Specific Alteration of Branched-Chain Amino Acid Profile in Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Material and Methods
2.1. Study and Control Groups
2.2. Anthropometrical Parameters
2.3. Biochemical and Hormonal Assessment
2.4. Branched-Chain Amino Acids Profile Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yildiz, B.O.; Bozdag, G.; Yapici, Z.; Esinler, I.; Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 2012, 27, 3067–3073. [Google Scholar] [CrossRef]
- Neven, A.C.H.; Laven, J.; Teede, H.J.; Boyle, J.A. A Summary on Polycystic Ovary Syndrome: Diagnostic Criteria, Prevalence, Clinical Manifestations, and Management According to the Latest International Guidelines. Semin. Reprod. Med. 2018, 36, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.; Doherty, D.A. The potential implications of a PCOS diagnosis on a woman’s long-term health using data linkage. J. Clin. Endocrinol. Metab. 2015, 100, 911–919, Erratum in J. Clin. Endocrinol. Metab. 2015, 100, 2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujanpää, L.; Arffman, R.K.; Vaaramo, E.; Rossi, H.R.; Laitinen, J.; Morin-Papunen, L.; Tapanainen, J.; Ala-Mursula, L.; Piltonen, T.T. Women with polycystic ovary syndrome have poorer work ability and higher disability retirement rate at midlife: A Northern Finland Birth Cohort 1966 study. Eur. J. Endocrinol. 2022, 187, 479–488. [Google Scholar] [CrossRef]
- Murri, M.; Insenser, M.; Escobar-Morreale, H.F. Metabolomics in polycystic ovary syndrome. Clin. Chim. Acta 2014, 429, 181–188. [Google Scholar] [CrossRef]
- Nawrocka-Rutkowska, J.; Szydłowska, I.; Jakubowska, K.; Olszewska, M.; Chlubek, D.; Szczuko, M.; Starczewski, A. The Role of Oxidative Stress in the Risk of Cardiovascular Disease and Identification of Risk Factors Using AIP and Castelli Atherogenicity Indicators in Patients with PCOS. Biomedicines 2022, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Szmygin, H.; Lenart-Lipinska, M.; Szydelko, J.; Wozniak, S.; Matyjaszek-Matuszek, B. Branched-chain amino acids as a novel biomarker of metabolic disturbances in women with polycystic ovary syndrome—Literature review. Ginekol. Pol. 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Legro, R.S.; Castracane, V.D.; Kauffman, R.P. Detecting insulin resistance in polycystic ovary syndrome: Purposes and pitfalls. Obstet. Gynecol. Surv. 2004, 59, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Nestler, J.E.; Jakubowicz, D.J.; de Vargas, A.F.; Brik, C.; Quintero, N.; Medina, F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab. 1998, 83, 2001–2005. [Google Scholar] [CrossRef] [Green Version]
- Nestler, J.E.; Powers, L.P.; Matt, D.W.; Steingold, K.A.; Plymate, S.R.; Rittmaster, R.S.; Clore, J.N.; Blackard, W.G. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1991, 72, 83–89. [Google Scholar] [CrossRef]
- Rincon, J.; Holmäng, A.; Wahlström, E.O.; Lönnroth, P.; Björntorp, P.; Zierath, J.R.; Wallberg-Henriksson, H. Mechanisms behind insulin resistance in rat skeletal muscle after oophorectomy and additional testosterone treatment. Diabetes 1996, 45, 615–621. [Google Scholar] [CrossRef]
