mol. Ther. 2012, 20, 2076–2086. [Google Scholar] [CrossRef]
- Toh, B.; Wang, X.; Keeble, J.; Sim, W.J.; Khoo, K.; Wong, W.C.; Kato, M.; Prevost-Blondel, A.; Thiery, J.P.; Abastado, J.P. Mesenchymal Transition and Dissemination of Cancer Cells Is Driven by Myeloid-Derived Suppressor Cells Infiltrating the Primary Tumor. PLoS Biol. 2011, 9, e1001162. [Google Scholar] [CrossRef]
- Law, A.M.K.; Valdes-Mora, F.; Gallego-Ortega, D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020, 9, 561. [Google Scholar] [CrossRef]
- Qin, H.; Lerman, B.; Sakamaki, I.; Wei, G.; Cha, S.C.; Rao, S.S.; Qian, J.; Hailemichael, Y.; Nurieva, R.; Dwyer, K.C.; et al. Generation of a New Therapeutic Peptide That Depletes Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Nat. Med. 2014, 20, 676–681. [Google Scholar] [CrossRef]
- De Cicco, P.; Ercolano, G.; Ianaro, A. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Front. Immunol. 2020, 1, 1680. [Google Scholar] [CrossRef]
- Melaiu, O.; Lucarini, V.; Cifaldi, L.; Fruci, D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front. Immunol. 2020, 10, 3038. [Google Scholar] [CrossRef]
- Cózar, B.; Greppi, M.; Carpentier, S.; Narni-Mancinelli, E.; Chiossone, L.; Vivier, E. Tumor-Infiltrating Natural Killer Cells. Cancer Discov. 2021, 11, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.L.; Jang, J.W.; Lee, S.W.; Yoo, S.H.; Kwon, J.H.; Nam, S.W.; Bae, S.H.; Choi, J.Y.; Han, N.I.; Yoon, S.K. Inflammatory Cytokines and Change of Th1/Th2 Balance as Prognostic Indicators for Hepatocellular Carcinoma in Patients Treated with Transarterial Chemoembolization. Sci. Rep. 2019, 9, 3260. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Qiu, S.J.; Fan, J.; Zhou, J.; Wang, X.Y.; Xiao, Y.S.; Xu, Y.; Li, Y.W.; Tang, Z.Y. Intratumoral Balance of Regulatory and Cytotoxic T Cells Is Associated with Prognosis of Hepatocellular Carcinoma after Resection. J. Clin. Oncol. 2007, 25, 2586–2593. [Google Scholar] [CrossRef]
- Jiang, W.; He, Y.; He, W.; Wu, G.; Zhou, X.; Sheng, Q.; Zhong, W.; Lu, Y.; Ding, Y.; Lu, Q.; et al. Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Front. Immunol. 2021, 11, 622509. [Google Scholar] [CrossRef]
- Liu, T.; Han, C.; Wang, S.; Fang, P.; Ma, Z.; Xu, L.; Yin, R. Cancer-Associated Fibroblasts: An Emerging Target of Anti-Cancer Immunotherapy. J. Hematol. Oncol. 2019, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Asif, P.J.; Longobardi, C.; Hahne, M.; Medema, J.P. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers 2021, 13, 4720. [Google Scholar] [CrossRef]
- Acerbi, I.; Cassereau, L.; Dean, I.; Shi, Q.; Au, A.; Park, C.; Chen, Y.Y.; Liphardt, J.; Hwang, E.S.; Weaver, V.M. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration. Integr. Biol. 2015, 7, 1120–1134. [Google Scholar] [CrossRef]
- Robertson, C.; Sebastian, A.; Hinckley, A.; Rios-Arce, N.D.; Hynes, W.F.; Edwards, S.A.; He, W.; Hum, N.R.; Wheeler, E.K.; Loots, G.G.; et al. Extracellular Matrix Modulates T Cell Clearance of Malignant Cells in Vitro. Biomaterials 2022, 282, 121378. [Google Scholar] [CrossRef]
- Linares, J.; Marín-Jiménez, J.A.; Badia-Ramentol, J.; Calon, A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front. Cell Dev. Biol. 2021, 8, 621070. [Google Scholar] [CrossRef]
- Huang, B.; Huang, M.; Li, Q. Cancer-Associated Fibroblasts Promote Angiogenesis of Hepatocellular Carcinoma by VEGF-Mediated EZH2/VASH1 Pathway. Technol. Cancer Res. Treat. 2019, 18, 1533033819879905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudley, A.C. Tumor Endothelial Cells. Cold Spring Harb. Perspect Med. 2012, 2, a006536. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xie, K.; Liu, T. Cancer Immunotherapies: From Efficacy to Resistance Mechanisms—Not Only Checkpoint Matters. Front. Immunol. 2021, 12, 2904. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Savino, B.; Locati, M.; Zammataro, L.; Allavena, P.; Bonecchi, R. The Chemokine System in Cancer Biology and Therapy. Cytokine Growth Factor Rev. 2010, 21, 27–39. [Google Scholar] [CrossRef]
- Flinsenberg, T.W.H.; Spel, L.; Jansen, M.; Koning, D.; de Haar, C.; Plantinga, M.; Scholman, R.; Loenen, M.M.; van Nierkens, S.; Boon, L.; et al. Cognate CD4 T-Cell Licensing of Dendritic Cells Heralds Anti-Cytomegalovirus CD8 T-Cell Immunity after Human Allogeneic Umbilical Cord Blood Transplantation. J. Virol. 2015, 89, 1058. [Google Scholar] [CrossRef]
- De Henau, O.; Rausch, M.; Winkler, D.; Campesato, L.F.; Liu, C.; Cymerman, D.H.; Budhu, S.; Ghosh, A.; Pink, M.; Tchaicha, J.; et al. Overcoming Resistance to Checkpoint Blockade Therapy by Targeting PI3Kγ in Myeloid Cells. Nature 2016, 539, 443–447. [Google Scholar] [CrossRef]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- Hofman, L.; Lawler, S.E.; Lamfers, M.L.M. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021, 13, 1570. [Google Scholar] [CrossRef]
- Ara, A.; Ahmed, K.A.; Xiang, J. Multiple Effects of CD40–CD40L Axis in Immunity against Infection and Cancer. ImmunoTargets Ther. 2018, 7, 55–61. [Google Scholar] [CrossRef]
- Lauterbach, H.; Schmidt, S.; Katchar, K.; Qing, X.; Iacobucci, C.; Hwang, A.; Schlienger, K.; Berka, U.; Raguz, J.; Ahmadi-Erber, S.; et al. Development and Characterization of a Novel Non-Lytic Cancer Immunotherapy Using a Recombinant Arenavirus Vector Platform. Front. Oncol. 2021, 11, 4035. [Google Scholar] [CrossRef]
- Morrissey, M.A.; Kern, N.; Vale, R.D. CD47 Ligation Repositions the Inhibitory Receptor SIRPA to Suppress Integrin Activation and Phagocytosis. Immunity 2020, 53, 290–302.e6. [Google Scholar] [CrossRef]
- Gerner, M.Y.; Heltemes-Harris, L.M.; Fife, B.T.; Mescher, M.F. Cutting Edge: IL-12 and Type I IFN Differentially Program CD8 T Cells for Programmed Death 1 Re-Expression Levels and Tumor Control. J. Immunol. 2013, 191, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Steding, C.E.; Wu, S.; Zhang, Y.; Jeng, M.-H.; Elzey, B.D.; Kao, C. The Role of Interleukin-12 on Modulating Myeloid-Derived Suppressor Cells, Increasing Overall Survival and Reducing Metastasis. Immunology 2011, 133, 221–238. [Google Scholar] [CrossRef]
- Atallah-Yunes, S.A.; Robertson, M.J. Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front. Immunol. 2022, 13, 1693. [Google Scholar] [CrossRef] [PubMed]
