Stimulated Parotid Saliva Is a Better Method for Depression Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Laboratory Tests
2.3. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. Saliva Cortisol
3.3. Blood and Saliva Cortisol Correlation
3.4. Validation of Diagnostic Performance by ROC Curve
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, B.J.; Kihl, T. Suicidal ideation associated with depression and social support: A survey-based analysis of older adults in South Korea. BMC Psychiatry 2021, 21, 2520. [Google Scholar] [CrossRef]
- Kalin, N.H. Anxiety, depression, and suicide in youth. Am. J. Psychiatry 2021, 178, 275–279. [Google Scholar] [CrossRef]
- Ronald, C.K.; Patricia, B.; Olga, D.; Robert, J.; Kathleen, R.M.; Ellen, E.W. Lifetime prevalence and age of-onset distributions of dsmiv disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar]
- Wu, Y.; Zhang, C.; Liu, H.; Duan, C.; Li, C.; Fan, J.; Huang, H.F. Perinatal depressive and anxiety symptoms of pregnant women during the coronavirus disease 2019 outbreak in China. Am. J. Obstet. Gynecol. 2020, 223, 240.e1–240.e9. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, A.S.; Averina, O.V.; Angelova, I.Y.; Yunes, R.A.; Zorkina, Y.A.; Morozova, A.Y.; Pavlichenko, A.V.; Syunyakov, T.S.; Karpenko, O.A.; Kostyuk, G.P.; et al. Alterations of the Composition and Neurometabolic Profile of Human Gut Microbiota in Major Depressive Disorder. Biomedicines 2022, 10, 2162. [Google Scholar] [CrossRef]
- Brasso, C.; Bellino, S.; Blua, C.; Bozzatello, P.; Rocca, P. The Impact of SARS-CoV-2 Infection on Youth Mental Health: A Narrative Review. Biomedicines 2022, 10, 772. [Google Scholar] [CrossRef]
- Kim, I.-B.; Lee, J.-H.; Park, S.-C. The Relationship between Stress, Inflammation, and Depression. Biomedicines 2022, 10, 1929. [Google Scholar] [CrossRef]
- Shen, F.; Song, Z.; Xie, P.; Li, L.; Wang, B.; Peng, D.; Zhu, G. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J. Ethnopharmacol. 2021, 275, 114164. [Google Scholar] [CrossRef]
- Kandola, A.; Ashdown-Franks, G.; Hendrikse, J.; Sabiston, C.M.; Stubbs, B. Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neurosci. Biobehav. Rev. 2019, 107, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Wang, L.; Yan, S.; Zhang, Q.; Zhang, J.H.; Shao, A. The role of oxidative stress in common risk factors and mechanisms of cardio-cerebrovascular ischemia and depression. Oxid. Med. Cell. Longev. 2019, 2019, 2491927. [Google Scholar] [CrossRef] [PubMed]
- Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology 2017, 83, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Hostinar, C.E.; Gunnar, M.R. Future directions in the study of social relationships as regulators of the HPA axis across development. In Future Work in Clinical Child and Adolescent Psychology; Routledge: London, UK, 2018; pp. 333–344. [Google Scholar]
- Jones, C.; Gwenin, C. Cortisol level dysregulation and its prevalence—Is it nature’s alarm clock. Physiol. Rep. 2021, 8, e14644. [Google Scholar] [CrossRef]
- Kinlein, S.A.; Karatsoreos, I.N. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front. Neuroendocrinol. 2020, 56, 100819. [Google Scholar] [CrossRef]
- Høifødt, R.S.; Wang, C.E.; Eisemann, M.; Figenschau, Y.; Halvorsen, M. Cortisol levels and cognitive profile in major depression: A comparison of currently and previously depressed patients. Psychoneuroendocrinology 2019, 99, 57–65. [Google Scholar] [CrossRef]