- Siomkajło, M.; Daroszewski, J. Branched chain amino acids: Passive biomarkers or the key to the pathogenesis of cardiometabolic diseases? Adv. Clin. Exp. Med. 2019, 28, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.A.; Fiorotto, M.L. Regulation of muscle growth in neonates. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gar, C.; Rottenkolber, M.; Prehn, C.; Adamski, J.; Seissler, J.; Lechner, A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit. Rev. Clin. Lab. Sci. 2018, 55, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Neinast, M.; Murashige, D.; Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, J.S.; Rivera, C.N.; Vaughan, R.A. Branched-Chain Amino Acids and Mitochondrial Biogenesis: An Overview and Mechanistic Summary. Mol. Nutr. Food Res. 2022, 66, 2200109. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef] [Green Version]
- Gannon, N.P.; Vaughan, R.A. Leucine-induced anabolic-catabolism: Two sides of the same coin. Amino Acids 2016, 48, 321–336. [Google Scholar] [CrossRef]
- Anthony, J.C.; Anthony, T.G.; Kimball, S.R.; Jefferson, L.S. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J. Nutr. 2001, 131, 856S–860S. [Google Scholar] [CrossRef]
- Soultoukis, G.A.; Partridge, L. Dietary Protein, Metabolism, and Aging. Annu. Rev. Biochem. 2016, 85, 5–34. [Google Scholar] [CrossRef] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326, Erratum in Cell Metab. 2009, 9, 565–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Stovall, D.W.; Bailey, A.P.; Pastore, L.M. Assessment of insulin resistance and impaired glucose tolerance in lean women with polycystic ovary syndrome. J. Womens Health 2011, 20, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, B.N.; Borzou, N.; Parsanezhad, M.E.; Anvar, Z.; Ghaemmaghami, P.; Sabetian, S. Associations of insulin resistance, sex hormone-binding globulin, triglyceride, and hormonal profiles in polycystic ovary syndrome: A cross-sectional study. Int. J. Reprod. Biomed. 2021, 19, 653–662. [Google Scholar] [CrossRef]
- Bui, H.N.; Sluss, P.M.; Hayes, F.J.; Blincko, S.; Knol, D.L.; Blankenstein, M.A.; Heijboer, A.C. Testosterone, free testosterone, and free androgen index in women: Reference intervals, biological variation, and diagnostic value in polycystic ovary syndrome. Clin. Chim. Acta 2015, 450, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Siomkajło, M.; Rybka, J.; Mierzchała-Pasierb, M.; Gamian, A.; Stankiewicz-Olczyk, J.; Bolanowski, M.; Daroszewski, J. Specific plasma amino acid disturbances associated with metabolic syndrome. Endocrine 2017, 58, 553–562. [Google Scholar] [CrossRef]
- Guzelmeric, K.; Alkan, N.; Pirimoglu, M.; Unal, O.; Turan, C. Chronic inflammation and elevated homocysteine levels are associated with increased body mass index in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2007, 23, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Goudas, V.T.; Dumesic, D.A. Polycystic ovary syndrome. Endocrinol. Metab. Clin. N. Am. 1997, 26, 893–912. [Google Scholar] [CrossRef] [PubMed]