- Stolfi, C.; Pallone, F.; Macdonald, T.T.; Monteleone, G. Interleukin-21 in Cancer Immunotherapy: Friend or Foe? Oncoimmunology 2012, 1, 351. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, S.J.; Kumar, P. Cross-Talk between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front. Immunol. 2019, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Sansom, D.M. CD28, CTLA-4 and Their Ligands: Who Does What and to Whom? Immunology 2000, 101, 169. [Google Scholar] [CrossRef]
- Lee, J.; Ahn, E.; Kissick, H.T.; Ahmed, R. Reinvigorating Exhausted T Cells by Blockade of the PD-1. For. Immunopathol. Dis. Therap. 2015, 6, 7. [Google Scholar] [CrossRef]
- Aldinucci, D.; Borghese, C.; Casagrande, N. The CCL5/CCR5 Axis in Cancer Progression. Cancers 2020, 12, 1765. [Google Scholar] [CrossRef]
- Provenzano, P.P.; Inman, D.R.; Eliceiri, K.W.; Knittel, J.G.; Yan, L.; Rueden, C.T.; White, J.G.; Keely, P.J. Collagen Density Promotes Mammary Tumor Initiation and Progression. BMC Med. 2008, 6, 11. [Google Scholar] [CrossRef]
- Mammoto, T.; Mammoto, A.; Ingber, D.E. Mechanobiology and Developmental Control. Annu. Rev. Cell Dev. Biol. 2013, 29, 27–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikitovic, D.; Tzardi, M.; Berdiaki, A.; Tsatsakis, A.; Tzanakakis, G.N. Cancer Microenvironment and Inflammation: Role of Hyaluronan. Front. Immunol. 2015, 6, 169. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, M.; Palle, J.; Galy-Fauroux, I.; Terme, M. Direct and Indirect Modulation of T Cells by VEGF-A Counteracted by Anti-Angiogenic Treatment. Front. Immunol. 2021, 12, 616837. [Google Scholar] [CrossRef]
- Kuryk, L.; Vassilev, L.; Ranki, T.; Hemminki, A.; Karioja-Kallio, A.; Levälampi, O.; Vuolanto, A.; Cerullo, V.; Pesonen, S. Toxicological and Bio-Distribution Profile of a GM-CSF-Expressing, Double-Targeted, Chimeric Oncolytic Adenovirus ONCOS-102—Support for Clinical Studies on Advanced Cancer Treatment. PLoS ONE 2017, 12, e0182715. [Google Scholar] [CrossRef]
- Koski, A.; Kangasniemi, L.; Escutenaire, S.; Pesonen, S.S.; Cerullo, V.; Diaconu, I.; Nokisalmi, P.; Raki, M.; Rajecki, M.; Guse, K.; et al. Treatment of Cancer Patients With a Serotype 5/3 Chimeric Oncolytic Adenovirus Expressing GMCSF. Mol. Ther. 2010, 18, 1874–1884. [Google Scholar] [CrossRef]
- Schiza, A.; Wenthe, J.; Mangsbo, S.; Eriksson, E.; Nilsson, A.; Tötterman, T.H.; Loskog, A.; Ullenhag, G. Adenovirus-Mediated CD40L Gene Transfer Increases Teffector/Tregulatory Cell Ratio and Upregulates Death Receptors in Metastatic Melanoma Patients. J. Transl. Med. 2017, 15, 79. [Google Scholar] [CrossRef] [PubMed]
- Wenthe, J.; Naseri, S.; Hellström, A.-C.; Wiklund, H.J.; Eriksson, E.; Loskog, A. Immunostimulatory Oncolytic Virotherapy for Multiple Myeloma Targeting 4-1BB and/or CD40. Cancer Gene Ther. 2020, 27, 948–959. [Google Scholar] [CrossRef]
- Musher, B.L.; Smaglo, B.G.; Abidi, W.; Othman, M.; Patel, K.; Jawaid, S.; Jing, J.; Brisco, A.; Wenthe, J.; Eriksson, E.; et al. A Phase I/II Study of LOAd703, a TMZ-CD40L/4-1BBL-Armed Oncolytic Adenovirus, Combined with Nab-Paclitaxel and Gemcitabine in Advanced Pancreatic Cancer. J. Clin. Oncol. 2022, 40, 4138. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, Y.; Zhou, L.; Zhao, P.; Li, H.; Zhu, L.; Han, H.; Lin, H.; Kang, L.; Wu, J.; et al. Adenovirus-Mediated Delivery of Interferon-γ Gene Inhibits the Growth of Nasopharyngeal Carcinoma. J. Transl. Med. 2012, 10, 256. [Google Scholar] [CrossRef]
- Salzwedel, A.O.; Han, J.; LaRocca, C.J.; Shanley, R.; Yamamoto, M.; Davydova, J. Combination of Interferon-Expressing Oncolytic Adenovirus with Chemotherapy and Radiation Is Highly Synergistic in Hamster Model of Pancreatic Cancer. Oncotarget 2018, 9, 18041–18052. [Google Scholar] [CrossRef]
- Boorjian, S.A.; Alemozaffar, M.; Konety, B.R.; Shore, N.D.; Gomella, L.G.; Kamat, A.M.; Bivalacqua, T.J.; Montgomery, J.S.; Lerner, S.P.; Busby, J.E.; et al. Intravesical Nadofaragene Firadenovec Gene Therapy for BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer: A Single-Arm, Open-Label, Repeat-Dose Clinical Trial. Lancet Oncol. 2021, 22, 107–117. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Fan, J.; Guo, M.; Huang, B. Oncolytic and Immunologic Cancer Therapy with GM-CSF-Armed Vaccinia Virus of Tian Tan Strain Guang9. Cancer Lett. 2016, 372, 251–257. [Google Scholar] [CrossRef]
- Deng, L.; Yang, X.; Fan, J.; Ding, Y.; Peng, Y.; Xu, D.; Huang, B.; Hu, Z. An Oncolytic Vaccinia Virus Armed with GM-CSF and IL-24 Double Genes for Cancer Targeted Therapy. Onco Targets Ther. 2020, 13, 3535–3544. [Google Scholar] [CrossRef]
- Cao, F.; Nguyen, P.; Hong, B.; DeRenzo, C.; Rainusso, N.C.; Rodriguez Cruz, T.; Wu, M.; Liu, H.; Song, X.; Suzuki, M.; et al. Engineering Oncolytic Vaccinia Virus to Redirect Macrophages to Tumor Cells. Adv. Cell Gene Ther. 2021, 4, e99. [Google Scholar] [CrossRef]
- Galivo, F.; Diaz, R.M.; Thanarajasingam, U.; Jevremovic, D.; Wongthida, P.; Thompson, J.; Kottke, T.; Barber, G.N.; Melcher, A.; Vile, R.G. Interference of CD40L-Mediated Tumor Immunotherapy by Oncolytic Vesicular Stomatitis Virus. Hum. Gene Ther. 2010, 21, 439–450. [Google Scholar] [CrossRef]
- Bourgeois-Daigneault, M.-C.; Roy, D.G.; Falls, T.; Twumasi-Boateng, K.; St-Germain, L.E.; Marguerie, M.; Garcia, V.; Selman, M.; Jennings, V.A.; Pettigrew, J.; et al. Oncolytic Vesicular Stomatitis Virus Expressing Interferon-σ Has Enhanced Therapeutic Activity. Mol. Ther. Oncolytics 2016, 3, 16001. [Google Scholar] [CrossRef]
- Klimp, A.; van der Vaart, E.; Lansink, P.; Withoff, S.; de Vries, E.; Scherphof, G.; Wilschut, J.; Daemen, T. Activation of Peritoneal Cells upon in Vivo Transfection with a Recombinant Alphavirus Expressing GM-CSF. Gene Ther. 2001, 8, 300–307. [Google Scholar] [CrossRef]
- Trofimova, O.; Korotkaja, K.; Skrastina, D.; Jansons, J.; Spunde, K.; Isaguliants, M.; Zajakina, A. Alphavirus-driven Interferon Gamma (IFNG) Expression Inhibits Tumor Growth in Orthotopic 4T1 Breast Cancer Model. Vaccines 2021, 9, 1247. [Google Scholar] [CrossRef]
- Sánchez-Paulete, A.R.; Teijeira, Á.; Quetglas, J.I.; Rodríguez-Ruiz, M.E.; Sánchez-Arráez, Á.; Labiano, S.; Etxeberria, I.; Azpilikueta, A.; Bolaños, E.; Ballesteros-Briones, M.C.; et al. Intratumoral Immunotherapy with XCL1 and SFlt3L Encoded in Recombinant Semliki Forest Virus-Derived Vectors Fosters Dendritic Cell-Mediated T-Cell Cross-Priming. Cancer Res. 2018, 78, 6643–6654. [Google Scholar] [CrossRef]