- Rickert, D.; Simon, R.; von Fersen, L.; Baumgartner, K.; Bertsch, T.; Kirschbaum, C.; Erhard, M. Saliva and Blood Cortisol Measurement in Bottlenose Dolphins (Tursiops truncatus): Methodology, Application, and Limitations. Animals 2022, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.J.; Hynd, P.I.; Ralph, C.R.; Edwards, J.H.; Burnard, C.L.; Narayan, E.; Tilbrook, A.J. Chronic elevation of plasma cortisol causes differential expression of predominating glucocorticoid in plasma, saliva, fecal, and wool matrices in sheep. Domest. Anim. Endocrinol. 2021, 74, 106503. [Google Scholar] [CrossRef]
- Therriault, D.H.; Wheeler, D.H. Symposium: Binding of upids by proteins conducted Ly the American Oil Chemists’ Society at its 37tn pall meeting, Minneapolis, Minnesota September 30–Octoter 2, 1963. J. Am. Oil Chem. Soc. 1964, 41, 481–490. [Google Scholar] [CrossRef]
- Bhake, R.; Russell, G.M.; Kershaw, Y.; Stevens, K.; Zaccardi, F.; Warburton, V.E.; Lightman, S.L. Continuous free cortisol profiles in healthy men: Validation of microdialysis method. J. Clin. Endocrinol. Metab. 2020, 105, e1749–e1761. [Google Scholar] [CrossRef] [PubMed]
- Bechert, U.; Hixon, S.; Schmitt, D. Diurnal variation in serum concentrations of cortisol in captive African (Loxodonta africana) and Asian (Elephas maximus) elephants. Zoo Biol. 2021, 40, 458–471. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, M.; Zhu, J.; Zhang, H.; Duan, Z.; Wang, S.; Liu, W. Developments in diagnostic applications of saliva in Human Organ Diseases. Med. Nov. Technol. Devices 2022, 13, 100115. [Google Scholar] [CrossRef]
- Bellosta, B.M.; Carmen, B.G.M.; Rodríguez, A.M. Brief mindfulness session improves mood and increases salivary oxytocin in psychology students. Stress Health 2020, 36, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Furtado, G.E.; Letieri, R.V.; Silva-Caldo, A.; Trombeta, J.C.; Monteiro, C.; Rodrigues, R.N.; Ferreira, J.P. Combined Chair-Based Exercises Improve Functional Fitness, Mental Well-Being, Salivary Steroid Balance, and Anti-microbial Activity in Pre-frail Older Women. Front. Psychol. 2021, 12, 577. [Google Scholar] [CrossRef]
- Van Cappellen, P.; Edwards, M.E.; Fredrickson, B.L. Upward spirals of positive emotions and religious behaviors. Curr. Opin. Psychol. 2021, 40, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.U. Relationship of Salivary Cortisol level with severe depression and family history. Cureus 2020, 12, e11548. [Google Scholar] [CrossRef]
- Krishnaveni, P.; Ganesh, V. Electron transfer studies of a conventional redox probe in human sweat and saliva bio-mimicking conditions. Sci. Rep. 2021, 11, 7663. [Google Scholar] [CrossRef] [PubMed]
- Frenk, P.; Nancy, A.N.; Johannes, B. Levels and variability of daily life cortisol secretion in major depression. Psychiatry Res. 2004, 126, 1–13. [Google Scholar]
- Kovács, L.; Kézér, F.L.; Bodó, S.; Ruff, F.; Palme, R.; Szenci, O. Salivary cortisol as a non-invasive approach to assess stress in dystocic dairy calves. Sci. Rep. 2021, 11, 6200. [Google Scholar] [CrossRef]
- Moghadam, F.M.; Bigdeli, M.; Tamayol, A.; Shin, S.R. TISS nanobiosensor for salivary cortisol measurement by aptamer Ag nanocluster SAIE supraparticle structure. Sens. Actuators B Chem. 2021, 344, 130160. [Google Scholar] [CrossRef]
- World Health Organization. Icd-10: International statistical classification of diseases and related health problems: Tenth revision. Acta Chir. Iugosl. 2010, 56, 65–69. [Google Scholar]
