Treatment of Diabetes and Osteoporosis—A Reciprocal Risk?
Abstract
:1. Introduction
2. Dietary Management of Diabetes and Bone Metabolism: Do They Carry the Risk of Developing Osteoporosis?
2.1. Calcium
2.2. Vitamin D
2.3. Low-Calorie Diet and Bodyweight Reduction
3. Antidiabetic Drugs and Bone Tissue Metabolism
3.1. Metformin
3.2. Sulfonylureas
3.3. Insulin Therapy
3.4. Thiazolidinoidiones
3.5. GLP-1 Antagonists
3.6. Dipeptidyl Peptidase-4 Inhibitors (DPP-4 Inhibitors)
3.7. Sodium-Glucose-2 Cotransporter Inhibitors-2
4. Anti-Osteoporosis Drugs and Glucose Metabolism
4.1. Antiresorptive Drugs
4.2. Anabolic Drugs
4.3. Drugs with a Mixed Mechanism of Action
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Wang, L.; Zhang, M.; Huang, K.; Yao, Z.; Rao, P.; Cai, X.; Xiao, J. Advanced Glycation End Products Inhibit the Osteogenic Differentiation Potential of Adipose-Derived Stem Cells by Modulating Wnt/Β-Catenin Signalling Pathway via DNA Methylation. Cell Prolif. 2020, 53, e12834. [Google Scholar] [CrossRef] [PubMed]
- Volpe, C.M.O.; Villar-Delfino, P.H.; dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular Death, Reactive Oxygen Species (ROS) and Diabetic Complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Ipseiz, N.; Scholtysek, C.; Culemann, S.; Krönke, G. Adopted Orphans as Regulators of Inflammation, Immunity and Skeletal Homeostasis. Swiss Med. Wkly. 2014, 144, w14055. [Google Scholar] [CrossRef]
- Mizokami, A.; Kawakubo-Yasukochi, T.; Hirata, M. Osteocalcin and Its Endocrine Functions. Biochem. Pharmacol. 2017, 132, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Poiana, C.; Capatina, C. Fracture Risk Assessment in Patients with Diabetes Mellitus. J. Clin. Densitom. 2017, 20, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Škrha, J.; Šoupal, J.; Škrha, J.; Prázný, M. Glucose Variability, HbA1c and Microvascular Complications. Rev. Endocr. Metab. Disord. 2016, 17, 103–110. [Google Scholar] [CrossRef]
- Nordwall, M.; Arnqvist, H.J.; Bojestig, M.; Ludvigsson, J. Good Glycemic Control Remains Crucial in Prevention of Late Diabetic Complications—The Linköping Diabetes Complications Study. Pediatr. Diabetes 2009, 10, 168–176. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Hemmingsen, B.; Gimenez-Perez, G.; Mauricio, D.; Roqué, I.; Figuls, M.; Metzendorf, M.-I.; Richter, B. Diet, Physical Activity or Both for Prevention or Delay of Type 2 Diabetes Mellitus and Its Associated Complications in People at Increased Risk of Developing Type 2 Diabetes Mellitus. Cochrane Database Syst. Rev. 2017, 12, CD003054. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.L.; Abrahamsen, B.; Napoli, N.; Akesson, K.; Chandran, M.; Eastell, R.; El-Hajj Fuleihan, G.; Josse, R.; Kendler, D.L.; Kraenzlin, M.; et al. Diagnosis and Management of Bone Fragility in Diabetes: An Emerging Challenge. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2018, 29, 2585–2596. [Google Scholar] [CrossRef] [PubMed]
- Varenna, M.; Binelli, L.; Casari, S.; Zucchi, F.; Sinigaglia, L. Effects of Dietary Calcium Intake on Body Weight and Prevalence of Osteoporosis in Early Postmenopausal Women. Am. J. Clin. Nutr. 2007, 86, 639–644. [Google Scholar] [CrossRef]
- Shahar, D.R.; Abel, R.; Elhayany, A.; Vardi, H.; Fraser, D. Does Dairy Calcium Intake Enhance Weight Loss among Overweight Diabetic Patients? Diabetes Care 2007, 30, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Champagne, C.M.; Broyles, S.T.; Moran, L.D.; Cash, K.C.; Levy, E.J.; Lin, P.-H.; Batch, B.C.; Lien, L.F.; Funk, K.L.; Dalcin, A.; et al. Dietary Intakes Associated with Successful Weight Loss and Maintenance during the Weight Loss Maintenance Trial. J. Am. Diet. Assoc. 2011, 111, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Shapses, S.A.; Heshka, S.; Heymsfield, S.B. Effect of Calcium Supplementation on Weight and Fat Loss in Women. J. Clin. Endocrinol. Metab. 2004, 89, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, M.; Riedt, C.S.; Brolin, R.E.; Field, M.P.; Sherrell, R.M.; Shapses, S.A. Weight Loss and Calcium Intake Influence Calcium Absorption in Overweight Postmenopausal Women. Am. J. Clin. Nutr. 2004, 80, 123–130. [Google Scholar] [CrossRef]