- Goodman, N.F.; Cobin, R.H.; Futterweit, W.; Glueck, J.S.; Legro, R.S.; Carmina, E.; American Association of Clinical Endocrinologists (AACE); American College of Endocrinology (ACE); Androgen Excess and PCOS Society (AES). American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and Pcos Society Disease State Clinical Review: Guide to the Best Practices in the Evaluation and Treatment of Polycystic Ovary Syndrome—Part 1. Endocr. Pract. 2015, 21, 1291–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Fu, L.; Li, R.; Wang, L.N.; Yang, Y.; Liu, N.N.; Zhang, C.M.; Wang, Y.; Liu, P.; Tu, B.B.; et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: Plasma metabolomics analysis. BMC Med. 2012, 10, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RoyChoudhury, S.; Mishra, B.P.; Khan, T.; Chattopadhayay, R.; Lodh, I.; Datta Ray, C.; Bose, G.; Sarkar, H.S.; Srivastava, S.; Joshi, M.V.; et al. Serum metabolomics of Indian women with polycystic ovary syndrome using 1H NMR coupled with a pattern recognition approach. Mol. Biosyst. 2016, 12, 3407–3416. [Google Scholar] [CrossRef]
- Buszewska-Forajta, M.; Rachoń, D.; Stefaniak, A.; Wawrzyniak, R.; Konieczna, A.; Kowalewska, A.; Markuszewski, M.J. Identification of the metabolic fingerprints in women with polycystic ovary syndrome using the multiplatform metabolomics technique. J. Steroid. Biochem. Mol. Biol. 2019, 186, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, C.; Wang, S.; Zhang, Y.; Li, R.; Zhao, Y.; Qiao, J. Amino acid signatures in relation to polycystic ovary syndrome and increased risk of different metabolic disturbances. Reprod. Biomed. Online 2022, 44, 737–746. [Google Scholar] [CrossRef]
- Chang, A.Y.; Lalia, A.Z.; Jenkins, G.D.; Dutta, T.; Carter, R.E.; Singh, R.J.; Nair, K.S. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome. Metabolism 2017, 71, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Tai, E.S.; Tan, M.L.; Stevens, R.D.; Low, Y.L.; Muehlbauer, M.J.; Goh, D.L.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Lee, J.J.; et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010, 53, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Lackey, D.E.; Lynch, C.J.; Olson, K.C.; Mostaedi, R.; Ali, M.; Smith, W.H.; Karpe, F.; Humphreys, S.; Bedinger, D.H.; Dunn, T.N.; et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1175–E1187. [Google Scholar] [CrossRef] [Green Version]
- Vanweert, F.; Schrauwen, P.; Phielix, E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr. Diabetes 2022, 12, 35. [Google Scholar] [CrossRef]
- Whigham, L.D.; Butz, D.E.; Dashti, H.; Tonelli, M.; Johnson, L.K.; Cook, M.E.; Porter, W.P.; Eghbalnia, H.R.; Markley, J.L.; Lindheim, S.R.; et al. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. Curr. Metab. 2014, 2, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Hu, W.; Liu, Q.; Hao, Q.; Sun, B.; Zhang, Q.; Mao, S.; Qiao, J.; Yan, X. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J. Proteome Res. 2012, 11, 2937–2946. [Google Scholar] [CrossRef]