- Pan, S.; Liu, Z.W.; Shi, S.; Ma, X.; Song, W.Q.; Guan, G.C.; Lv, Y. Hamilton rating scale for depression-24 (HAM-D24) as a novel predictor for diabetic microvascular complications in type 2 diabetes mellitus patients. Psychiatry Res. 2017, 258, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, H.; Zhu, J.; Peng, L.; Duan, Z.; Liu, T.; Liu, W. Unstimulated Parotid Saliva Is a Better Method for Blood Glucose Prediction. Appl. Sci. 2021, 11, 11367. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, H.; Zhu, J.; Liao, Z.; Wang, S.; Liu, W. Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods. Int. J. Environ. Res. Public Health 2022, 19, 4122. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, E.L.; Kane, K.; Kwete, X.; Afshan, G.; Bazzett-Matabele, L.; Bien-Aimé, D.D.; Borges, L.F.; Byrne-Martelli, S.; Connor, S.; Correa, R.; et al. Essential package of palliative care for women with cervical cancer: Responding to the suffering of a highly vulnerable population. JCO Glob. Oncol. 2021, 7, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Cars, O. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Jackson, K.R.; Layne, T.; Dent, D.A.; Tsuei, A.; Li, J.; Haverstick, D.M.; Landers, J.P. A novel loop-mediated isothermal amplification method for identification of four body fluids with smartphone detection. Forensic Sci. Int. Genet. 2020, 45, 102195. [Google Scholar] [CrossRef]
- Pedersen, A.M.; Bardow, A.; Jensen, S.B.; Nauntofte, B. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis. 2002, 8, 117–129. [Google Scholar] [CrossRef]
- Pedersen, A.M.L.; Sørensen, C.E.; Proctor, G.B.; Carpenter, G.H. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral Dis. 2018, 24, 1399–1416. [Google Scholar] [CrossRef] [PubMed]
- Sim, D.; Brothers, M.C.; Slocik, J.M.; Islam, A.E.; Maruyama, B.; Grigsby, C.C.; Kim, S.S. Biomarkers and detection Platforms for human health and performance monitoring: A Review. Adv. Sci. 2022, 9, 2104426. [Google Scholar] [CrossRef] [PubMed]
- Synnott, A.; Howes, D. From measurement to meaning. Anthropologies of the body. Anthropos 1992, 87, 147–166. [Google Scholar]
- Elo, S.; Kääriäinen, M.; Kanste, O.; Pölkki, T.; Utriainen, K.; Kyngäs, H. Qualitative content analysis: A focus on trustworthiness. SAGE Open 2014, 4, 2158244014522633. [Google Scholar] [CrossRef]
- Moser, A.; Korstjens, I. Series: Practical guidance to qualitative research. Part 3: Sampling, data collection and analysis. Eur. J. Gen. Pract. 2018, 24, 9–18. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Kim, H.R.; Chae, H.J. Compliance with saliva collection protocol in healthy volunteers: Strategies for managing risk and errors. Int. J. Med. Sci. 2018, 15, 823. [Google Scholar] [CrossRef] [PubMed]
- Szefler, S.J.; Wenzel, S.; Brown, R.; Erzurum, S.C.; Fahy, J.V.; Hamilton, R.G.; Minnicozzi, M. Asthma outcomes: Biomarkers. J. Allergy Clin. Immunol. 2012, 129, S9–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Zhang, H.; Zhu, J.; Liao, Z.; Wang, S.; Liu, W. Investigation of Whole and Glandular Saliva as a Biomarker for Alzheimer’s Disease Diagnosis. Brain Sci. 2022, 12, 595. [Google Scholar] [CrossRef]
- Jasim, H.; Olausson, P.; Hedenberg-Magnusson, B.; Ernberg, M.; Ghafouri, B. The proteomic profile of whole and glandular saliva in healthy pain-free subjects. Sci. Rep. 2016, 6, 39073. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, M.P.; Brett, C.E.; Porcellato, L.A.; Hope, V.D. Image and performance enhancing drug use among men who have sex with men and women who have sex with women in the UK. Int. J. Drug Policy 2021, 95, 102933. [Google Scholar] [CrossRef] [PubMed]