- Jospe, M.R.; Roy, M.; Brown, R.C.; Haszard, J.J.; Meredith-Jones, K.; Fangupo, L.J.; Osborne, H.; Fleming, E.A.; Taylor, R.W. Intermittent Fasting, Paleolithic, or Mediterranean Diets in the Real World: Exploratory Secondary Analyses of a Weight-Loss Trial That Included Choice of Diet and Exercise. Am. J. Clin. Nutr. 2020, 111, 503–514. [Google Scholar] [CrossRef]
- Al-Hazmi, A.S. Association of Vitamin D Deficiency and Vitamin D Receptor Gene Polymorphisms with Type 2 Diabetes Mellitus Saudi Patients. Afr. Health Sci. 2019, 19, 2812–2818. [Google Scholar] [CrossRef]
- Nam, H.-K.; Rhie, Y.-J.; Lee, K.-H. Vitamin D Level and Gene Polymorphisms in Korean Children with Type 1 Diabetes. Pediatr. Diabetes 2019, 20, 750–758. [Google Scholar] [CrossRef]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased Bioavailability of Vitamin D in Obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Altieri, B.; Grant, W.B.; Della Casa, S.; Orio, F.; Pontecorvi, A.; Colao, A.; Sarno, G.; Muscogiuri, G. Vitamin D and Pancreas: The Role of Sunshine Vitamin in the Pathogenesis of Diabetes Mellitus and Pancreatic Cancer. Crit. Rev. Food Sci. Nutr. 2017, 57, 3472–3488. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, I.; Klimov, L.; Kuryaninova, V.; Nikitina, I.; Malyavskaya, S.; Dolbnya, S.; Kasyanova, A.; Atanesyan, R.; Stoyan, M.; Todieva, A.; et al. Vitamin D Insufficiency in Overweight and Obese Children and Adolescents. Front. Endocrinol. 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, K.; Fernstrom, J.D.; Holick, M.F.; Janosky, J.E.; Greenspan, S.L. Vitamin D Status and Response to Vitamin D3 in Obese vs. Non-Obese African American Children. Obesity 2008, 16, 90–95. [Google Scholar] [CrossRef]
- Elizondo-Montemayor, L.; Ugalde-Casas, P.A.; Serrano-González, M.; Cuello-García, C.A.; Borbolla-Escoboza, J.R. Serum 25-Hydroxyvitamin D Concentration, Life Factors and Obesity in Mexican Children. Obesity 2010, 18, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Olson, M.L.; Maalouf, N.M.; Oden, J.D.; White, P.C.; Hutchison, M.R. Vitamin D Deficiency in Obese Children and Its Relationship to Glucose Homeostasis. J. Clin. Endocrinol. Metab. 2012, 97, 279–285. [Google Scholar] [CrossRef]
- Hajhashemy, Z.; Shahdadian, F.; Ziaei, R.; Saneei, P. Serum Vitamin D Levels in Relation to Abdominal Obesity: A Systematic Review and Dose-Response Meta-Analysis of Epidemiologic Studies. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2021, 22, e13134. [Google Scholar] [CrossRef]
- Yakout, S.M.; Al-Daghri, N.M.; Bukhari, I.; Khattak, M.N.K.; Sabico, S.; Alokail, M.S.; Al-Attas, O.S. Vitamin D Level and Its Relation to Muscle and Fat Mass in Adult Male Arabs. Saudi J. Biol. Sci. 2020, 27, 2452–2456. [Google Scholar] [CrossRef]
- Doaei, S.; Jarrahi, S.; Torki, S.; Haghshenas, R.; Jamshidi, Z.; Rezaei, S.; Moslem, A.; Ghorat, F.; Khodabakhshi, A.; Gholamalizadeh, M. Serum Vitamin D Level May Be Associated with Body Weight and Body Composition in Male Adolescents; a Longitudinal Study. Pediatr. Endocrinol. Diabetes Metab. 2020, 26, 125–131. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, S.; Ma, R.; Zheng, H.; Zhu, Y. Low Vitamin D Status Is Associated with Obesity but No Other Cardiovascular Risk Factors in Chinese Children and Adolescents. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 1573–1581. [Google Scholar] [CrossRef]
- Kamycheva, E.; Joakimsen, R.M.; Jorde, R. Intakes of Calcium and Vitamin d Predict Body Mass Index in the Population of Northern Norway. J. Nutr. 2003, 133, 102–106. [Google Scholar] [CrossRef]
