Treatment of Drug-Induced Liver Injury
Abstract
:1. Introduction
2. Literature Search and Source
3. Definitions
3.1. Idiosyncratic vs. Intrinsic DILI
3.2. Real Liver Injury Versus Liver Adaptation or Tolerance
3.3. Liver Injury Pattern
3.4. RUCAM
3.5. Randomized Controlled Trials
4. Hepatic Drug Handling
4.1. Hepatocellular Drug Uptake
4.2. Hepatic Drug Metabolism
4.3. Elimination of Drugs and Their Metabolites
5. Basics of Molecular and Mechanistic Toxicology in DILI
5.1. Liver Immune System
5.2. Hepatic Microsomal Cytochrome P450
5.3. ROS and Oxidative Stress
5.4. Ferroptosis
5.5. Molecular Aspects of the Cholestatic DILI
5.6. Gut Microbiome, Gut-Liver Axis, and DILI
6. Initial Therapy of DILI by Drug Cessation
7. Action Principles of Potential Therapeuticals in DILI
8. Published Reports of Drugs and Herbs Used for Therapy of DILI
8.1. Anticoagulants
8.2. Antioxidants (General)
8.3. Bicyclol
8.4. Cholestyramine
8.5. Clausenamide
8.6. Glucocorticoids
8.6.1. DILI Related to Immune Checkpoint Inhibitors
8.6.2. DILI by Common Drugs
8.6.3. Drug-Induced Autoimmune Hepatitis
8.7. Immune-Suppressants
8.8. Iron Chelators
8.9. L-Carnitine
8.10. Magnesium Isoglycyrrhizinate
8.11. N-Acetylcysteine
8.11.1. APAP DILI
8.11.2. Non-APAP DILI
8.12. Polyene Phosphatidylcholine
8.13. Probiotics
8.14. S-Adenosyl-Methionine
8.15. Silymarin
8.16. Ursodeoxycholic Acid
9. Non-Pharmaceutical Treatment Approaches
9.1. Artificial Extracorporal Liver Support
9.2. Liver Transplantation
10. Proposals for the Future
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodríguez, A.; García-García, I.; Soto, L.; Huertas, A.; Borobia, A.; González-Torbay, A.; Akatbach-Bousaid, I.; González-Muñoz, M.; Ramirez, E. Utility of lymphoycyte transformation test for assisting updated Roussel Uclaf Causality Assessment Method in drug-induced liver injury: A case-control study. Front. Pharmacol. 2022, 13, 819589. [Google Scholar] [CrossRef] [PubMed]
- Abeles, R.D.; Foxton, M.; Khan, S.; Goldin, R.; Smith, B.; Thursz, M.R.; Verma, S. Androgenic anabolic steroid-induced liver injury: Two case reports assessed for causality by the updated Roussel Uclaf Causality Assessment Method (RUCAM) score and a comprehensive review of the literature. BMJ Open Gastroenterol. 2020, 7, e000549. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, C.; Yang, H.; Huang, P.; Shi, J.; Tong, Y.; Jiang, J.; Zhang, X.; Chen, W.; Xuan, Z. Epidemiology of drug- and herb-induced liver injury assessed for causality using the updated RUCAM in two hospitals from China. BioMed Res. Int. 2021, 2021, 8894498. [Google Scholar] [CrossRef] [PubMed]
- Lunardelli, M.M.; Becker, M.W.; Ortiz, G.X.; Blatt, C.R. Drug-induced liver injury causality assessment data from a crosssectional study In Brazil: A call for the use of updated RUCAM in hospital pharmacy. Rev. Bras. Farm. Hosp. Serv. Saude 2022, 13, 791–800. [Google Scholar] [CrossRef]
- Ye, L.; Feng, Z.; Huang, L.; Guo, C.; Wu, X.; He, L.; Tan, W.; Wang, Y.; Wu, X.; Hu, B.; et al. Causality evaluation of drug-induced liver injury in newborns and children in the intensive care unit using the updated Roussel Uclaf Causality Assessment Method. Front. Pharmacol. 2021, 12, 790108. [Google Scholar] [CrossRef]
- Danjuma, M.I.M.; Almasri, H.; Alshokri, S.; Khir, F.K.; Elmalik, A.; Battikh, N.G.; Abdallah, I.M.H.A.; Elshafei, M.; Fatima, H.; Mohamed, M.F.H.; et al. Avoidability of drug-induced liver injury (DILI) in an elderly hospital cohort with cases assessed for causality by the updated RUCAM score. BMC Geriatr. 2020, 20, 346. [Google Scholar] [CrossRef]
- González-Muñoz, M.; Monserrat Villatoro, J.; Marín-Serrano, E.; Stewart, S.; Bardón Rivera, B.; Marín, J.; Martínez de Soto, L.; Seco Meseguer, E.; Ramírez, E. A case report of a drug-induced liver injury (DILI) caused by multiple antidepressants with causality established by the updated Roussel Uclaf causality assessment method (RUCAM) and in vitro testing. Clin. Case Rep. 2020, 8, 3105–3109. [Google Scholar] [CrossRef]
- Wurzburger, R. A case of delayed hepatic injury associated with teriflunomide use as assessed for causality using the updated RUCAM. Case Rep. Hepatol. 2022, 2022, 6331923. [Google Scholar] [CrossRef]
- Shi, X.; Lao, D.; Xu, Q.; Li, X.; Lv, Q. A case report of drug-induced liver injury after tigecycline administration: Histopathological evidence and a probable causality grading as assessed by the updated RUCAM diagnostic scale. BMC Infect. Dis. 2022, 22, 368. [Google Scholar] [CrossRef]