- Kemp, V.; van den Wollenberg, D.J.M.; Camps, M.G.M.; van Hall, T.; Kinderman, P.; Pronk-van Montfoort, N.; Hoeben, R.C. Arming Oncolytic Reovirus with GM-CSF Gene to Enhance Immunity. Cancer Gene Ther. 2019, 26, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.; Burke, S.; Travers, J.; Rath, N.; Leinster, A.; Navarro, C.; Franks, R.; Leyland, R.; Mulgrew, K.; McGlinchey, K.; et al. Recombinant Newcastle Disease Virus Immunotherapy Drives Oncolytic Effects and Durable Systemic Antitumor Immunity. Mol. Cancer Ther. 2021, 20, 1723–1734. [Google Scholar] [CrossRef]
- Huang, F.-Y.; Wang, J.-Y.; Dai, S.-Z.; Lin, Y.-Y.; Sun, Y.; Zhang, L.; Lu, Z.; Cao, R.; Tan, G.-H. A Recombinant Oncolytic Newcastle Virus Expressing MIP-3α Promotes Systemic Antitumor Immunity. J. Immunother. Cancer 2020, 8, e000330. [Google Scholar] [CrossRef] [PubMed]
- Andtbacka, R.H.I.; Collichio, F.; Harrington, K.J.; Middleton, M.R.; Downey, G.; Öhrling, K.; Kaufman, H.L. Final Analyses of OPTiM: A Randomized Phase III Trial of Talimogene Laherparepvec versus Granulocyte-Macrophage Colony-Stimulating Factor in Unresectable Stage III-IV Melanoma. J. Immunother. Cancer 2019, 7, 145. [Google Scholar] [CrossRef]
- Puzanov, I.; Chesney, J.; Collichio, F.; Singh, P.; Milhem, M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; et al. Talimogene Laherparepvec (T-VEC) in Combination with Ipilimumab (IPI) versus IPI Alone for Advanced Melanoma: 4-Year Interim Analysis of a Randomized, Open-Label, Phase 2 Trial. J. Immunother. Cancer 2020, 8, A263–A264. [Google Scholar]
- Mills, C.D. M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol. 2012, 32, 463–488. [Google Scholar] [CrossRef] [PubMed]
- Georgoudaki, A.M.; Prokopec, K.E.; Boura, V.F.; Hellqvist, E.; Sohn, S.; Östling, J.; Dahan, R.; Harris, R.A.; Rantalainen, M.; Klevebring, D.; et al. Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis. Cell Rep. 2016, 15, 2000–2011. [Google Scholar] [CrossRef] [PubMed]
- Watkins, S.K.; Egilmez, N.K.; Suttles, J.; Stout, R.D. IL-12 Rapidly Alters the Functional Profile of Tumor-Associated and Tumor-Infiltrating Macrophages In Vitro and In Vivo. J. Immunol. 2007, 178, 1357–1362. [Google Scholar] [CrossRef]
- Johansson, A.; Hamzah, J.; Payne, C.J.; Ganss, R. Tumor-Targeted TNFα Stabilizes Tumor Vessels and Enhances Active Immunotherapy. Proc. Natl. Acad. Sci. USA 2012, 109, 7841–7846. [Google Scholar] [CrossRef]
- Spiller, K.L.; Nassiri, S.; Witherel, C.E.; Anfang, R.R.; Ng, J.; Nakazawa, K.R.; Yu, T.; Vunjak-Novakovic, G. Sequential Delivery of Immunomodulatory Cytokines to Facilitate the M1-to-M2 Transition of Macrophages and Enhance Vascularization of Bone Scaffolds. Biomaterials 2015, 37, 194–207. [Google Scholar] [CrossRef]
- Yamashita, M.; Rosser, C.J.; Zhou, J.H.; Zhang, X.Q.; Connor, R.J.; Engler, H.; Maneval, D.C.; Karashima, T.; Czerniak, B.A.; Dinney, C.P.N.; et al. Syn3 Provides High Levels of Intravesical Adenoviral-Mediated Gene Transfer for Gene Therapy of Genetically Altered Urothelium and Superficial Bladder Cancer. Cancer Gene Ther. 2002, 9, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Quixabeira, D.C.A.; Zafar, S.; Santos, J.M.; Cervera-Carrascon, V.; Havunen, R.; Kudling, T.V.; Basnet, S.; Anttila, M.; Kanerva, A.; Hemminki, A. Oncolytic Adenovirus Coding for a Variant Interleukin 2 (VIL-2) Cytokine Re-Programs the Tumor Microenvironment and Confers Enhanced Tumor Control. Front. Immunol. 2021, 12, 1827. [Google Scholar] [CrossRef]
- Barton, K.N.; Siddiqui, F.; Pompa, R.; Freytag, S.O.; Khan, G.; Dobrosotskaya, I.; Ajlouni, M.; Zhang, Y.; Cheng, J.; Movsas, B.; et al. Phase I Trial of Oncolytic Adenovirus-Mediated Cytotoxic and Interleukin-12 Gene Therapy for the Treatment of Metastatic Pancreatic Cancer. Mol. Ther. Oncolytics 2021, 20, 94–104. [Google Scholar] [CrossRef]
- Yang, C.; Cao, H.; Liu, N.; Xu, K.; Ding, M.; Mao, L.-J. Oncolytic Adenovirus Expressing Interleukin-18 Improves Antitumor Activity of Dacarbazine for Malignant Melanoma. Drug Des. Devel. Ther. 2016, 10, 3755–3761. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-K.; Lee, J.-S.; Zhang, S.-N.; Park, J.; Lee, K.-M.; Sonn, C.H.; Yun, C.-O. Oncolytic Adenovirus Co-Expressing IL-12 and IL-18 Improves Tumor-Specific Immunity via Differentiation of T Cells Expressing IL-12Rβ2 or IL-18Rα. Gene Ther. 2011, 18, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Buñuales, M.; Ballesteros-Briones, M.C.; Gonzalez-Aparicio, M.; Hervas-Stubbs, S.; Martisova, E.; Mancheño, U.; Ricobaraza, A.; Lumbreras, S.; Smerdou, C.; Hernandez-Alcoceba, R. Adenovirus-Mediated Inducible Expression of a PD-L1 Blocking Antibody in Combination with Macrophage Depletion Improves Survival in a Mouse Model of Peritoneal Carcinomatosis. Int. J. Mol. Sci. 2021, 22, 4176. [Google Scholar] [CrossRef]
- Leoni, V.; Vannini, A.; Gatta, V.; Rambaldi, J.; Sanapo, M.; Barboni, C.; Zaghini, A.; Nanni, P.; Lollini, P.-L.; Casiraghi, C.; et al. A Fully-Virulent Retargeted Oncolytic HSV Armed with IL-12 Elicits Local Immunity and Vaccine Therapy towards Distant Tumors. PLOS Pathog. 2018, 14, e1007209. [Google Scholar] [CrossRef]
- Thomas, E.D.; Meza-Perez, S.; Bevis, K.S.; Randall, T.D.; Gillespie, G.Y.; Langford, C.; Alvarez, R.D. IL-12 Expressing Oncolytic Herpes Simplex Virus Promotes Anti-Tumor Activity and Immunologic Control of Metastatic Ovarian Cancer in Mice. J. Ovarian Res. 2016, 9, 70. [Google Scholar] [CrossRef]
- Patel, D.M.; Foreman, P.M.; Nabors, L.B.; Riley, K.O.; Gillespie, G.Y.; Markert, J.M. Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Patients with Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma, or Gliosarcoma. Hum. Gene Ther. Clin. Dev. 2016, 27, 69–78. [Google Scholar] [CrossRef]
- Ino, Y.; Saeki, Y.; Fukuhara, H.; Todo, T. Triple Combination of Oncolytic Herpes Simplex Virus-1 Vectors Armed with Interleukin-12, Interleukin-18, or Soluble B7-1 Results in Enhanced Antitumor Efficacy. Clin. Cancer Res. 2006, 12, 643–652. [Google Scholar] [CrossRef]