- Dupuy, C.; Lauwers-Cances, V.; van Kan, G.A.; Gillette, S.; Schott, A.-M.; Beauchet, O.; Annweiler, C.; Vellas, B.; Rolland, Y. Dietary Vitamin D Intake and Muscle Mass in Older Women. Results from a Cross-Sectional Analysis of the EPIDOS Study. J. Nutr. Health Aging 2013, 17, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Conway, B.; Miller, R.G.; Costacou, T.; Fried, L.; Kelsey, S.; Evans, R.W.; Orchard, T.J. Temporal Patterns in Overweight and Obesity in Type 1 Diabetes. Diabet. Med. J. Br. Diabet. Assoc. 2010, 27, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Rychter, A.; Zawada, A.; Kanikowska, A.; Grzymisławski, M.; Dobrowolska, A. Postępowanie dietetyczne i behawioralne chorych na cukrzycę typu 1 ze współistniejącą nadwagą. Forum Zaburzeń Metab. 2018, 9, 16–22. [Google Scholar]
- Villareal, D.T.; Fontana, L.; Das, S.K.; Redman, L.; Smith, S.R.; Saltzman, E.; Bales, C.; Rochon, J.; Pieper, C.; Huang, M.; et al. Effect of Two-Year Caloric Restriction on Bone Metabolism and Bone Mineral Density in Non-Obese Younger Adults: A Randomized Clinical Trial: CALORIC RESTRICTION AND BONE HEALTH. J. Bone Miner. Res. 2016, 31, 40–51. [Google Scholar] [CrossRef]
- Via, M. The Malnutrition of Obesity: Micronutrient Deficiencies That Promote Diabetes. ISRN Endocrinol. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Walker, A.F. Potential Micronutrient Deficiency Lacks Recognition in Diabetes. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2007, 57, 3–4. [Google Scholar]
- Damms-Machado, A.; Weser, G.; Bischoff, S.C. Micronutrient Deficiency in Obese Subjects Undergoing Low Calorie Diet. Nutr. J. 2012, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.D.; Kim, S.; Bersamin, A.; Dopler-Nelson, M.; Otten, J.; Oelrich, B.; Cherin, R. Micronutrient Quality of Weight-Loss Diets That Focus on Macronutrients: Results from the A to Z Study. Am. J. Clin. Nutr. 2010, 92, 304–312. [Google Scholar] [CrossRef]
- Goday, A.; Bellido, D.; Sajoux, I.; Crujeiras, A.B.; Burguera, B.; García-Luna, P.P.; Oleaga, A.; Moreno, B.; Casanueva, F.F. Short-Term Safety, Tolerability and Efficacy of a Very Low-Calorie-Ketogenic Diet Interventional Weight Loss Program versus Hypocaloric Diet in Patients with Type 2 Diabetes Mellitus. Nutr. Diabetes 2016, 6, e230. [Google Scholar] [CrossRef]
- Aung, M.; Amin, S.; Gulraiz, A.; Gandhi, F.R.; Pena Escobar, J.A.; Malik, B.H. The Future of Metformin in the Prevention of Diabetes-Related Osteoporosis. Cureus 2020, 12, e10412. [Google Scholar] [CrossRef]
- Kheniser, K.G.; Polanco Santos, C.M.; Kashyap, S.R. The Effects of Diabetes Therapy on Bone: A Clinical Perspective. J. Diabetes Complications 2018, 32, 713–719. [Google Scholar] [CrossRef]
- Hidayat, K.; Du, X.; Wu, M.-J.; Shi, B.-M. The Use of Metformin, Insulin, Sulphonylureas, and Thiazolidinediones and the Risk of Fracture: Systematic Review and Meta-Analysis of Observational Studies. Obes. Rev. 2019, 20, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Salari-Moghaddam, A.; Sadeghi, O.; Keshteli, A.H.; Larijani, B.; Esmaillzadeh, A. Metformin Use and Risk of Fracture: A Systematic Review and Meta-Analysis of Observational Studies. Osteoporos. Int. 2019, 30, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Gu, Y.; Yang, H.; Shi, Q. Metformin Enhances Osteogenesis and Suppresses Adipogenesis of Human Chorionic Villous Mesenchymal Stem Cells. Tohoku J. Exp. Med. 2017, 241, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Piccinin, M.A.; Khan, Z.A. Pathophysiological Role of Enhanced Bone Marrow Adipogenesis in Diabetic Complications. Adipocyte 2014, 3, 263–272. [Google Scholar] [CrossRef]
- Sedlinsky, C.; Molinuevo, M.S.; Cortizo, A.M.; Tolosa, M.J.; Felice, J.I.; Sbaraglini, M.L.; Schurman, L.; McCarthy, A.D. Metformin Prevents Anti-Osteogenic in Vivo and Ex Vivo Effects of Rosiglitazone in Rats. Eur. J. Pharmacol. 2011, 668, 477–485. [Google Scholar] [CrossRef]