- Plüß, M.; Tampe, D.; Schwörer, H.; Bremer, S.C.B.; Tampe, B. Case report: Kinetics of human leukocyte antigen receptor HLA-DR during liver injury induced by potassium para-aminobenzoate as assessed for causality using the updated RUCAM. Front. Pharmacol. 2022, 13, 966910. [Google Scholar] [CrossRef]
- Danan, G.; Bénichou, C. Causality assessment of adverse reactions to drugs–I. A novel method based on the conclusions of international consensus meetings: Application to drug-induced liver injuries. J. Clin. Epidemiol. 1993, 46, 1323–1330. [Google Scholar] [CrossRef]
- Bénichou, C.; Danan, G.; Flahault, A. Causality assessment of adverse reactions of drugs–II. An original model for validation of drug causality assessment methods: Case reports with positive rechallenge. J. Clin. Epidemiol. 1993, 46, 1331–1336. [Google Scholar] [CrossRef]
- Danan, G.; Teschke, R. RUCAM in drug and herb induced liver injury: The update. Int. J. Mol. Sci 2016, 17, 14. [Google Scholar] [CrossRef]
- Teschke, R. DILI, HILI, RUCAM algorithm, and AI, the Artificial Intelligence: Provocative issues, progress, and proposals. Arch. Gastroenterol. Res. 2020, 1, 4–11. [Google Scholar]
- Teschke, R.; Danan, G. Idiosyncratic drug-induced liver injury (DILI) and herb-induced liver injury (HILI): Diagnostic algorithm based on the quantitative Roussel Uclaf Causality Assessment Method (RUCAM). Diagnostics 2021, 11, 458. [Google Scholar] [CrossRef]
- Teschke, R.; Danan, G. Worldwide use of RUCAM for causality assessment in 81,856 DILI and 14,029 HILI cases published 1993-mid 2020: A comprehensive analysis. Medicines 2020, 7, 62. [Google Scholar] [CrossRef]
- Teschke, R.; Méndez-Sánchez, N.; Eickhoff, A. Liver injury in COVID-19 patients with drugs as causatives: A systematic review of 996 DILI cases published 2020/2021 based on RUCAM as causality assessment method. Int. J. Mol. Sci 2022, 23, 4828. [Google Scholar] [CrossRef]
- Muhović, D.; Bojović, J.; Bulatović, A.; Vukčević, B.; Ratković, M.; Lazović, R.; Smolović, B. First case of drug-induced liver injury associated with the use of tocilizumab in a patient with COVID-19. Liver. Int. 2020, 40, 1901–1905. [Google Scholar] [CrossRef]
- Chen, F.; Chen, W.; Chen, J.; Xu, D.; Xie, W.; Wang, X.; Xie, Y. Clinical features and risk factors of COVID-19-associated liver injury and function: A retrospective analysis of 830 cases. Ann. Hepatol. 2021, 21, 100267. [Google Scholar] [CrossRef]
- Delgado, A.; Stewart, S.; Urroz, M.; Rodríguez, A.; Borobia, A.M.; Akatbach-Bousaid, I.; González-Muñoz, M.; Ramírez, E. Characterisation of drug-induced liver injury in patients with COVID-19 detected by a proactive pharmacovigilance program from laboratory signals. J. Clin. Med. 2021, 10, 4432. [Google Scholar] [CrossRef]
- Jothimani, D.; Vij, M.; Sanglodkar, U.; Patil, V.; Sachan, D.; Narasimhan, G.; Kaliamoorthy, I.; Rela, M. Severe jaundice in a COVID-19 patient-virus or drug? J. Clin. Exp. Hepatol. 2021, 11, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kulkarni, A.; Sharma, M.; Raon, P.N.; Reddy, D.N. Letter to the Editor. Favipiravir-induced liver injury in patients with coronavirus disease 2019. J. Clin. Transl. Hepatol. 2021, 9, 276–278. [Google Scholar] [PubMed]
- Yamazaki, S.; Suzuki, T.; Sayama, M.; Nakada, T.A.; Igari, H.; Ishii, I. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J. Infect Chemother. 2021, 27, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Naseralallah, L.M.; Aboujabal, B.A.; Geryo, N.M.; Al Boinin, A.; Al Hattab, F.; Akbar, R.; Umer, W.; Jabbar, L.A.; Danjuma, M.I. The determination of causality of drug induced liver injury in patients with COVID-19 clinical syndrome. PLoS ONE 2022, 17, e0268705. [Google Scholar] [CrossRef]
- Sarges, P.; Steinberg, J.M.; Lewis, J.H. Drug-induced liver injury: Highlights from a review of the 2015 literature. Drug Saf. 2016, 39, 561–575. [Google Scholar] [CrossRef]
- Shahbaz, O.; Mahajan, S.; Lewis, J.H. Highlights of drug- and herb-induced liver injury in the literature from 2016: How best to translate new information into clinical practice? Exp. Opin. Drug Metab. Toxicol. 2017, 13, 935–951. [Google Scholar] [CrossRef]
- Real, M.; Barnhill, M.S.; Higley, C.; Rosenberg, J.; Lewis, J. Drug-induced liver injury: Highlights of the recent literature. Drug Saf. 2019, 42, 365–387. [Google Scholar] [CrossRef]
- Clinton, J.W.; Kiparizoska, S.; Aggarwal, S.; Woo, S.; Davis, W.; Lewis, J.H. Drug-induced liver injury: Highlights and controversies in the recent literature. Drug Saf. 2021, 44, 1125–1149. [Google Scholar] [CrossRef]