- Dostanic, N.; Djikanovic, B.; Jovanovic, M.; Stamenkovic, Z.; Đeric, A. The association between family violence, depression and anxiety among women whose partners have been treated for alcohol dependence. J. Fam. Violence 2022, 37, 313–324. [Google Scholar] [CrossRef]
- Garay, R.P.; Charpeaud, T.; Logan, S.; Hannaert, P.; Garay, R.G.; Llorca, P.M.; Shorey, S. Pharmacotherapeutic approaches to treating depression during the perimenopause. Expert Opin. Pharmacother. 2019, 20, 1837–1845. [Google Scholar] [CrossRef]
- Lee, J.; Han, Y.; Cho, H.H.; Kim, M.R. Sleep disorders and menopause. J. Menopausal Med. 2019, 25, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Murack, M.; Chandrasegaram, R.; Smith, K.B.; Ah-Yen, E.G.; Rheaume, É.; Malette-Guyon, É.; Ismail, N. Chronic sleep disruption induces depression-like behavior in adolescent male and female mice and sensitization of the hypothalamic-pituitary-adrenal axis in adolescent female mice. Behav. Brain Res. 2021, 399, 113001. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Fatima, M.; Mondal, A.C. Role of hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and insulin signaling in the pathophysiology of Alzheimer’s disease. Neuropsychobiology 2019, 77, 197–205. [Google Scholar] [CrossRef]
- Ceruso, A.; Martínez-Cengotitabengoa, M.; Peters-Corbett, A.; Diaz-Gutierrez, M.J.; Martinez-Cengotitabengoa, M. Alterations of the HPA axis observed in patients with major depressive disorder and their relation to early life stress: A systematic review. Neuropsychobiology 2020, 79, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Woo, J.M.; Kim, W.; Lim, S.K.; Chung, E.J. The effect of cognitive behavior therapy-based “forest therapy” program on blood pressure, salivary cortisol level, and quality of life in elderly hypertensive patients. Clin. Exp. Hypertens. 2012, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Muehlhan, M.; Höcker, A.; Miller, R.; Trautmann, S.; Wiedemann, K.; Lotzin, A.; Schäfer, I. HPA axis stress reactivity and hair cortisol concentrations in recently detoxified alcoholics and healthy controls with and without childhood maltreatment. Addict. Biol. 2020, 25, e12681. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Liu, L.; Sheng, C.; Cheng, Z.; Cui, L.; Li, M.; Chen, L. Increased serum levels of cortisol and inflammatory cytokines in people with depression. J. Nerv. Ment. Dis. 2019, 207, 271–276. [Google Scholar] [CrossRef]
- Lages, A.D.S.; Frade, J.G.; Oliveira, D.; Paiva, I.; Oliveira, P.; Rebelo-Marques, A.; Carrilho, F. Late-night salivary cortisol: Cut-off definition and diagnostic accuracy for cushing’s syndrome in a portuguese population. Acta Med. Port. 2019, 32, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Libanori, A.; Chen, G.; Zhao, X.; Zhou, Y.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156. [Google Scholar] [CrossRef]
- Li, D.; Yao, K.; Gao, Z.; Liu, Y.; Yu, X. Recent progress of skin-integrated electronics for intelligent sensing. Light Adv. Manuf. 2021, 2, 39–58. [Google Scholar] [CrossRef]
- Ye, S.; Feng, S.; Huang, L.; Bian, S. Recent progress in wearable biosensors: From healthcare monitoring to sports analytics. Biosensors 2020, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Poll, E.M.; Kreitschmann-Andermahr, I.; Langejuergen, Y.; Stanzel, S.; Gilsbach, J.M.; Gressner, A.; Yagmur, E. Saliva collection method affects predictability of serum cortisol. Clin. Chim. Acta 2007, 382, 15–19. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627. [Google Scholar]