- Lecka-Czernik, B. Diabetes, Bone and Glucose-Lowering Agents: Basic Biology. Diabetologia 2017, 60, 1163–1169. [Google Scholar] [CrossRef]
- Fronczek-Sokół, J.; Pytlik, M. Effect of Glimepiride on the Skeletal System of Ovariectomized and Non-Ovariectomized Rats. Pharmacol. Rep. 2014, 66, 412–417. [Google Scholar] [CrossRef]
- Lapane, K.L.; Yang, S.; Brown, M.J.; Jawahar, R.; Pagliasotti, C.; Rajpathak, S. Sulfonylureas and Risk of Falls and Fractures: A Systematic Review. Drugs Aging 2013, 30, 527–547. [Google Scholar] [CrossRef]
- Starup-Linde, J.; Gregersen, S.; Frost, M.; Vestergaard, P. Use of Glucose-Lowering Drugs and Risk of Fracture in Patients with Type 2 Diabetes. Bone 2017, 95, 136–142. [Google Scholar] [CrossRef]
- Conte, C.; Epstein, S.; Napoli, N. Insulin Resistance and Bone: A Biological Partnership. Acta Diabetol. 2018, 55, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Losada-Grande, E.; Hawley, S.; Soldevila, B.; Martinez-Laguna, D.; Nogues, X.; Diez-Perez, A.; Puig-Domingo, M.; Mauricio, D.; Prieto-Alhambra, D. Insulin Use and Excess Fracture Risk in Patients with Type 2 Diabetes: A Propensity-Matched Cohort Analysis. Sci. Rep. 2017, 7, 3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicodemus, K.K.; Folsom, A.R. Type 1 and Type 2 Diabetes and Incident Hip Fractures in Postmenopausal Women. Diabetes Care 2001, 24, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Ivers, R.Q.; Cumming, R.G.; Mitchell, P.; Peduto, A.J. Diabetes and Risk of Fracture: The Blue Mountains Eye Study. Diabetes Care 2001, 24, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-N.; Jiang, Y.-F.; Ding, T. Risk of Fracture with Thiazolidinediones: An Updated Meta-Analysis of Randomized Clinical Trials. Bone 2014, 68, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P.; Josse, R.G.; Eastell, R.; Lewiecki, E.M.; Miller, C.G.; Wooddell, M.; Northcutt, A.R.; Kravitz, B.G.; Paul, G.; Cobitz, A.R.; et al. Rosiglitazone Decreases Bone Mineral Density and Increases Bone Turnover in Postmenopausal Women with Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2013, 98, 1519–1528. [Google Scholar] [CrossRef]
- Portillo-Sanchez, P.; Bril, F.; Lomonaco, R.; Barb, D.; Orsak, B.; Bruder, J.M.; Cusi, K. Effect of Pioglitazone on Bone Mineral Density in Patients with Nonalcoholic Steatohepatitis: A 36-Month Clinical Trial. J. Diabetes 2019, 11, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Liu, H.; Lu, H. Glucagon-like Peptide-1(GLP-1) Receptor Agonists: Potential to Reduce Fracture Risk in Diabetic Patients?: GLP-1 RA: Potential to Reduce Fracture Risk in Diabetic Patients? Br. J. Clin. Pharmacol. 2016, 81, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Jeyabalan, J.; Jørgensen, C.S.; Hopkinson, M.; Al-Jazzar, A.; Roux, J.P.; Chavassieux, P.; Orriss, I.R.; Cleasby, M.E.; Chenu, C. Chronic Administration of Glucagon-like Peptide-1 Receptor Agonists Improves Trabecular Bone Mass and Architecture in Ovariectomised Mice. Epigenetic Mech. Regul. Bone Biol. Pathol. 2015, 81, 459–467. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Xue, P.; Li, Y. Liraglutide, a Glucagon-like Peptide-1 Receptor Agonist, Facilitates Osteogenic Proliferation and Differentiation in MC3T3-E1 Cells through Phosphoinositide 3-Kinase (PI3K)/Protein Kinase B (AKT), Extracellular Signal-Related Kinase (ERK)1/2, and CAMP/Protein Kinase A (PKA) Signaling Pathways Involving β-Catenin. Exp. Cell Res. 2017, 360, 281–291. [Google Scholar] [CrossRef]
- Cheng, L.; Hu, Y.; Li, Y.-Y.; Cao, X.; Bai, N.; Lu, T.-T.; Li, G.-Q.; Li, N.; Wang, A.-N.; Mao, X.-M. Glucagon-like Peptide-1 Receptor Agonists and Risk of Bone Fracture in Patients with Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Diabetes Metab. Res. Rev. 2019, 35, e3168. [Google Scholar] [CrossRef]