- Yu, Y.C.; Mao, Y.M.; Chen, C.W.; Chen, J.J.; Chen, J.; Cong, W.M.; Ding, Y.; Duan, Z.P.; Fu, Q.C.; Guo, X.Y.; et al. Drug-induced Liver Injury (DILI) Study Group, Chinese Society of Hepatology (CSH), Chinese Medical Association (CMA). CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol. Int. 2017, 11, 221–241. [Google Scholar] [CrossRef] [Green Version]
- Devarbhavi, H.; Aithal, G.; Treeprasertsuk, S.; Takikawa, H.; Mao, Y.; Shasthry, S.M.; Hamid, S.; Tan, S.S.; Philips, C.A.; George, J.; et al. Drug-induced liver injury: Asia Pacific Association of Study of Liver consensus guidelines. Hepatol. Int. 2021, 15, 258–282. [Google Scholar] [CrossRef]
- Aithal, G.P.; Watkins, P.B.; Andrade, R.J.; Larrey, D.; Molokhia, M.; Takikawa, H.; Hunt, C.M.; Wilke, R.A.; Avigan, M.; Kaplowitz, N.; et al. Case definition and phenotype standardization in drug-induced liver injury. Clin. Pharmacol. Ther. 2011, 89, 806–815. [Google Scholar] [CrossRef]
- Teschke, R.; Danan, G. DILI cases in registries and databases: An analysis of quality. Int. J. Gastroenterol. Hepatol. Dis. 2021, 1, e010621192456. [Google Scholar] [CrossRef]
- Teschke, R.; Danan, G. The LiverTox paradox-gaps between promised data and reality check. Diagnostics 2021, 11, 1754. [Google Scholar] [CrossRef]
- Björnsson, E.S. Hepatotoxicity by drugs: The most common implicated agents. Int. J. Mol. Sci. 2016, 17, 224. [Google Scholar] [CrossRef] [Green Version]
- Björnsson, E.S.; Hoofnagle, J.H. Categorization of drugs implicated in causing liver injury: Critical assessment based on published case reports. Hepatology 2016, 63, 590–603. [Google Scholar] [CrossRef] [Green Version]
- Danan, G.; Teschke, R. Roussel Uclaf Causality Assessment Method for drug-induced liver injury. Front. Pharmacol. 2019, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- Danan, G.; Teschke, R. Electronic RUCAM: Major pitfalls call for caution and proper validation. Hepatology 2022, 76, E27. [Google Scholar] [CrossRef]
- Teschke, R.; Danan, G. Drug induced liver injury with analysis of alternative causes as confounding variables. Br. J. Clin. Pharmacol. 2018, 84, 1467–1477. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Sánchez, N.; Teschke, R. Drug-induced liver injury by conventional drugs, using cases based on the Roussel Uclaf Causality Assessment Method. In Comprehensive Guide to Hepatitis Advances; Méndez-Sánchez, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; in press. [Google Scholar]
- Ke, L.; Lu, C.; Shen, R.; Lu, T.; Ma, B.; Hua, Y. Knowledge mapping of drug-induced liver injury: A scientometric investigation (2010–2019). Front. Pharmacol. 2020, 11, 842. [Google Scholar] [CrossRef]
- Kolaric, T.O.; Nincevic, V.; Kuna, L.; Duspara, K.; Bojanic, K.; Vukadin, S.; Raguz-Lucic, N.; Wu, G.Y.; Smolic, M. Drug-induced fatty liver disease: Pathogenesis and treatment. J. Clin. Transl. Hepatol. 2021, 9, 731–737. [Google Scholar] [CrossRef]
- DeLeve, L.D.; McCuskey, R.S.; Wang, X.; Hu, L.; McCuskey, M.K.; Epstein, R.B.; Kanel, G.C. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology 1999, 29, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Sebode, M.; Schulz, L.; Lohse, A.W. “Autoimmune(-like)” drug and herb induced liver injury: New insights into molecular pathogenesis. Int. J. Mol. Sci. 2017, 18, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teschke, R.; Danan, G. Causality assessment methods in drug-induced liver injury. In Drug-induced Liver Toxicity; Chen, M., Yvonne Will, Y., Eds.; Springer Nature: Berlin, Germany, 2018; Chapter 27; pp. 555–594. [Google Scholar] [CrossRef]
- Danan, G.; Teschke, R. Drug-induced liver injury: Why is the Roussel Uclaf Causality Assessment Method (RUCAM) still used 25 years after its launch? Drug Saf. 2018, 41, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Hariton, E.; Locascio, J.J. Randomised controlled trials–the gold standard for effectiveness research. BJOG 2018, 125, 1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Hopeell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. J. Clin. Epi. 2010, 63, e1–e37. [Google Scholar] [CrossRef] [Green Version]
- Teschke, R.; Danan, G. Idiosyncratic drug induced liver injury, cytochrome P450, metabolic risk factors, and lipophilicity: Highlights and controversies. Int. J. Mol. Sci. 2021, 22, 3441. [Google Scholar] [CrossRef]
- Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci. 2002, 65, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Roth, A.D.; Lee, M.Y. Idiosyncratic drug-induced liver injury (IDILI): Potential mechanisms and predictive assays. Biomed. Res. Int. 2017, 2017, 9176937. [Google Scholar] [CrossRef] [Green Version]
- Kalra, B.S. Cytochrome P450 enzyme isoforms and their therapeutic implications: An update. Indian. J. Med. Sci. 2007, 61, 102–116. [Google Scholar] [CrossRef]
- Foti, R.S.; Dalvie, D.K. Cytochrome P450 and non-cytochrome P450 oxidative metabolism: Contributions to the pharmacokinetics, safety, and efficacy of xenobiotics. Drug Metab. Dispos. 2016, 44, 1229–1245. [Google Scholar] [CrossRef]
- Teschke, R. Idiosyncratic DILI: Analysis of 46,266 cases assessed for causality by RUCAM and published from 2014 to early 2019. Front. Pharmacol. 2019, 10, 730. [Google Scholar] [CrossRef] [Green Version]
- Corsini, A.; Bortolini, M. Drug-induced liver injury: The role of drug metabolism and transport. J. Clin. Pharmacol. 2013, 53, 463–474. [Google Scholar] [CrossRef]
- Johansson, I.; Ingelman-Sundberg, M. Genetic polymorphism and toxicology—With emphasis on cytochrome P450. Toxicol. Sci. 2011, 120, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Guengerich, F.P. Mechanisms of cytochrome P450 substrate oxidation: MiniReview. J. Biochem. Mol. Toxicol. 2007, 21, 163–168. [Google Scholar] [CrossRef]
- Tarantino, G.; Di Minno, M.N.; Capone, D. Drug-induced liver injury: Is it somehow foreseeable? World J. Gastroenterol. 2009, 15, 2817–2833. [Google Scholar] [CrossRef]
- Uetrecht, J. Idiosyncratic drug reactions: Current understanding. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 513–539. [Google Scholar] [CrossRef]
- Uetrecht, J.P. New concepts in immunology relevant to idiosyncratic drug reaction: The “danger hypothesis” and innate immune system. Chem. Res. Toxicol. 1999, 12, 387–395. [Google Scholar] [CrossRef]
- Teschke, R.; Danan, G. Liver injury by drugs metabolized via cytochrome P450. J. Mod. Med. Chem. 2020, 8, 93–98. [Google Scholar] [CrossRef]
- Uetrecht, J. Mechanistic studies of idiosyncratic DILI: Clinical implications. In: Special issue: Clinical drug induced liver injury: Current diagnostic and mechanistic challenges, guest editors: Rolf Teschke, Gaby Danan, James, H. Lewis. Front. Pharmacol. 2019, 10, 837. [Google Scholar] [CrossRef] [Green Version]
- Teschke, R.; Uetrecht, J. Mechanism of idiosyncratic drug induced liver injury (DILI): Unresolved basic issues. In special issue: Unresolved basic issues in hepatology, guest editors Ralf Weiskirchen & Wolfgang Stremmel. Ann. Transl. Med. 2021, 9, 730. [Google Scholar] [CrossRef]
- Jee, A.; Sernoskie, S.C.; Uetrecht, J. Idiosyncratic drug-induced liver injury: Mechanistic and clinical challenges. Int. J. Mol. Sci. 2021, 22, 2954. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Orozco, L.; Quiroz-Compean, F.; Aquino-Matus, J.; Teschke, R.; Méndez-Sánchez, N. Severe DILI in a patient under polypharmacy including rosuvastatin: Diagnostic challenges and lessons from a case report assessed using the updated RUCAM algorithm. Int. J. Gastroenterol. Hepatol. Dis. 2022, 10, e250422203997. [Google Scholar] [CrossRef]
- Teschke, R. Top-ranking drugs out of 3312 drug-induced liver injury cases evaluated by the Roussel Uclaf Causality Assessment Method. Expert. Opin. Drug Metab. Toxicol. 2018, 14, 1169–1187. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines 2018, 6, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, C.T.; Chen, T. Hepatotoxicity of herbal supplements mediated by modulation of cytochrome P450. Int. J. Mol. Sci. 2017, 18, 2353. [Google Scholar] [CrossRef] [Green Version]
- Teschke, R.; Vongdala, N.; Quan, N.V.; Quy, T.N.; Xuan, T.D. Toxifying 1,2-unsaturated pyrrolizidine alkaloids causing human hepatic sinusoidal obstruction syndrome. Int. J. Mol. Sci. 2021, 22, 10419. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Vinken, M. Mitochondria as the target of hepatotoxicity and drug-induced liver injury: Mechanism and detection methods. Int. J. Mol. Sci. 2022, 23, 3315. [Google Scholar] [CrossRef]
- Studentova, H.; Volakova, J.; Spisarova, M.; Zemankova, A.; Aiglova, K.; Szotkowski, T.; Melichar, B. Severe tyrosine-kinase inhibitor induced liver injury in metastatic renal cell carcinoma patients: Two case reports assessed for causality using the updated RUCAM and review of the literature. BMC Gaastroenterol. 2022, 22, 49. [Google Scholar] [CrossRef]