- Gannon, N.P.; Schnuck, J.K.; Vaughan, R.A. BCAA Metabolism and Insulin Sensitivity—Dysregulated by Metabolic Status? Mol. Nutr. Food Res. 2018, 62, e1700756. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Bender, K.; Kiely, A.; Brennan, L. Amino acid metabolism, insulin secretion and diabetes. Biochem. Soc. Trans. 2007, 35 Pt 5, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.; Bermúdez-Silva, F.J.; André, C.; Elie, M.; Romero-Zerbo, S.Y.; Leste-Lasserre, T.; Belluomo, I.; Duchampt, A.; Clark, S.; Aubert, A.; et al. Leucine supplementation protects from insulin resistance by regulating adiposity levels. PLoS ONE 2013, 8, e74705. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.A.; Joshi, M.; Jeoung, N.H. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem. Biophys. Res. Commun. 2004, 313, 391–396. [Google Scholar] [CrossRef]
- Wiklund, P.; Zhang, X.; Pekkala, S.; Autio, R.; Kong, L.; Yang, Y.; Keinänen-Kiukaanniemi, S.; Alen, M.; Cheng, S. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women. Sci. Rep. 2016, 6, 24540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Würtz, P.; Soininen, P.; Kangas, A.J.; Rönnemaa, T.; Lehtimäki, T.; Kähönen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, S.E.; Shaham, O.; McCarthy, M.A.; Deik, A.A.; Wang, T.J.; Gerszten, R.E.; Clish, C.B.; Mootha, V.K.; Grinspoon, S.K.; Fleischman, A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr. Obes. 2013, 8, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Yamakado, M.; Nagao, K.; Imaizumi, A.; Tani, M.; Toda, A.; Tanaka, T.; Jinzu, H.; Miyano, H.; Yamamoto, H.; Daimon, T.; et al. Plasma Free Amino Acid Profiles Predict Four-Year Risk of Developing Diabetes, Metabolic Syndrome, Dyslipidemia, and Hypertension in Japanese Population. Sci. Rep. 2015, 5, 11918. [Google Scholar] [CrossRef] [PubMed]
- Huffman, K.M.; Shah, S.H.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.; Slentz, C.A.; Tanner, C.J.; Kuchibhatla, M.; Houmard, J.A.; Newgard, C.B.; et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009, 32, 1678–1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, M.; Tremblay, M.S.; Connor Gorber, S.; Janssen, I. Abdominal obesity and cardiovascular disease risk factors within body mass index categories. Health Rep. 2012, 23, 7–15. [Google Scholar] [PubMed]
- Lean, M.E.; Han, T.S.; Morrison, C.E. Waist circumference as a measure for indicating need for weight management. BMJ 1995, 311, 158–161. [Google Scholar] [CrossRef]
PCOS | Control | p | |
---|---|---|---|
age | 25.86 ± 5.38 | 31.08 ± 6.99 | <0.001 |
BMI | 26.09 ± 6.37 | 25.39 ± 5.22 | 0.67 |
waist circumference (cm) | 89.75 ± 15.16 | 87.17 ± 14.59 | 0.12 |
fasting glucose (mg/dL) | 87.22 ± 6.56 | 86.97 ± 8.37 | 0.41 |
HDL | 65.69 ± 18.44 | 66.97 ± 15.64 | 0.40 |
triglycerides | 95.39 ± 60.55 | 86.79 ± 42.61 | 0.31 |
total cholesterol | 188.23 ± 35.60 | 188.89 ± 35.71 | 0.86 |
LDL | 104.47 ± 33.37 | 104.46 ± 32.52 | 0.81 |
albumin | 48.09 ± 2.85 | 47.35 ± 2.62 | 0.03 |
non-HDL | 122.65 ± 37.94 | 121.91 ± 35.18 | 0.83 |
CRP | 1.78 ± 3.28 | 1.72 ± 2.54 | 0.88 |
WBC | 6.26 ± 1.57 | 5.67 ± 1.35 | 0.001 |
TSH | 2.49 ± 1.55 | 2.10 ± 1.30 | 0.02 |
LH | 9.57 ± 7.40 | 7.09 ± 6.03 | <0.001 |
FSH | 6.85 ± 4.05 | 6.76 ± 2.30 | 0.85 |
LH/FSH | 1.46 ± 1.04 | 1.13 ± 0.98 | <0.001 |
estradiol | 232.79 ± 151.47 | 391.13 ± 179.84 | <0.002 |