- Yamada, C.; Yamada, Y.; Tsukiyama, K.; Yamada, K.; Udagawa, N.; Takahashi, N.; Tanaka, K.; Drucker, D.J.; Seino, Y.; Inagaki, N. The Murine Glucagon-Like Peptide-1 Receptor Is Essential for Control of Bone Resorption. Endocrinology 2008, 149, 574–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegazy, S.K. Evaluation of the Anti-Osteoporotic Effects of Metformin and Sitagliptin in Postmenopausal Diabetic Women. J. Bone Miner. Metab. 2015, 33, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, T.; Zhou, H.; Peng, H.; Yan, C. Risk of Fractures Associated with Dipeptidyl Peptidase-4 Inhibitor Treatment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Ther. 2019, 10, 1879–1892. [Google Scholar] [CrossRef] [PubMed]
- Ustulin, M.; Park, S.Y.; Choi, H.; Chon, S.; Woo, J.T.; Rhee, S.Y. Effect of Dipeptidyl Peptidase-4 Inhibitors on the Risk of Bone Fractures in a Korean Population. J. Korean Med. Sci. 2019, 34, e224. [Google Scholar] [CrossRef]
- Qiu, M.; Zhai, S.; Liu, D. DPP4 Activities Are Associated with Osteopenia/Osteoporosis and Fracture Risk in Newly Diagnosed Type 2 Diabetes. Int. J. Endocrinol. 2020, 2020, 8874272. [Google Scholar] [CrossRef]
- Hou, W.-H.; Chang, K.-C.; Li, C.-Y.; Ou, H.-T. Dipeptidyl Peptidase-4 Inhibitor Use Is Associated with Decreased Risk of Fracture in Patients with Type 2 Diabetes: A Population-Based Cohort Study. Br. J. Clin. Pharmacol. 2018, 84, 2029–2039. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, C.; Liang, J.; Yang, Y.; Yu, M.; Qu, X. Effect of Sodium-Glucose Co-Transporter 2 Inhibitors on Bone Metabolism and Fracture Risk. Front. Pharmacol. 2019, 9, 1517. [Google Scholar] [CrossRef]
- Watts, N.B.; Bilezikian, J.P.; Usiskin, K.; Edwards, R.; Desai, M.; Law, G.; Meininger, G. Effects of Canagliflozin on Fracture Risk in Patients with Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2016, 101, 157–166. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Kohler, S.; Kaspers, S.; Salsali, A.; Zeller, C.; Woerle, H.J. Analysis of Fractures in Patients with Type 2 Diabetes Treated with Empagliflozin in Pooled Data From Placebo-Controlled Trials and a Head-to-Head Study Versus Glimepiride. Diabetes Care 2018, 41, 1809–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilezikian, J.P.; Watts, N.B.; Usiskin, K.; Polidori, D.; Fung, A.; Sullivan, D.; Rosenthal, N. Evaluation of Bone Mineral Density and Bone Biomarkers in Patients with Type 2 Diabetes Treated with Canagliflozin. J. Clin. Endocrinol. Metab. 2016, 101, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Bays, H.E.; Weinstein, R.; Law, G.; Canovatchel, W. Canagliflozin: Effects in Overweight and Obese Subjects without Diabetes Mellitus. Obesity 2014, 22, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.; Liu, F.; Yang, Z.; Yu, S.; Liu, Z.; Yang, Q.; Sun, F. Risk of Fracture with Dipeptidyl Peptidase-4 Inhibitors, Glucagon-like Peptide-1 Receptor Agonists, or Sodium-Glucose Cotransporter-2 Inhibitors in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Network Meta-Analysis Combining 177 Randomized Controlled Trials with a Median Follow-Up of 26 Weeks. Front. Pharmacol. 2022, 13, 825417. [Google Scholar] [CrossRef]
- Compston, J.E.; Watts, N.B.; Chapurlat, R.; Cooper, C.; Boonen, S.; Greenspan, S.; Pfeilschifter, J.; Silverman, S.; Díez-Pérez, A.; Lindsay, R.; et al. Obesity Is Not Protective against Fracture in Postmenopausal Women: GLOW. Am. J. Med. 2011, 124, 1043–1050. [Google Scholar] [CrossRef]
- Reginster, J.-Y. Antifracture Efficacy of Currently Available Therapies for Postmenopausal Osteoporosis. Drugs 2011, 71, 65–78. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.-Y. Review of the Guideline of the American College of Physicians on the Treatment of Osteoporosis. Osteoporos. Int. 2018, 29, 1505–1510. [Google Scholar] [CrossRef]