- Jaeschke, H.; Ramachandran, A. Reactive oxygen species in the normal and acutely injured liver. J. Hepatol. 2011, 55, 227–228. [Google Scholar] [CrossRef] [Green Version]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Lőrincz, T.; Jemnitz, K.; Kardon, T.; Mandl, J.; Szarka, A. Ferroptosis is involved in acetaminophen induced cell death. Pathol. Oncol. Res. 2015, 21, 1115–1121. [Google Scholar] [CrossRef]
- Macías-Rodríguez, R.U.; Inzaugarat, M.E.; Ruiz-Margáin, A.; Nelson, L.J.; Trautwein, C.; Cubero, F.J. Reclassifying hepatic cell death during liver damage: Ferroptosis-a novel form of non-apoptotic cell death? Int. J. Mol. Sci. 2020, 21, 1651. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.J.; Zhang, G.F.; Zheng, J.Y.; Sun, J.H.; Ding, S.B. Targeting mitochondrial ROS-mediated ferroptosis by quercetin allivates high-fat diet-induced hepatic lipotoxicity. Front. Pharmacol. 2022, 13, 876550. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, E.; Hu, H. Role of ferroptosis in non-alcoholic fatty liver disease and its implications for therapeutic strategies. Biomedicines 2021, 9, 1660. [Google Scholar] [CrossRef]
- Gan, B. Mitochondrial regulation of ferroptosis. J. Cell Biol. 2021, 220, e202105043. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–107279. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xu, Y.; Zhang, K.; Shen, L.; Deng, M. Ferroptosis in COVID-19-related liver injury: A potential mechanism and therapeutic target. Front. Cell Infect. Microbiol. 2022, 12, 1058. [Google Scholar] [CrossRef]
- Wei, L.; Zuo, Z.; Yang, Z.; Yin, H.; Yang, Y.; Fang, J.; Cui, H.; Du, Z.; Ouyang, P.; Chen, X.; et al. Mitochondria damage and ferroptosis involved in Ni-induced hepatotoxicity in mice. Toxicology 2022, 466, 153068. [Google Scholar] [CrossRef]
- Teschke, R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular aspects in experimental liver injury. Int. J. Mol. Sci. 2022, 23, 12213. [Google Scholar] [CrossRef]
- Zhu, Y.; Niu, M.; Chen, J.; Zou, Z.; Ma, Z.; Liu, S.; Wang, R.; He, T.; Song, H.; Wang, Z.; et al. Hepatobiliary and pancreatic: Comparison between Chinese herbal medicine and Western medicine-induced liver injury of 1985 patients. J. Gastroenterol. Hepatol. 2016, 31, 1476–1482. [Google Scholar] [CrossRef]
- Jing, J.; Teschke, R. Traditional Chinese medicine (TCM) and herb induced liver injury: Comparison with drug induced liver injury. J. Clin. Trans. Hepatol. 2018, 6, 57–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.H.; Qian, Y.H.; Shang, Z.; Sun, X.H.; Kong, X.N.; Gao, Y.Q. Antibiotics enhancing drug-induced liver injury assessed for causality using Roussel Uclaf Causality Assessment ethod: Emerging role of gut microbiota dysbiosis. Front. Med. 2022, 9, 972518. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of antibiotics on gut microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Zhu, Y. Opinion: Intestinal microbiome, endotoxins, cytochrome P450 2E1, and the gut-liver axis in alcoholic liver disease. EC Gastroenterol. Dig. Syst. 2019, 5, 11. [Google Scholar]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef] [Green Version]
- Nolan, J.P. The role of intestinal endotoxin in liver injury: A long and evolving history. Hepatology 2010, 52, 1829–1835. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R. Gut microbiota modulates drug pharmacokinetics. Drug Metab. Rev. 2018, 50, 357–368. [Google Scholar] [CrossRef]
- Becker, M.W.; Lunardelli, M.J.M.; Tovo, C.V.; Blatt, C.R. Drug and herb-induced liver injury: A critical review of Brazilian cases with proposals for the improvement of causality assessment using RUCAM. Ann. Hepatol. 2019, 18, 742–750. [Google Scholar] [CrossRef]
- Gerbes, A.L. Drug-induced liver injury (DILI): A major challenge. Drug Res. 2021, 71, S7. [Google Scholar] [CrossRef]
- Li, M.; Luo, Q.; Tao, Y.; Sun, X.; Liu, C. Pharmacotherapies for drug-induced liver injury: A current literature review. Front. Pharmacol. 2022, 12, 806249. [Google Scholar] [CrossRef]
- Ali, S.S.; Ahsan, H.; Zia, M.K.; Siddiqui, T.; Khan, F.H. Understanding oxidants and antioxidants: Classical team with new players. J. Food Biochem. 2020, 44, e13145. [Google Scholar] [CrossRef]
- Yao, X.M.; Chen, H.; Li, Y. Protective effect of bicyclol on liver injury induced by hepatic warm ischemia/reperfusion in rats. Hepatol. Res. 2009, 39, 833–842. [Google Scholar] [CrossRef]