- Khalique, H.; Baugh, R.; Dyer, A.; Scott, E.M.; Frost, S.; Larkin, S.; Lei-Rossmann, J.; Seymour, L.W. Oncolytic Herpesvirus Expressing PD-L1 BiTE for Cancer Therapy: Exploiting Tumor Immune Suppression as an Opportunity for Targeted Immunotherapy. J. Immunother. Cancer 2021, 9, e001292. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Wang, H.; Ren, J.; Liu, W.; Chen, L.; Chen, H.; Ye, J.; Dai, E.; Ma, C.; Ju, S.; et al. Oncolytic Vaccinia Virus Delivering Tethered IL-12 Enhances Antitumor Effects with Improved Safety. J. Immunother. Cancer 2020, 8, e000710. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L. Targeting the Local Tumor Microenvironment with Vaccinia Virus Expressing B7.1 for the Treatment of Melanoma. J. Clin. Invest. 2005, 115, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L.; Kim, D.W.; Kim-Schulze, S.; DeRaffele, G.; Jagoda, M.C.; Broucek, J.R.; Zloza, A. Results of a Randomized Phase I Gene Therapy Clinical Trial of Nononcolytic Fowlpox Viruses Encoding T Cell Costimulatory Molecules. Hum. Gene Ther. 2014, 25, 452–460. [Google Scholar] [CrossRef]
- Wang, N.; Wang, J.; Zhang, Z.; Cao, H.; Yan, W.; Chu, Y.; Chard Dunmall, L.S.; Wang, Y. A Novel Vaccinia Virus Enhances Anti-Tumor Efficacy and Promotes a Long-Term Anti-Tumor Response in a Murine Model of Colorectal Cancer. Mol. Ther. Oncolytics 2021, 20, 71–81. [Google Scholar] [CrossRef]
- Chaurasiya, S.; Yang, A.; Zhang, Z.; Lu, J.; Valencia, H.; Kim, S.-I.; Woo, Y.; Warner, S.G.; Olafsen, T.; Zhao, Y.; et al. A Comprehensive Preclinical Study Supporting Clinical Trial of Oncolytic Chimeric Poxvirus CF33-HNIS-Anti-PD-L1 to Treat Breast Cancer. Mol. Ther. Methods Clin. Dev. 2022, 24, 102–116. [Google Scholar] [CrossRef]
- Li, J.; O’Malley, M.; Urban, J.; Sampath, P.; Guo, Z.S.; Kalinski, P.; Thorne, S.H.; Bartlett, D.L. Chemokine Expression From Oncolytic Vaccinia Virus Enhances Vaccine Therapies of Cancer. Mol. Ther. 2011, 19, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.J.; Wanna, G.B.; Choi, B.; Aguila, D.; Ebert, O.; Genden, E.M.; Woo, S.L. Interleukin-12 Expression Enhances Vesicular Stomatitis Virus Oncolytic Therapy in Murine Squamous Cell Carcinoma. Laryngoscope 2007, 117, 210–214. [Google Scholar] [CrossRef]
- Stephenson, K.B.; Barra, N.G.; Davies, E.; Ashkar, A.A.; Lichty, B.D. Expressing Human Interleukin-15 from Oncolytic Vesicular Stomatitis Virus Improves Survival in a Murine Metastatic Colon Adenocarcinoma Model through the Enhancement of Anti-Tumor Immunity. Cancer Gene Ther. 2012, 19, 238–246. [Google Scholar] [CrossRef]
- Nelson, A.; Gebremeskel, S.; Lichty, B.D.; Johnston, B. Natural Killer T Cell Immunotherapy Combined with IL-15-Expressing Oncolytic Virotherapy and PD-1 Blockade Mediates Pancreatic Tumor Regression. J. Immunother. Cancer 2022, 10, e003923. [Google Scholar] [CrossRef]
- Wu, Y.; He, J.; An, Y.; Wang, X.; Liu, Y.; Yan, S.; Ye, X.; Qi, J.; Zhu, S.; Yu, Q.; et al. Recombinant Newcastle Disease Virus (NDV/Anh-IL-2) Expressing Human IL-2 as a Potential Candidate for Suppresses Growth of Hepatoma Therapy. J. Pharmacol. Sci. 2016, 132, 24–30. [Google Scholar] [CrossRef]
- Veinalde, R.; Grossardt, C.; Hartmann, L.; Bourgeois-Daigneault, M.-C.; Bell, J.C.; Jäger, D.; von Kalle, C.; Ungerechts, G.; Engeland, C.E. Oncolytic Measles Virus Encoding Interleukin-12 Mediates Potent Antitumor Effects through T Cell Activation. Oncoimmunology 2017, 6, e1285992. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Madoz, J.R.; Prieto, J.; Smerdou, C. Semliki Forest Virus Vectors Engineered to Express Higher IL-12 Levels Induce Efficient Elimination of Murine Colon Adenocarcinomas. Mol. Ther. 2005, 12, 153–163. [Google Scholar] [CrossRef]
- Ballesteros-Briones, M.C.; Martisova, E.; Casales, E.; Silva-Pilipich, N.; Buñuales, M.; Galindo, J.; Mancheño, U.; Gorraiz, M.; Lasarte, J.J.; Kochan, G.; et al. Short-Term Local Expression of a PD-L1 Blocking Antibody from a Self-Replicating RNA Vector Induces Potent Antitumor Responses. Mol. Ther. 2019, 27, 1892–1905. [Google Scholar] [CrossRef]
- Wu, M.-R.; Zhang, T.; Gacerez, A.T.; Coupet, T.A.; DeMars, L.R.; Sentman, C.L. B7H6-Specific Bispecific T Cell Engagers (BiTEs) Lead to Tumor Elimination and Host Anti-Tumor Immunity. J. Immunol. 2015, 194, 5305. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Peng, D.; Wang, H.H.; Zhang, X.; Wang, H.H.; Xiao, F.; Zhu, Y.; Ji, Y.; Gulukota, K.; et al. An Oncolytic Adenovirus Targeting Transforming Growth Factor β Inhibits Protumorigenic Signals and Produces Immune Activation: A Novel Approach to Enhance Anti-PD-1 and Anti-CTLA-4 Therapy. Hum. Gene Ther. 2019, 30, 1117–1132. [Google Scholar] [CrossRef]
- Guedan, S.; Rojas, J.J.; Gros, A.; Mercade, E.; Cascallo, M.; Alemany, R. Hyaluronidase Expression by an Oncolytic Adenovirus Enhances Its Intratumoral Spread and Suppresses Tumor Growth. Mol. Ther. 2010, 18, 1275–1283. [Google Scholar] [CrossRef]
- Martínez-Vélez, N.; Xipell, E.; Vera, B.; Acanda de la Rocha, A.; Zalacain, M.; Marrodán, L.; Gonzalez-Huarriz, M.; Toledo, G.; Cascallo, M.; Alemany, R.; et al. The Oncolytic Adenovirus VCN-01 as Therapeutic Approach Against Pediatric Osteosarcoma. Clin. Cancer Res. 2016, 22, 2217–2225. [Google Scholar] [CrossRef]
- Du, T.; Shi, G.; Li, Y.M.; Zhang, J.F.; Tian, H.W.; Wei, Y.Q.; Deng, H.; Yu, D.C. Tumor-Specific Oncolytic Adenoviruses Expressing Granulocyte Macrophage Colony-Stimulating Factor or Anti-CTLA4 Antibody for the Treatment of Cancers. Cancer Gene Ther. 2014, 21, 340–348. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kang, D.; Choi, H.J.; Joo, Y.; Kim, J.-H.H.; Song, J.J. Prime-Boost Immunization by Both DNA Vaccine and Oncolytic Adenovirus Expressing GM-CSF and ShRNA of TGF-Β2 Induces Anti-Tumor Immune Activation. Oncotarget 2017, 8, 15858–15877. [Google Scholar] [CrossRef]