- Fleisch, H. Bisphosphonates: Mechanisms of Action. Endocr. Rev. 1998, 19, 80–100. [Google Scholar] [CrossRef]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef]
- Toulis, K.A.; Nirantharakumar, K.; Ryan, R.; Marshall, T.; Hemming, K. Bisphosphonates and Glucose Homeostasis: A Population-Based, Retrospective Cohort Study. J. Clin. Endocrinol. Metab. 2015, 100, 1933–1940. [Google Scholar] [CrossRef]
- Karimi Fard, M.; Aminorroaya, A.; Kachuei, A.; Salamat, M.R.; Hadi Alijanvand, M.; Aminorroaya Yamini, S.; Karimifar, M.; Feizi, A.; Amini, M. Alendronate Improves Fasting Plasma Glucose and Insulin Sensitivity, and Decreases Insulin Resistance in Prediabetic Osteopenic Postmenopausal Women: A Randomized Triple-Blind Clinical Trial. J. Diabetes Investig. 2019, 10, 731–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maugeri, D.; Panebianco, P.; Rosso, D.; Calanna, A.; Speciale, S.; Santangelo, A.; Rizza, I.; Motta, M.; Lentini, A.; Malaguarnera, M. Alendronate Reduces the Daily Consumption of Insulin (DCI) in Patients with Senile Type I Diabetes and Osteoporosis. Arch. Gerontol. Geriatr. 2002, 34, 117–122. [Google Scholar] [CrossRef]
- Chang, J.T.; Green, L.; Beitz, J. Renal Failure with the Use of Zoledronic Acid. N. Engl. J. Med. 2003, 349, 1676–1679. [Google Scholar] [CrossRef] [PubMed]
- Smetana, S.; Michlin, A.; Rosenman, E.; Biro, A.; Boaz, M.; Katzir, Z. Pamidronate-Induced Nephrotoxic Tubular Necrosis—A Case Report. Clin. Nephrol. 2004, 61, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.D. Treatment of Metabolic Bone Disease in Patients with Chronic Renal Disease: A Perspective for Rheumatologists. Curr. Rheumatol. Rep. 2005, 7, 53–60. [Google Scholar] [CrossRef]
- Delmas, P.D. Clinical Potential of RANKL Inhibition for the Management of Postmenopausal Osteoporosis and Other Metabolic Bone Diseases. J. Clin. Densitom. 2008, 11, 325–338. [Google Scholar] [CrossRef]
- Cummings, S.R.; Martin, J.S.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for Prevention of Fractures in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef]
- Block, G.A.; Bone, H.G.; Fang, L.; Lee, E.; Padhi, D. A Single-Dose Study of Denosumab in Patients with Various Degrees of Renal Impairment. J. Bone Miner. Res. 2012, 27, 1471–1479. [Google Scholar] [CrossRef]
- Bonnet, N.; Bourgoin, L.; Biver, E.; Douni, E.; Ferrari, S. RANKL Inhibition Improves Muscle Strength and Insulin Sensitivity and Restores Bone Mass. J. Clin. Investig. 2019, 129, 3214–3223. [Google Scholar] [CrossRef]
- Napoli, N.; Pannacciulli, N.; Vittinghoff, E.; Crittenden, D.; Yun, J.; Wang, A.; Wagman, R.; Schwartz, A.V. Effect of Denosumab on Fasting Glucose in Women with Diabetes or Prediabetes from the FREEDOM Trial. Diabetes Metab. Res. Rev. 2018, 34, e2991. [Google Scholar] [CrossRef] [PubMed]
- Lasco, A.; Morabito, N.; Basile, G.; Atteritano, M.; Gaudio, A.; Giorgianni, G.M.; Morini, E.; Faraci, B.; Bellone, F.; Catalano, A. Denosumab Inhibition of RANKL and Insulin Resistance in Postmenopausal Women with Osteoporosis. Calcif. Tissue Int. 2016, 98, 123–128. [Google Scholar] [CrossRef]
- Passeri, E.; Benedini, S.; Costa, E.; Corbetta, S. A Single 60 Mg Dose of Denosumab Might Improve Hepatic Insulin Sensitivity in Postmenopausal Nondiabetic Severe Osteoporotic Women. Int. J. Endocrinol. 2015, 2015, 352858. [Google Scholar] [CrossRef] [PubMed]
- Hadji, P. The Evolution of Selective Estrogen Receptor Modulators in Osteoporosis Therapy. Climacteric J. Int. Menopause Soc. 2012, 15, 513–523. [Google Scholar] [CrossRef] [PubMed]
- McClung, M.R. New Management Options for Osteoporosis with Emphasis on SERMs. Climacteric 2015, 18, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Lovre, D.; Mauvais-Jarvis, F. The Effect of Selective Estrogen Receptor Modulators on Type 2 Diabetes Onset in Women: Basic and Clinical Insights. J. Diabetes Complicat. 2017, 31, 773–779. [Google Scholar] [CrossRef]