- Einarsson, K.; Ericsson, S.; Ewert, S.; Reihnér, E.; Rudling MStåhlberg, D.; Angelin, B. Bile acid sequestrants: Mechanisms of action on bile acid and cholesterol metabolism. Eur. J. Clin. Pharmacol. 1991, 40 (Suppl. 1), S53–S58. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Liu, L.D.; Wei, H.L.; Liu, G.T. Different effects of nine clausenamide ennatiomers on liver glutathione biosynthesis and glutathione S-transferase activity in mice. Acta Pharmacol. Sin. 2006, 27, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Li, W.; Li, L.; Zhang, K. Glucocorticoid treatment strategies in liver failure. Front. Immunol. 2022, 13, 846091. [Google Scholar] [CrossRef]
- Corrigan, M.; Haydon, G.; Thompson, F.; Rajoriya, N.; Peplow, C.L.; Hubscher, S.G.; Steven, N.; Hirschfield, G.M.; Armstrong, M.J. Infliximab for the treatment of refractory immune-related hepatitis secondary to checkpoint inhibitors: A case report. J. Hepatol. Rep. 2019, 1, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Niu, B.; Lei, X.; Xu, Q.; Ju, Y.; Xu, D.; Mao, L.; Li, J.; Zheng, Y.; Sun, N.; Zhang, X.; et al. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol. Toxicol. 2022, 38, 505–530. [Google Scholar] [CrossRef]
- Yapar, K.; Kart, A.; Karapehlivan, M.; Atakisi, O.; Tunca, R.; Erginsoy, S.; Citil, M. Hepatoprotective effect of L-carnitine against acute acetaminophen toxicity in mice. Exp. Toxicol. Pathol. 2007, 59, 121–128. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, B.; Liu, P.; Zhang, J.; Chu, X.; Dong, C.; Shi, J.; Liang, Y.; Chu, L.; Liu, Y.; et al. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide-induced acute liver injury. Mol. Med. Rep. 2021, 23, 438. [Google Scholar] [CrossRef]
- Xia, Y.; Shi, H.; Qian, C.; Han, H.; Lu, K.; Tao, R.; Gu, R.; Zhao, Y.; Wei, Z.; Lu, Y. Modulation of gut microbiotica by magnesium isoglycyrrhizinate mediates enhancment of intestinal barrier function and amelioration of methotrexate-induced liver injury. Front. Immunol. 2022, 13, 874878. [Google Scholar] [CrossRef]
- Ntamo, Y.; Ziqubu, K.; Chellan, N.; Nkambule, B.B.; Nyambuya, T.M.; Mazibuko-Mbeje, S.E.; Gabuza, K.B.; Marcheggiani, F.; Tiano, L.; Dludla, P.V. Drug-induced liver injury: Clinical evidence of N-acetyl cysteine protective effects. Oxidat. Med. Cell. Longevity 2021, 2021, 3320325. [Google Scholar] [CrossRef]
- Fan, J.G.; Li, Y.; Yu, Z.; Luo, X.X.; Zheng, P.; Hao, X.; Wang, Z.Y.; Gao, F.; Zhang, G.Q.; Feng, W.Y. Effectiveness and economic evaluation of polyene phosphatidyl choline in patients with liver diseases based on real-world research. Front. Pharmacol. 2022, 13, 806787. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, R.; Chen, P. Gut microbiota and chemical-induced acute liver injury. Front. Phys. 2021, 12, 688780. [Google Scholar] [CrossRef] [PubMed]
- Noureddin, M.; Sander-Struckmeier, S.; Mato, J.M. Early treatment efficacy of S-adenosylmethionine in patients with intrahepatic cholestasis: A systematic review. World J. Hepatol. 2020, 12, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Aghemo, A.; Alekseeva, O.P.; Angelico, F.; Bakulin, I.G.; Bakulina, N.V.; Bordin, D.; Bueverov, A.O.; Drapkina, O.M.; Gillessen, A.; Kagarmanova, E.M.; et al. Role of silymarin as antioxidant in clinical management of chronic liver diseases: A narrative review. Ann. Med. 2022, 54, 1548–1560. [Google Scholar] [CrossRef]
- Paumgartner, G.; Breuer, U. Ursodeoxycholic acid in cholestatic liver disease: Mechanisms of action and therapeutic use revisited. Hepatology 2002, 36, 525–531. [Google Scholar] [CrossRef]
- Parra-Landázury, N.M.; Córdova-Gallardo, J.; Méndez-Sánchez, N. Drug induced liver injury: Is there an indication for ursodeoxycholic acid use? J. Mod. Med. Chem. 2021, 9, 1–16. [Google Scholar]
- Devarbhavi, H.; Joseph, T.; Kumar, N.S.; Rathi, C.; Thomas, V.; Singh, S.P.; Sawant, P.; Goel, A.; Eapen, C.E.; Rai, P.; et al. The Indian Network of Drug-Induced Liver Injury: Etiology, clinical features, outcome and prognostic markers in 1288 patients. J. Clin. Exp. Hepatol. 2021, 11, 288–298. [Google Scholar] [CrossRef]
- Meunier, L.; Larrey, D. Drug-Induced Liver Injury: Biomarkers, requirements, candidates, and validation. Front. Pharmacol. 2019, 10, 1482. [Google Scholar] [CrossRef]
- Benić, M.S.; Nežić, L.; Vujić-Aleksić, V.; Mititelu-Tartau, L. Novel therapies for the treatment of drug-induced liver injury: A systematic review. Front. Pharmacol. 2022, 12, 785790. [Google Scholar] [CrossRef]
- Delire, B.; De Martin, E.; Meunier, L.; Larrey, D.; Horsmans, Y. Immunotherapy and gene therapy: New challenges in the diagnosis and management of drug-induced liver injury. Front. Pharmacol. 2022, 12, 786174. [Google Scholar] [CrossRef]