prolactin | 433.11 ± 194.11 | 372.35 ± 152.38 | 0.006 |
DHEA-S | 314.53 ± 125.92 | 204.22 ± 74.25 | <0.001 |
testosterone | 1.86 ± 0.67 | 1.05 ± 0.33 | <0.001 |
SHBG | 65.75 ± 38.41 | 76.77 ± 37.17 | 0.001 |
fasting insulin | 11.83 ± 6.89 | 8.91 ± 4.80 | <0.001 |
FAI | 3.99 ± 3.29 | 1.75 ± 1.28 | <0.001 |
androstendione | 3.28 ± 1.31 | 2.13 ± 0.82 | <0.001 |
HOMA-IR | 2.55 ± 1.53 | 1.96 ± 1.15 | <0.001 |
percentage of fat mass (%) | 31.96 ± 10.41 | 30.32 ± 9.27 | 0.53 |
percentage of fat-free mass (%) | 68.05 ± 10.41 | 69.68 ± 9.27 | 0.53 |
percentage of muscle mass (%) | 64.95 ± 8.87 | 66.95 ± 8.83 | 0.23 |
PCOS | Control | p | |
---|---|---|---|
VAL (nmol/mL) | 331.02 ± 64.75 | 305.26 ± 55.90 | <0.001 |
LEU (nmol/mL) | 131.83 ± 22.12 | 124.15 ± 19.89 | <0.001 |
ILE (nmol/mL) | 77.73 ± 15.76 | 71.68 ± 14.20 | <0.001 |
BCAA (nmol/mL) | 540.59 ± 97.23 | 501.09 ± 85.33 | <0.001 |
BCAA | |
---|---|
BMI | 0.32 |
HOMA-IR | 0.36 |
waist circumference | 0.36 |
Estradiol | −0.25 |
Testosterone | 0.20 |
FAI | 0.34 |
percentage of fat-free mass | −0.37 |
percentage of fat mass | 0.37 |
percentage of muscle mass | −0.39 |
Non- Obese Individuals (Ob−) | Obese Individuals (Ob+) | |||||
---|---|---|---|---|---|---|
PCOS | Control | p | PCOS | Control | p | |
VAL (nmol/mL) | 321.21 ± 59.44 | 299.46 ± 54.38 | 0.003 | 365.59 ± 71.27 | 335.11 ± 53.77 | 0.06 |
LEU (nmol/mL) | 128.42 ± 19.68 | 121.86 ± 19.91 | 0.002 | 143.86 ± 25.99 | 134.87 ± 16.79 | 0.10 |
ILE (nmol/mL) | 75.14 ± 14.11 | 70.19 ± 13.36 | 0.002 | 86.86 ± 17.91 | 79.37 ± 14.54 | 0.12 |
BCAA (nmol/mL) | 524.76 ± 87.69 | 491.51 ± 83.43 | 0.001 | 596.31 ± 109.08 | 549.34 ± 78.81 | 0.08 |
With Hyperandrogenemia (HA+) | Without Hyperandrogenemia (HA−) | p | |
---|---|---|---|
VAL (nmol/mL) | 338.54 ± 71.61 | 320.56 ± 52.41 | 0.10 |
LEU (nmol/mL) | 136.47 ± 23.33 | 125.38 ± 18.59 | <0.001 |
ILE (nmol/mL) | 79.83 ± 16.89 | 74.81 ± 13.60 | 0.014 |
BCAA (nmol/mL) | 554.85 ± 106.38 | 520.75 ± 79.24 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paczkowska, K.; Rachoń, D.; Berg, A.; Rybka, J.; Kapczyńska, K.; Bolanowski, M.; Daroszewski, J. Specific Alteration of Branched-Chain Amino Acid Profile in Polycystic Ovary Syndrome. Biomedicines 2023, 11, 108. https://doi.org/10.3390/biomedicines11010108
Paczkowska K, Rachoń D, Berg A, Rybka J, Kapczyńska K, Bolanowski M, Daroszewski J. Specific Alteration of Branched-Chain Amino Acid Profile in Polycystic Ovary Syndrome. Biomedicines. 2023; 11(1):108. https://doi.org/10.3390/biomedicines11010108
Chicago/Turabian StylePaczkowska, Katarzyna, Dominik Rachoń, Andrzej Berg, Jacek Rybka, Katarzyna Kapczyńska, Marek Bolanowski, and Jacek Daroszewski. 2023. "Specific Alteration of Branched-Chain Amino Acid Profile in Polycystic Ovary Syndrome" Biomedicines 11, no. 1: 108. https://doi.org/10.3390/biomedicines11010108
APA StylePaczkowska, K., Rachoń, D., Berg, A., Rybka, J., Kapczyńska, K., Bolanowski, M., & Daroszewski, J. (2023). Specific Alteration of Branched-Chain Amino Acid Profile in Polycystic Ovary Syndrome. Biomedicines, 11(1), 108. https://doi.org/10.3390/biomedicines11010108