- Jung, B.-K.; Ko, H.Y.; Kang, H.; Hong, J.; Ahn, H.M.; Na, Y.; Kim, H.; Kim, J.S.; Yun, C.-O. Relaxin-Expressing Oncolytic Adenovirus Induces Remodeling of Physical and Immunological Aspects of Cold Tumor to Potentiate PD-1 Blockade. J. Immunother. Cancer 2020, 8, e000763. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.M.; Hong, J.; Yun, C.-O. Oncolytic Adenovirus Coexpressing Interleukin-12 and ShVEGF Restores Antitumor Immune Function and Enhances Antitumor Efficacy. Oncotarget 2016, 7, 84965–84980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.N.; Meleth, S.; Hughes, K.B.; Gillespie, G.Y.; Whitley, R.J.; Markert, J.M. Enhanced Inhibition of Syngeneic Murine Tumors by Combinatorial Therapy with Genetically Engineered HSV-1 Expressing CCL2 and IL-12. Cancer Gene Ther. 2005, 12, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhang, S.; Cai, L.; Duan, H.; Li, Y.; Yang, J.; Wang, Y.; Liu, B.B.; Dong, S.; Fang, Z.; et al. A Novel Cocktail Therapy Based on Quintuplet Combination of Oncolytic Herpes Simplex Virus-2 Vectors Armed with Interleukin-12, Interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 Results in Enhanced Antitumor Efficacy. Virol. J. 2022, 19, 74. [Google Scholar] [CrossRef]
- De Lucia, M.; Cotugno, G.; Bignone, V.; Garzia, I.; Nocchi, L.; Langone, F.; Petrovic, B.; Sasso, E.; Pepe, S.; Froechlich, G.; et al. Retargeted and Multi-Cytokine-Armed Herpes Virus Is a Potent Cancer Endovaccine for Local and Systemic Anti-Tumor Treatment. Mol. Ther. Oncolytics 2020, 19, 253–264. [Google Scholar] [CrossRef]
- TNFalpha and Interleukin 2 Coding Oncolytic Adenovirus TILT-123 During TIL Treatment of Advanced Melanoma (NCT04217473). Available online: https://clinicaltrials.gov/ct2/show/NCT04217473 (accessed on 31 July 2022).
- Havunen, R.; Kalliokoski, R.; Siurala, M.; Sorsa, S.; Santos, J.M.; Cervera-carrascon, V.; Anttila, M.; Hemminki, A. Cytokine-Coding Oncolytic Adenovirus TILT-123 Is Safe, Selective, and Effective as a Single Agent and in Combination with Immune Checkpoint Inhibitor Anti-PD-1. Cells 2021, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- David, R.M.; Doherty, A.T. Viral Vectors: The Road to Reducing Genotoxicity. Toxicol. Sci. 2017, 155, 315–325. [Google Scholar] [CrossRef]
- Stephen, S.L.; Montini, E.; Sivanandam, V.G.; Al-Dhalimy, M.; Kestler, H.A.; Finegold, M.; Grompe, M.; Kochanek, S. Chromosomal Integration of Adenoviral Vector DNA in Vivo. J. Virol. 2010, 84, 9987–9994. [Google Scholar] [CrossRef]
- Isman, O.; Roberts, M.L.; Morgan, J.E.; Graham, I.R.; Goldring, K.; Lawrence-Watt, D.J.; Lu, Q.L.; Dunckley, M.G.; Porter, A.C.G.; Partridge, T.A.; et al. Adenovirus-Based Targeting in Myoblasts Is Hampered by Nonhomologous Vector Integration. Hum. Gene Ther. 2008, 19, 1000–1008. [Google Scholar] [CrossRef]
- Schirm, S.; Doerfler, W. Expression of Viral DNA in Adenovirus Type 12-Transformed Cells, in Tumor Cells, and in Revertants. J. Virol. 1981, 39, 694–702. [Google Scholar] [CrossRef]
- Ricca, J.M.; Oseledchyk, A.; Walther, T.; Liu, C.; Mangarin, L.; Merghoub, T.; Wolchok, J.D.; Zamarin, D. Pre-Existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Mol. Ther. 2018, 26, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Conti, M. Boosting Effect of Pre-Existing Immunity on Anti-Cancer Immunotherapies. Front. Drug Chem. Clin. Res. 2021, 4, 1–6. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of Cancer Immunity and the Cancer–Immune Set Point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Guedan, S.; Alemany, R. CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Front. Immunol. 2018, 9, 2460. [Google Scholar] [CrossRef] [PubMed]
- Nishio, N.; Diaconu, I.; Liu, H.; Cerullo, V.; Caruana, I.; Hoyos, V.; Bouchier-Hayes, L.; Savoldo, B.; Dotti, G. Armed Oncolytic Virus Enhances Immune Functions of Chimeric Antigen Receptor-Modified T Cells in Solid Tumors. Cancer Res. 2014, 74, 5195–5205. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Luo, Y.; Da, T.; Guedan, S.; Ruella, M.; Scholler, J.; Keith, B.; Young, R.M.; Engels, B.; Sorsa, S.; et al. Pancreatic Cancer Therapy with Combined Mesothelin-Redirected Chimeric Antigen Receptor T Cells and Cytokine-Armed Oncolytic Adenoviruses. JCI Insight 2018, 3, 99573. [Google Scholar] [CrossRef]
- Rojas, J.M.; Avia, M.; Martín, V.; Sevilla, N. IL-10: A Multifunctional Cytokine in Viral Infections. J. Immunol. Res. 2017, 2017, 6104054. [Google Scholar] [CrossRef]
- Brooks, D.G.; Ha, S.-J.; Elsaesser, H.; Sharpe, A.H.; Freeman, G.J.; Oldstone, M.B.A. IL-10 and PD-L1 Operate through Distinct Pathways to Suppress T-Cell Activity during Persistent Viral Infection. Proc. Natl. Acad. Sci. USA 2008, 105, 20428–20433. [Google Scholar] [CrossRef]
- Wong, R.J.; Patel, S.G.; Kim, S.-H.; DeMatteo, R.P.; Malhotra, S.; Bennett, J.J.; St-Louis, M.; Shah, J.P.; Johnson, P.A.; Fong, Y. Cytokine Gene Transfer Enhances Herpes Oncolytic Therapy in Murine Squamous Cell Carcinoma. Hum. Gene Ther. 2001, 12, 253–265. [Google Scholar] [CrossRef]
Virus Type | Insert Capacity | Cell Receptor/Tropism | Advantages | Limitations |
---|---|---|---|---|
DNA vectors | ||||
Adenoviruses | up to 7.5 kb up to 36 kb (fully deleted helper dependent Ads) | Coxsackie Adenovirus receptor (CAR); CD46 |
|
|
Poxviruses | up to 24 kb 7.5 kb (MVA) | binding to glycosaminoglycans following cell fusion; virus replication and spread are dependent on epidermal growth factor receptor (EGFR) signalling; preferential replication in cancer cells |
|
|
Herpesviruses | up to 40 kb (replication-deficient vector) up to 14 kb (HSV1) | Herpesvirus Entry Mediator and nectin 1 (HSV-1) |
|
|
RNA vectors | ||||
Rhabdoviruses | 4–6 kb | multiple receptors were proposed (phospholipids and gangliosides, nicotinic acetylcholine receptor, neural cell adhesion molecule, and low-density lipoprotein gene family receptors (LDLR) |
|
|
Alphaviruses | up to 5 kb | very low-density lipoprotein receptor (VLDL-R) and apolipoprotein E receptor 2 (ApoER2) |
|
|
Arenaviruses | up to 2 kb | preferentially infect monocytes, macrophages, and DCs through binding to α-dystroglycan (α-DG) |
|
|
Enteroviruses | 0.3–1.7 kb | immunoglobulin-like receptor, CD155; Nectin-like molecule 5 (Poliovirus), coxsackie-adenovirus receptor (CAR); RGD motif of integrins (Coxsackievirus), other co-receptors |
|
|
Reoviruses | up to 1.5 kb within two RNA segments | the receptor is unknown, but is thought to include sialic acid and junctional adhesion molecules (JAMs) |
|
|
Paramyxoviruses | up to 6 kb (Measles virus, MV) 4.5 kb (Newcastle disease virus, NDV) | different receptors: MV: signal lymphocyte-activation molecule (SLAM or CD150) CD46, Nectin-4 NDV: sialic acids on the tumour cell surface |
|
|
Transgene | Virus Vector (Virus Backbone) | Model | Effect | Ref. |
---|---|---|---|---|
Adenoviruses | ||||