- Hejazi, J.; Rastmanesh, R. Association between Tamoxifen Treatment and Diabetes: A Population-Based Study. Cancer 2012, 118, 6012. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.-M.; Chen, H.-J.; Liang, J.-A.; Li, T.-C.; Kao, C.-H. Association of Tamoxifen Use and Increased Diabetes among Asian Women Diagnosed with Breast Cancer. Br. J. Cancer 2014, 111, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Le May, C.; Chu, K.; Hu, M.; Ortega, C.S.; Simpson, E.R.; Korach, K.S.; Tsai, M.-J.; Mauvais-Jarvis, F. Estrogens Protect Pancreatic Beta-Cells from Apoptosis and Prevent Insulin-Deficient Diabetes Mellitus in Mice. Proc. Natl. Acad. Sci. USA 2006, 103, 9232–9237. [Google Scholar] [CrossRef]
- Johansson, H.; Gandini, S.; Guerrieri-Gonzaga, A.; Iodice, S.; Ruscica, M.; Bonanni, B.; Gulisano, M.; Magni, P.; Formelli, F.; Decensi, A. Effect of Fenretinide and Low-Dose Tamoxifen on Insulin Sensitivity in Premenopausal Women at High Risk for Breast Cancer. Cancer Res. 2008, 68, 9512–9518. [Google Scholar] [CrossRef]
- Cucinelli, F.; Soranna, L.; Romualdi, D.; Muzj, G.; Mancuso, S.; Lanzone, A. The Effect of Raloxifene on Glyco-Insulinemic Homeostasis in Healthy Postmenopausal Women: A Randomized Placebo-Controlled Study. J. Clin. Endocrinol. Metab. 2002, 87, 4186–4192. [Google Scholar] [CrossRef] [PubMed]
- Lasco, A.; Gaudio, A.; Morabito, N.; Previti, M.; Mileto, A.; Frisina, N.; Cucinotta, D. Effects of a Long-Term Treatment with Raloxifene on Insulin Sensitivity in Postmenopausal Women. Diabetologia 2004, 47, 571–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos Pastor, M.M.; Luna, J.D.; Escobar-Jiménez, F.; Gómez Jiménez, F.J.; Serrano Pardo, M.D.; López-Ibarra, P. Effects of Risedronate on Metabolic Bone Disease in Patients with Type 1 Diabetes and Osteoporosis. Rev. Esp. Enferm. Metabólicas Óseas 2008, 17, 66–70. [Google Scholar] [CrossRef]
- Vestergaard, P.; Rejnmark, L.; Mosekilde, L. Are Antiresorptive Drugs Effective Against Fractures in Patients with Diabetes? Calcif. Tissue Int. 2011, 88, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V.; Ewing, S.K.; Porzig, A.M.; McCulloch, C.E.; Resnick, H.E.; Hillier, T.A.; Ensrud, K.E.; Black, D.M.; Nevitt, M.C.; Cummings, S.R.; et al. Diabetes and Change in Bone Mineral Density at the Hip, Calcaneus, Spine, and Radius in Older Women. Front. Endocrinol. 2013, 4, 62. [Google Scholar] [CrossRef]
- Neer, R.M.; Arnaud, C.D.; Zanchetta, J.R.; Prince, R.; Gaich, G.A.; Reginster, J.-Y.; Hodsman, A.B.; Eriksen, E.F.; Ish-Shalom, S.; Genant, H.K.; et al. Effect of Parathyroid Hormone (1-34) on Fractures and Bone Mineral Density in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2001, 344, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Anastasilakis, A.D.; Tsourdi, E.; Tabacco, G.; Naciu, A.M.; Napoli, N.; Vescini, F.; Palermo, A. The Impact of Antiosteoporotic Drugs on Glucose Metabolism and Fracture Risk in Diabetes: Good or Bad News? J. Clin. Med. 2021, 10, 996. [Google Scholar] [CrossRef]
- Celer, O.; Akalın, A.; Oztunali, C. Effect of Teriparatide Treatment on Endothelial Function, Glucose Metabolism and Inflammation Markers in Patients with Postmenopausal Osteoporosis. Clin. Endocrinol. 2016, 85, 556–560. [Google Scholar] [CrossRef]
- Anastasilakis, A.; Goulis, D.G.; Koukoulis, G.; Kita, M.; Slavakis, A.; Avramidis, A. Acute and Chronic Effect of Teriparatide on Glucose Metabolism in Women with Established Osteoporosis. Exp. Clin. Endocrinol. Diabetes 2007, 115, 108–111. [Google Scholar] [CrossRef]
- Schwartz, A.V.; Pavo, I.; Alam, J.; Disch, D.P.; Schuster, D.; Harris, J.M.; Krege, J.H. Teriparatide in Patients with Osteoporosis and Type 2 Diabetes. Bone 2016, 91, 152–158. [Google Scholar] [CrossRef]