- Obuchowski, N.A.; Bullen, J.A. Receiver operating characteristic (ROC) curves: Review of methods with applications in diagnostic medicine. Phys. Med. Biol. 2018, 63, 07TR01. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Mayberg, M.; Reintjes, S.; Patel, A.; Moloney, K.; Mercado, J.; Carlson, A.; Broyles, F. Dynamics of postoperative serum cortisol after transsphenoidal surgery for Cushing’s disease: Implications for immediate reoperation and remission. J. Neurosurg. 2017, 129, 1268–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadan, Z.; Jian, W.; Yifu, L.; Haiying, L.; Jie, L.; Hairui, L. Solving the inverse problem based on UPEMD for electrocardiographic imaging. Biomed. Signal Processing Control 2022, 76, 103665. [Google Scholar] [CrossRef]
- Bashiri, H.; Houwing, D.J.; Homberg, J.R.; Salari, A.A. The combination of fluoxetine and environmental enrichment reduces postpartum stress-related behaviors through the oxytocinergic system and HPA axis in mice. Sci. Rep. 2021, 11, 8518. [Google Scholar] [CrossRef] [PubMed]
- Del Toro-Barbosa, M.; Hurtado-Romero, A.; Garcia-Amezquita, L.E.; García-Cayuela, T. Psychobiotics: Mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients 2020, 12, 3896. [Google Scholar] [CrossRef] [PubMed]
- Gevaerd, A.; Watanabe, E.Y.; Belli, C.; Marcolino-Junior, L.H.; Bergamini, M.F. A complete lab-made point of care device for non-immunological electrochemical determination of cortisol levels in salivary samples. Sens. Actuators B Chem. 2021, 332, 129532. [Google Scholar] [CrossRef]
- Remer, T.; Maser, G.C.; Wudy, S.A. Glucocorticoid measurements in health and disease-metabolic implications and the potential of 24-h urine analyses. Mini Rev. Med. Chem. 2008, 8, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ye, X.; Cui, T. Recent progress of biomarker detection sensors. Research 2020, 2020, 7949037. [Google Scholar] [CrossRef]
- Willi, J.; Süss, H.; Grub, J.; Ehlert, U. Biopsychosocial predictors of depressive symptoms in the perimenopause—Findings from the Swiss Perimenopause Study. Menopause 2021, 28, 247–254. [Google Scholar] [CrossRef]
Sample Characteristics | Depression Group | Healthy Controls | p |
---|---|---|---|
Age | 43.5 ± 5.2 | 40.1 ± 4.7 | 0.467 |
HAMD-24 scores | 25.7 ± 10.3 | 3.9 ± 1.8 | <0.001 |
Cortisol Levels (nmol/L) | UWS | SWS | UPS | SPS | USS | SSS |
---|---|---|---|---|---|---|
Patients (N = 30) | 14.87 ± 6.22 | 16.91 ± 6.91 ** | 13.39 ± 5.60 | 16.13 ± 6.61 | 14.12 ± 5.91 | 15.37 ± 6.29 |
Controls (N = 30) | 10.69 ± 4.07 | 12.25 ± 4.53 | 9.62 ± 3.67 * | 11.71 ± 4.33 | 10.15 ± 3.87 | 11.15 ± 4.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zhang, H.; Wang, S.; Lu, J.; He, J.; Liu, L.; Liu, W. Stimulated Parotid Saliva Is a Better Method for Depression Prediction. Biomedicines 2022, 10, 2220. https://doi.org/10.3390/biomedicines10092220
Cui Y, Zhang H, Wang S, Lu J, He J, Liu L, Liu W. Stimulated Parotid Saliva Is a Better Method for Depression Prediction. Biomedicines. 2022; 10(9):2220. https://doi.org/10.3390/biomedicines10092220
Chicago/Turabian StyleCui, Yangyang, Hankun Zhang, Song Wang, Junzhe Lu, Jinmei He, Lanlan Liu, and Weiqiang Liu. 2022. "Stimulated Parotid Saliva Is a Better Method for Depression Prediction" Biomedicines 10, no. 9: 2220. https://doi.org/10.3390/biomedicines10092220
APA StyleCui, Y., Zhang, H., Wang, S., Lu, J., He, J., Liu, L., & Liu, W. (2022). Stimulated Parotid Saliva Is a Better Method for Depression Prediction. Biomedicines, 10(9), 2220. https://doi.org/10.3390/biomedicines10092220