- Niu, H.; Sanabria-Cabrera, J.; Alvarez-Alvarez, I.; Robles-Diaz, M.; Stankevičiūtė, S.; Aithal, G.P.; Björnsson, E.S.; Andrade, R.J.; MLucena, M.I. Prevention and management of idiosyncratic drug-induced liver injury: Systematic review and meta-analysis of randomised clinical trials. Pharmacol. Res. 2021, 164, 105404. [Google Scholar] [CrossRef]
- Garcia-Cortes, M.; Robles-Diaz, M.; Stephens, C.; Ortega-Alonso, A.; Lucena, M.I.; Andrade, R.J. Drug induced liver injury: An update. Arch. Toxicol. 2020, 94, 3381–3407. [Google Scholar] [CrossRef]
- Wang, G.; Mao, B.; Xiong, Z.Y.; Fan, T.; Chen, X.D.; Wang, L.; Liu, G.J.; Liu, J.; Guo, J.; Chang, J.; et al. CONSORT Group for Traditional Chinese Medicine. The quality of reporting of randomized controlled trials of traditional Chinese Medicine: A survey of 13 randomly selected journals from mainland China. Clin. Ther. 2007, 29, 1456–1467. [Google Scholar] [CrossRef]
- Teschke, R.; Wolff, A.; Frenzel, C.; Eickhoff, A.; Schulze, J. Herbal traditional Chinese medicine and its evidence base in gastrointestinal disorders. World J. Gastroenterol. 2015, 21, 4466–4490. [Google Scholar] [CrossRef]
- Zhu, C.; Ren, X.; Liu, D.; Zhang, C. Oxaliplatin-induced hepatic sinusoidal obstruction syndrome. Toxicology 2021, 460, 152882. [Google Scholar] [CrossRef]
- Zhou, S.N.; Feng, D.N.; Zhang, N.; Sun, Y.L.; Li, Y.W.; Zhou, X.; Yang, J.; Liu, Z.; Liu, H. Hepatic sinusoidal obstruction syndrome due to tacrolimus in a liver-transplantation recipient. Gastroenterol. Rep. 2021, 9, 485–487. [Google Scholar] [CrossRef]
- Dignan, F.L.; Wynn, R.F.; Hadzic, N.; Karani, J.; Quaglia, A.; Pagliuca, A.; Veys, P.; Potter, M.N.; Haemato-oncology Task Force of British Committee for Standards in Haematology; British Society for Blood and Marrow Transplantation. BCSH/BSBMT guideline: Diagnosis and management of veno-occlusive disease (sinusoidal obstruction syndrome) following haematopoietic stem cell transplantation. Br. J. Haematol. 2013, 163, 444–457. [Google Scholar] [CrossRef]
- Liu, Z.L.; Wang, Y.; Liu, Y.L.; Zhang, J. Application of defibrotide in hepatic sinusoidal obstruction syndrome induced by hematopoietic stem cell transplantation]. Zhonghua Gan Zang Bing Za Zhi 2021, 29, 92–96, (Abstract In English, article In Chinese). [Google Scholar] [CrossRef]
- Chalandon, Y.; Mamez, A.C.; Giannotti, F.; Beau verd, Y.; Dantin, C.; Mahne, E.; Mappoura, M.; Bernard, F.; de Ramon Ortiz, C.; Stephan, C.; et al. Defibrotide Shows Efficacy in the prevention of sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation: A retrospective study. Transplant. Cell Ther. 2022, 28, 765-e1. [Google Scholar] [CrossRef]
- Gao, H.; Ruan, J.Q.; Chen, J.; Li, N.; Ke, C.Q.; Ye, Y.; Lin, G.; Wang, J.Y. Blood pyrrole-protein adducts as a diagnostic and prognostic index in pyrrolizidine alkaloid-hepatic sinusoidal obstruction syndrome. Drug Des. Dev. Ther. 2015, 9, 4861–4868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuge, Y.; Liu, Y.; Xie, W.; Zou, X.; Xu, J.; Wang, J.; Chinese Society of Gastroenterology Committee of Hepatobiliary Disease. Expert consensus on the clinical management of pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. J. Gastroenterol. Hepatol. 2019, 34, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant. Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Xuan, T.D. Active nature based ingredients for drug discovery with pivotal role of clinical efficacy: Review and prospective. J. Mod. Med. Chem. 2020, 8, 1–15. [Google Scholar] [CrossRef]
- Xuan, T.D.; Teschke, R. Dihydro-5,6-dehydrokavain (DDK) from Alpinia zerumbet: Its isolation, synthesis, and characterization. Molecules 2015, 20, 16306–16319. [Google Scholar] [CrossRef] [Green Version]
- Teschke, R.; Xuan, T.D. Viewpoint: A contributory role of Shell ginger (Alpinia zerumbet) for human longevity of Okinawa in Japan? Nutrients 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Teschke, R.; Xuan, T.D. Herbs including shell ginger, antioxidant profiles, aging, and longevity in Okinawa, Japan: A critical analysis of current concepts. In Aging: Oxidative Stress and Dietary Antioxidants, 2nd ed.; Victor, R.P., Vinood, B.P., Eds.; Academic Press, Imprint of Elsevier: Cambridge, MA, USA, 2020; Chapter 21; pp. 209–222. [Google Scholar] [CrossRef]
- Jedrejko, K.J.; Lazur, J.; Muszynska, B. Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods 2021, 10, 2634. [Google Scholar] [CrossRef]