- Russow, G.; Jahn, D.; Appelt, J.; Märdian, S.; Tsitsilonis, S.; Keller, J. Anabolic Therapies in Osteoporosis and Bone Regeneration. Int. J. Mol. Sci. 2019, 20, 83. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Hesse, E. Update on Bone Anabolics in Osteoporosis Treatment: Rationale, Current Status, and Perspectives. J. Clin. Endocrinol. Metab. 2012, 97, 311–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dempster, D.W.; Zhou, H.; Rao, S.D.; Recknor, C.; Miller, P.D.; Leder, B.Z.; Annett, M.; Ominsky, M.S.; Mitlak, B.H. Early Effects of Abaloparatide on Bone Formation and Resorption Indices in Postmenopausal Women with Osteoporosis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2021, 36, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Atteritano, M.; Catalano, A.; Santoro, D.; Lasco, A.; Benvenga, S. Effects of Strontium Ranelate on Markers of Cardiovascular Risk in Postmenopausal Osteoporotic Women. Endocrine 2016, 53, 305–312. [Google Scholar] [CrossRef] [PubMed]
Authors | Type of Paper | Results |
---|---|---|
Hidayat et al. [42] | Meta-analysis of observational study | Metformin was associated with a reduced risk of fracture |
Salari-Moghaddam et al. [43] | Meta-analysis | Metformin was inversely associated with the risk of fracture |
Starup-Linde et al. [50] | Original paper | Sulfonylureas were associated with hip fracture in DM2 patients |
Losada-Grande et al. [52] | A population-based matched cohort study | Insulin was probably associated with a 38% excess fracture risk among patients with DM2 |
Zhong-Ning et al. [55] | Meta-analysis of randomized clinical trials | Thiazolidinediones were associated with an increased risk of hip fracture among women |
Bilezikian et al. [56] | Randomized controlled trial | 52-week therapy of rosiglitazone in postmenopausal women with DM2 was associated with a small reduction in BMD of the total hip, femoral neck, and lumbar spine and increased markers of bone turnover |
Cheng et al. [61] | Meta-analysis of randomized clinical trials | GLP-1 agonist (liraglutide and lixisenatide) therapy were associated with a reduced risk of bone fractures |
Chen et al. [64] | Meta-analysis of randomized clinical trials | DDP-4 inhibitors did not affect the risk of fractures among DM2 women as compared with other antidiabetic drugs or placebo |
Wen-Hsuan et al. [67] | Population-based cohort study | DPP-4 inhibitors were associated with a reduced risk of upper limb fractures among DM2 patients |
Watts et al. [69] | Clinical trial | Canaglifozin (Inhibitors of the sodium-glucose-2 cotransporter) increased the risk of fractures |
Bilezikian et al. [73] | Randomized controlled trial | Canaglifozin (Inhibitors of the sodium-glucose-2 cotransporter) treatment over 104 weeks (dose 100–300 mg) was associated with a decrease in BMD of the total hip, but not of the femoral neck, lumbar spine, and distal forearm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawada, A.; Ratajczak, A.E.; Rychter, A.M.; Szymczak-Tomczak, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Treatment of Diabetes and Osteoporosis—A Reciprocal Risk? Biomedicines 2022, 10, 2191. https://doi.org/10.3390/biomedicines10092191
Zawada A, Ratajczak AE, Rychter AM, Szymczak-Tomczak A, Dobrowolska A, Krela-Kaźmierczak I. Treatment of Diabetes and Osteoporosis—A Reciprocal Risk? Biomedicines. 2022; 10(9):2191. https://doi.org/10.3390/biomedicines10092191
Chicago/Turabian StyleZawada, Agnieszka, Alicja Ewa Ratajczak, Anna Maria Rychter, Aleksandra Szymczak-Tomczak, Agnieszka Dobrowolska, and Iwona Krela-Kaźmierczak. 2022. "Treatment of Diabetes and Osteoporosis—A Reciprocal Risk?" Biomedicines 10, no. 9: 2191. https://doi.org/10.3390/biomedicines10092191
APA StyleZawada, A., Ratajczak, A. E., Rychter, A. M., Szymczak-Tomczak, A., Dobrowolska, A., & Krela-Kaźmierczak, I. (2022). Treatment of Diabetes and Osteoporosis—A Reciprocal Risk? Biomedicines, 10(9), 2191. https://doi.org/10.3390/biomedicines10092191