GM-CSF | ONCOS-102 (Ad5/3-D24-GMCSF) | patients advanced solid tumours | biodistribution and toxicity study in Syrian hamster showed broad tropism. The virus DNA expression was detectable nearly for one month. No severe adverse events occurred in 21 patients with advanced solid tumours. Clinical benefits for 8 out of 21 patients with confirmed anti-tumour immune responses; however significant anti-adenovirus vector immune response was also detected. | [161,162] |
CD40L | AdCD40L (Ad5) | melanoma patients (n = 15) phase I/IIa study | induced desirable systemic immune effects that correlated with prolonged survival | [163] |
TMZ-CD40L plus 4-1BBL | LOAd703 (Ad5/35) | panel of human multiple myeloma cell lines (ANBL-6, L363, LP-1, OPM-2, RPMI-8226, and U266-84), RPMI-8226 xenografts patients with late-stage pancreatic cancer (PDAC) | in preclinical multiple myeloma studies: selective tumour cell lysis, induction of CTL activation, control of tumour growth; in phase I/IIa clinical study overall response rate of 44%, disease control rate 94% and increase in the proportion of T effector memory cells, while the proportion of Treg and MDSC decreased | [164,165] |
IFNγ | Ad-IFNγ (Ad5) | murine nasopharyngeal carcinoma (NPC), CNE-2 and C666-1 cell xenografts in nude mice | anti-proliferative effects in NPC cells; xenograft tumour growth inhibition in nude mice | [166] |
IFNα/β | OAd-hamIFN (Ad5) | pancreatic cancer (PDAC), hamster | IFN expressed from OAd-hamIFN acts synergistically with radiation and chemotherapy significantly improving cytotoxic effect in vitro and inhibiting tumour growth in vivo, resulting in prolonged survival | [167] |
IFNα-2b | rAd-IFNα/Syn3 (Ad5) | phase III clinical study, patients with non-muscle-invasive bladder cancer | 53.4% (55 patients) of 103 patients with carcinoma in situ had a complete response within 3 months and it maintained in 25 (45.5%) of 55 patients at 12 months | [168] |
Herpesviruses | ||||
GM-CSF | T-VEC (ΔICP34.5 oHSV1) | clinical trials with metastatic stage IIIB/C–IVM1a melanoma | proved significant systemic disease control, especially in combination with antiCTLA-4 (ipilimumab), and antiPD1 (pembrolizumab); infiltration of TAA-specific CD8+ and CD4+ T-cells and inflammation in tumours, decrease in MDSC and Treg populations | [169] |
Poxviruses | ||||
GM-CSF | PexaVec—JX-594 (VV-WR strain) | Patients with renal cell cancer, colorectal cancer, hepatocellular carcinoma | in patients with advanced HCC overall survival was significantly longer in the high-dose arm (median 14.1 months versus 6.7 months at low dose); induction of dendritic cell maturation and increase in leukocytes numbers in patients’ blood | [32] |
GM-CSF | VG9-GMCSF (VV Tian Tan strain Guang 9) | murine melanoma B16, s.c. tumour | significant inhibition of tumour growth, prolonged survival and cytotoxic immune response | [170] |
GM-CSF plus IL-24 | VG9-GMCSF-IL24 (VV Tian Tan strain Guang 9) | murine cancer cell lines B16, 4T1, MDA-MB-231, CT26, HCT116, A549; B16, 4T1 and CT-26 sc murine tumours | in the CT26 model, 80% of mice were completely cured; the synergistic effect of IL-24 and GM-CSF increased IFN-γ production | [171] |
IFNβ | TK-/B18R-/IFN-beta+; JX-795 (WR vvDD) | murine colorectal adenocarcinoma CMT-93 and murine mammary adenocarcinoma JC; C57/BL6 and Balb/c mice respectively | a single intratumoural injection of a high dose of the virus resulted in complete tumour regression. Intravenous injection of the same dose was much less efficient. A significant increase in the tumour-infiltrating lymphocytes was found in all treated animals. Animals with complete responses, showed protection to tumour cell rechallenge | [37] |
SIRPα-Fc | SIRPα-Fc-VV (VSC20–WR vvDD) | human osteosarcoma LM7 SCID-Bg mice xenograft model, murine F420 osteosarcoma model; C57BL/6 | induced phagocytosis of tumour cells by M1 as well as M2 macrophages in vitro; macrophages and monocytes recruitment into tumours in vivo; increased survival | [172] |
Rhabdoviruses | ||||
CD40-L | VSV-CD40L | B16 melanoma in C57BL/6 mice | infection with VSV-CD40L induced maturation of bone marrow-derived DCs with increase in expression of CD40, CD86, and MHC II compared to VSV-GFP; some mice showed complete response, however, there was no difference in the anti-tumour response between the control VSV-GFP and VSV-CD40L; no tumour specific antigen response observed | [173] |
Flt3L (soluble Fms-like tyrosine kinase 3 ligand) | VSV-Flt3L | murine tumour VSV-resistant B16 melanoma and VSV-sensitive E.G7 T lymphoma | modest animal survival in E.G7 tumour model was independent of adaptive CTL response; tumour-associated DCs were actively infected by VSV in vivo, which prevented their migration and antigen presentation | [50] |
IFNγ | VSVΔ51-IFNγ | 4T1 mammary carcinoma and CT26 colon carcinoma murine models | VSVΔ51-IFNγ induced secretion of pro-inflammatory factors in the blood, enhanced activation of DCs, and generated a greater tumour-specific immune response; the reduction in tumour size correlated with prolonged survival | [174] |
IFNβ-NIS (sodium iodide symporter) | VSV-mIFN bβ-NIS | syngeneic murine acute myeloid leukaemia (AML) C1498 tumour C57 BL/6J PD-L1Ab (10F.9G2; BioXCell) | combination with anti-PD-L1 therapy enhanced anti-tumour activity and survival compared with treatment with virus or antibody alone; increased tumour-infiltrating CD4+ and CD8+ cells; depletion of CD8 or natural killer cells, but not CD4 cells, resulted in a loss anti-tumour activity | [49] |
Alphaviruses | ||||
GM-CSF | SFV-GM-CSF | murine i.p. growing ovarian tumour (MOT) spontaneous teratocarcinoma of C3HeB/FeJ mice | single i.p. injection of SFV-GM-CSF leads to increase in the number of peritoneal macrophages and neutrophils. Tumour growth delay for 2 weeks did not lead to prolonged survival. | [175] |
IFNγ | SFV-enh/IFNγ | 4T1 murine mammary carcinoma spheroids; Balb/c mice orthotopic and s.c. tumours | significant inhibition of tumour growth in comparison to the control SFV/Luc virus; increased CD4+ and CD8+ cell populations, and decreased T-reg and myeloid CD11b+, CD38+, and CD206+ cell populations in treated tumours | [176] |
Flt3L (a soluble Fms-like tyrosine kinase 3 ligand) and XCL1 (a chemoattractant for cDC1 cells) | SFV-XCL1-sFlt3L (SFV-XF) | murine colon cancer MC38 and B16-OVA tu-mours | delayed progression of tumours; increased infiltration of CD8+ T cells and enhanced anti-tumour activity of BATF3-dependent cDC1; the SFV therapeutic activity was potentiated by combination with anti–PD-1, anti-CD137, or CTLA-4 antibodies | [177] |
Reoviruses | ||||
GM-CSF | rS1-mmGMCSF (MRV) | murine model of pancreatic cancer | intratumoral treatment led to activation of DCs and T-cells | [178] |
Paramyxoviruses | ||||
GM-CSF | NDVhuGM-CSF, MEDI5395 NDVmuGMCSF (NDV) | 176 human tumour cell lines, patient-derived triple-negative breast cancer (TNBC) xenograft model, CT26 murine colon carcinoma tumour model | MEDI5395 has oncolytic and immune stimulating activity in a range of human tumour models, with the most sensitive HT1080, DU145, CAL27, NCIH358, and OVCAR4 cells. Tumour treatment led to inflamed TME, efficacy was further improved by combination with CPIs or T-cell agonists | [179] |
MIP3α—(CCL20) | NDV-MIP3α (NDV) | B16 melanoma and CT26 colon carcinoma tumour-bearing mice | enhanced anti-tumour activity; attraction of DCs and induction of adaptive immunity | [180] |
Transgene | Virus Vector (Virus Backbone) | Model | Effect | Ref. |
---|---|---|---|---|
Adenoviruses | ||||
IL-2 (modified) | Ad5/3-E2F-d24-vIL2 (Ad5/3) | pancreatic ductal adenocarcinoma (PDAC), hamsters | efficient anti-tumour response (62.5%); reversed immunosuppression by a decrease of myeloid cell populations and an increase of tumour-infiltrating CTLs. | [189] |
IL-12 plus TK suicide gene | yCD/mutTKSR39rep-hIL-12 (Ad5) | 12 patients with metastatic pancreatic cancer (T2N0M1-T4N1M1) | good toxicity profile; induced immune activation and improved survival; elevated IL-12, IFNγ and CXCL10 serum levels were detected in 42%, 75%, and 92% of patients, respectively | [190] |
IL-18 | ZD55-IL-18 (Ad5) | human A375 melanoma; nude mouse xenograft model | ZD55-IL-18 and dacarbazine drug (DTIC) showed synergistic effects and resulted in significant tumour cell apoptosis, decreased VEGF expression and inhibition of lung metastasis | [191] |
IL-12 plus IL-18 | RdB/IL-12/IL-18 (Ad5) | B16-F10 murine melanoma | improved anti-tumour effects, as well as increased survival; elevated levels of IL-12, IL-18, IFNγ and GM-CSF, and infiltration of NK cells, CD4+ and CD8+ T cells in treated tumours | [192] |
anti-PD-L1 blocking antibody | HCA-EFZP-aPDL1 (Ad5) | murine colon carcinoma MC38 tumour | significant reduction of tumour growth with minimal release of the antibody to the bloodstream | [193] |
Herpesviruses | ||||
IL-12 | R-115 (hHER2 retargeted ΔICP34.5 oHSV) | human breast cancer SK-OV-3 cells, Lewis lung carcinoma murine cells expressing hHER2 (HER2-LLC1) s.c. tumours | R-115 reversed the immunosuppressive TME by induction of immunomodulatory cytokines, including IFNγ, promotion of Th1 polarization, and generation of durable responses in some treated animals | [194] |
IL-12 | M002 (ΔICP34.5 oHSV1) | murine ovarian adenocarcinoma: ID8, Ig10, M0505, and STOSE | reduced peritoneal metastases and improved survival after a single intraperitoneal injection | [195] |
IL-12 | M032 (ΔICP34.5 oHSV1) | A. nancymae monkeys | toxicology and biodistribution study; the protocol for phase I clinical trial in patients with recurrent or progressive malignant glioma was designed | [196] |
B7.1-Ig IL-12 IL-18 | vHsv-B7.1-Ig, vHsv-IL-12, vHsv-IL-18 (oHSV-1 G47Δ) | murine neuroblastoma Neuro2a, s.c. tumours in A/J mice | the most significant anti-tumour effect by treatment with all three viruses; the effect is abrogated in immune-deficient nude mice, proving the specific T cell-mediated tumour regression | [197] |
PDL1 BiTE (anti-PD-L1 scFv plus anti-CD3 scFv) | oHSV-1 PD-L1 BiTE (oHSV-1 G207 backbone) | patient-derived ascites model | the endogenous T cells within malignant ascites were activated generating a pro-inflammatory response and eliminating PD-L1-positive tumour cells and macrophages | [198] |
Poxviruses | ||||
IL-12 | vvDD-IL-12-FG (WR strain of VV-VSC20) | murine colon adenocarcinoma MC38-luc, CT26-luc, and lung mesothelioma AB12-luc | potent anti-tumour effects with complete regression of tumours and re-challenge protection; vvDD-IL-12-FG synergised with anti-PD-1 antibody treatment leading to the cure of all late-stage MC38 tumours; tumour analysis showed a decrease in Tregs, TGF-β, COX-2, VEGF and increase in infiltration by CD8+ and CD4+ T expressing IFNγ | [199] |
CD-80 (B7.1) | rV-B7.1 (VV Wyeth strain) | phase I clinical trial, 12 melanoma patients | partial response was observed in one patient; disease stabilization in two patients; tumour regression was associated with increased expression of CD8 and IFNγ | [200] |
CD-80 (B7.1), ICAM-1, LFA-3 | rF TRICOM T-cell costimulatory molecules (fowlpoxvirus) | phase I clinical trial, 10 melanoma patients, 2 colon adenocarcinoma | Well-tolerated treatment; however, limited tumour-specific T cell responses; all patients exhibited anti-viral antibody responses | [201] |
IL-21 | VVLDTKDN1L-mIL-21 (WR strain of VV) | murine colorectal cancer CMT93, s.c. tumours | enhanced anti-tumour immune response able to eliminate primary tumours; induction of systemic anti-tumour immunity preventing tumour recurrence | [202] |
anti PD-L1 scFv (single-chain variable fragment) hNIS (human sodium iodide symporter) | CF33-hNIS-anti-PD-L1 (CF33- chimeric poxvirus) | xenograft model of triple-negative breast cancer TNBC (MDA-MB-468) | completely control of tumour growth at low dose | [203] |
CCL5 (RANTES) | vvCCL5 (WR vvDD) | murine colon carcinoma M38 s.c. tumours, C57/BL mice | significant tumour suppression and enhanced survival | [204] |
Rhabdoviruses | ||||
IL-12 | rVSV-IL12 (VSV) | murine squamous cell carcinoma (SCC), orthotopic model in C3H/HeJ mice | significant reduction in tumour volume and substantial survival benefits | [205] |
IL-15 | VSV-IL-15 (VSV) | murine colon carcinoma CT-26 tumour | enhanced anti-tumour T-cell responses and improved survival | [206] |
IL-15 | VSV-IL-15 (VSVΔM51) | Panc02 murine pancreatic ductal carcinoma, C57BL/6 mice s.c. and orthotopic tumours | VSV-IL-15 was superior over VSV-GFP control in combination with NKT cell therapy; significant tumour regression and increase in survival; the addition of anti PD1 therapy induced complete regressions in 20% of treated animals | [207] |
Paramyxoviruses | ||||
IL-2 | NDV/Anh-IL-2 (NDV; Anhinga strain) | murine H22 hepatocellular carcinoma | Efficient inhibition of tumour growth; 60 days post-treatment, mice which were completely cured were protected against rechallenge with the same tumour cells | [208] |
IL-12 PD-L1 antibody | MeVac FmIL-12 MeVac anti-PD-L1 (MV) | MC38cea murine colon carcinoma model | Th1 cell-directed response was revealed by secretion of IFNγ, TNFα and activation of NK and CTLs, leading to complete tumour regression in 90% of treated animals. | [209] |
Alphaviruses | ||||
IL-12 | SFV-IL-12 SFVenh-IL-12 (SFV) | MC38 murine colon adenocarcinoma | ≥80% complete tumour regression with potent CTL responses and long-term tumour-free survival; improved efficiency was shown by repeated intratumoral injections. | [210] |
PD-L1 antibody | SFV-αPDL1 (SFV) | MC38 murine colon adenocarcinoma | >40% complete regression compared with less efficient AAV-αPDL1and αPDL1 monoclonal antibodies given systemically or locally | [211] |
Transgene | Virus Vector (Virus Backbone) | Model | Effect | Ref. |
---|---|---|---|---|
Adenoviruses | ||||
sTGFβRIIFc | rAd.sT | murine breast cancer 4T1 and renal cancer Renca tumours; Balb/c | inhibition of both tumour growth and lung metastases; induction of Th1 immune response with CTL tumour infiltration, promotion of CD4+ T memory cells, reduction of Tregs, and bone marrow-derived suppressor cells | [213] |
Hyaluronidase PH20 | AdwtRGD-PH20 ICOVIR17 | human melanoma SkMel-28 xenografts; nude mice | degradation of hyaluronan, enhanced viral distribution, and tumour regression. The anti-tumour activity of replication-competent and tumour-selective ICOVIR17 was higher in comparison to AdwtRGD-PH20 virus | [214] |
Hyaluronidase | VCN-01 (Ad5) | osteosarcoma patient cell lines (531MII, 678R, 588M, 595M) and a commercial cell line (143B); nude mice xenografts | potent anti-sarcoma effect in vitro and in vivo in mouse models of intratibial and lung metastatic osteosarcoma, with complete tibial tumour regression in the high dose (108 pfu) group | [215] |
TNFα IL-2 | Ad5-CMV-mTNFα Ad5-CMVmIL2 (Ad5) | murine B16.OVA melanoma; C57 BL/6JOlaHsd mice | complete tumour regression in all animals treated with anti-PD1 antibodies and corresponding viruses; Th1 immune response and increased intra-tumoral proportion of CD8+ and CD4+ T cells | [6] |
GM-CSF CTLA-4 ab | SKL001 SKL002 Ad5 | CMT-64 mouse small lung carcinoma, B16F10 murine melanoma, human A549 lung s.c. xenograft model | selective replication and anti-tumour activity after intravenous administration was shown in mouse B16F10 melanoma tumour and human tumour xenograft model; combination of the viruses potentiated anti-tumour activity | [216] |
Anti TGFβshRNA GM-CSF (in one vector) plus MART1 (DNA/TAA) | AdGshT | murine B16BL6-CAR/E1B55 malignant melanoma; C57BL/6 mice | treatment by both DNA vaccine expressing TAA (MART1) and oncolytic adenovirus, encoding GM-CSF together with shRNA to TGF-β2 resulted in significant anti-tumour effects, however, complete regression of tumours was not achieved | [217] |
IL-12p35, IL-12p40; GM-CSF and RLX (relaxin) | oAd/RLX oAd/IL12/GM-RLX | Syrian hamster s.c. and orthotopic pancreatic tumour models. | expression of IL-12, GM-CSF and RLX mediated by a single oncolytic Ad vector promoted remodelling of TME to potentiate antibodies-based therapies | [218] |
IL-12 plus VEGF binding shRNA | RdB/IL12/shVEGF (Ad5) | murine B16-F10 melanoma; C57BL/6 mice | Efficient anti-tumour effect with massive tumour infiltration of differentiated CD4+ T cells, CD8+ T cells, NK cells, and DCs. Suppressed expression of VEGF, supporting the restoration of the anti-tumour immune response | [219] |
Herpesviruses | ||||
CCL2 mIL-12 | M010 M002 (ΔICP34.5 oHSV) | neuroblastoma Neuro-2a tumours s.c. syngeneic A/J mouse strain | combined treatment led to the most efficient tumour growth inhibition | [220] |
IL-12 IL-15 PD1v GM-CSF IL7 plus CCL19 | oHSV2-IL12, -PD1v, -IL15, -IL7-CCL19, -GM-CSF ΔICP34.5 ΔICP47 oHSV2 (HG52 strain) | breast cancer 4T1 and colon carcinoma CT26 murine tumour models; Balb/c mice | all vector variants used as a single treatment have had a similar anti-tumour activity; the most potent activity was demonstrated for all five virus vector combinations; the tumour re-challenge exhibited that cocktail therapy prevents secondary tumourogenesis | [221] |
IL-12 GM-CSF (in one vector) | R-123 hHER2 retargeted ΔICP34.5 oHSV | human breast cancer SK-OV-3 cells, Lewis lung carcinoma murine cell line expressing hHER2 (HER2-LLC1) s.c. tumours; hHER2-transgenic C57BL/6 mice (B6.Cg-Pds5bTg(Wap ERBB2)229Wzw/J) | combined treatment with anti-PD1 led to significant inhibition of tumour growth with complete tumour resection in case, (mGM-CSF), mIL-12+mGM-CSF) expressing vector; systemic delivery of double-armed virus combined with anti-PD1 inhibited the development of tumour metastasis | [222] |
Poxviruses | ||||
PD-1 fused with IgG1 Fc plus GM-CSF | VV-iPDL1/GM WR vvDD | murine s.c. tumours Luc B16-F10 melanoma; Murine breast cancer Py230 and MC38 colon adenocarcinoma; C57BL/6 mice | the highest tumour growth inhibition was observed in VV-iPDL1/GM treated animals, compared to single treatments; CD8 T cell depletion significantly abolished the systemic anti-tumour activity of VV-iPDL1/GM; increased DCs (CD11c+) infiltration was observed in VV-iPDL1/GM treated mice | [3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spunde, K.; Korotkaja, K.; Zajakina, A. Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations. Biomedicines 2022, 10, 2142. https://doi.org/10.3390/biomedicines10092142
Spunde K, Korotkaja K, Zajakina A. Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations. Biomedicines. 2022; 10(9):2142. https://doi.org/10.3390/biomedicines10092142
Chicago/Turabian StyleSpunde, Karina, Ksenija Korotkaja, and Anna Zajakina. 2022. "Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations" Biomedicines 10, no. 9: 2142. https://doi.org/10.3390/biomedicines10092142
APA StyleSpunde, K., Korotkaja, K., & Zajakina, A. (2022). Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations. Biomedicines, 10(9), 2142. https://doi.org/10.3390/biomedicines10092142