- Quy, T.N.; Xuan, T.D.; Andriana, Y.; Tran, H.D.; Khanh, T.D.; Teschke, R. Cordycepin Isolated from Cordyceps militaris: Its newly discovered herbicidal property and potential plant-based novel alternative to Glyphosate. Molecules 2019, 24, 2901. [Google Scholar] [CrossRef] [Green Version]
- Anh, L.H.; Quan, N.V.; Lam, V.Q.; Iuchi, Y.; Takami, A.; Teschke, R.; Xuan, T.D. Antioxidant, anti-tyrosinase, anti-α-amylase, and cytotoxic potentials of the invasive weed Andropogon virginicus. Plants 2021, 10, 69. [Google Scholar] [CrossRef]
- Minh, T.N.; Xuan, T.D.; Ahmad, A.; Elzaawely, A.A.; Teschke, R.; Van, T.M. Momilactones A and B: Optimization of yields from isolation and purification. Separations 2018, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Quan, N.V.; Tran, H.D.; Xuan, T.D.; Ahmad, A.; Dat, T.D.; Khanh, T.D.; Teschke, R. Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules 2019, 24, 482. [Google Scholar] [CrossRef]
- Teschke, R.; Zhu, Y.; Jing, J. Herb induced liver injury (HILI) in the Asian region and current role of RUCAM for causality assessment in 11,160 published cases: Analysis and outlook. J. Clin. Transl. Hepatol. 2020, 8, 200–214. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.L. Analysis of the efficacy of bicyclol tablets in the treatment of liver injury caused by the anti-tuberculosis drug. Xinxueguanbing Fangzhi Zhishi 2013, 10, 83–85. (In Chinese) [Google Scholar]
- Naqiong, W.; Liansheng, W.; Zhanying, H.; Yuanlin, G.; Chenggang, Z.; Ying, G.; Qian, D.; Dongchen, L.; Yanjun, Z.; Jianjun, L. A multicenter and randomized controlled trial of bicyclol in the treatment of statin-induced liver injury. Clin. Res. 2017, 23, 5760–5766. [Google Scholar] [CrossRef] [Green Version]
- Stine, J.G.; Lewis, J.H. Current and future directions in the treatment and prevention of drug-induced liver injury: A systematic review. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 517–536. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liu, C.Y.; Wang, T.; Yu, H.M.; Ouyang, S.H.; Wu, Y.P.; Gong, H.B.; Ma, X.H.; Jiao, G.L.; Fu, L.L.; et al. (+)-Clausenamide protects against drug-induced liver injury by inhibiting hepatocyte ferroptosis. Cell Death Dis. 2020, 11, 781. [Google Scholar] [CrossRef]
- Da Cunha, T.; Wu, G.Y.; Yazin, H. Immunotherapy-induced hepatotoxicity: A review. J. Clin. Trans. Hepatol 2022, 10, 1194–1204. [Google Scholar] [CrossRef]
- Malnick, S.D.H.; Abdullah, A.; Neuman, M.G. Checkpoint Inhibitors and hepatotoxicity. Biomedicines 2021, 9, 101. [Google Scholar] [CrossRef]
- Cho, Y.A.; Han, J.M.; Kang, S.Y.; Kim, D.C.; Youn, Y.J.; Choi, K.H.; Gwak, S.H. Analysis of risk factors for hepatotoxicity induced by immune checkpoint inhibitors. J. Immunother. 2021, 44, 16–21. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Remash, D.; Prince, D.S.; McKenzie, C.; Strasser, S.I.; Kao, S.; Liu, K. Devika Remash, David S Prince, Catriona McKenzie, Simone, I. Strasser, Ken Liu. Immune checkpoint inhibitor-related hepatotoxicity: A review. World J. Gastroenterol. 2021, 27, 5376–5391. [Google Scholar] [CrossRef] [PubMed]
- Colevas, A.D.; Setser, A. The NCI Common Terminology Criteria for Adverse Events (CTCAE) v 3.0 is the new standard for oncology clinical trials. J. Clin. Oncol. 2004, 22, 6098. [Google Scholar] [CrossRef]
- Tsung, I.; Dolan, R.; Lao, C.D.; Fecher, L.; Riggenbach, K.; Yeboah-Korang, A.; Fontana, R.J. Liver injury is most commonly due to hepatic metastases rather than drug hepatotoxicity during pembrolizumab immunotherapy. Aliment. Pharmacol. Ther. 2019, 50, 800–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, L.A.; Kassab, I.; Tsung, I.; Schneider, B.J.; Fontana, R.J. Liver injury during durvalumab-based immunotherapy is associated with poorer patient survival: A retrospective ananlysis. Front. Pharmacol. 2022, in press. [CrossRef] [PubMed]
- De Martin, E.; Michot, J.M.; Papouin, B.; Champiat, S.; Mateus, C.; Lambotte, O.; Roche, B.; Antonini, T.M.; Coilly, A.; Laghouati, S.; et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J. Hepatol. 2018, 68, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Tzadok, R.; Levy, S.; Aouizerate, J.; Shibolet, O. Acute liver failure following a single dose of atezolizumab, as assessed for causality using the updated RUCAM. Case Rep. Gastrointest Med. 2022, 2022, 5090200. [Google Scholar] [CrossRef] [PubMed]
- Regev, A.; Avigan, M.I.; Kiazand, A.; Vierling, J.M.; Lewis, J.H.; Omokaro, S.O.; Di Bisceglie, A.M.; Fontana, R.J.; Bonkovsky, H.L.; Freston, J.W.; et al. Best practices for detection, assessment and management of suspected immune-mediated liver injury caused by immune checkpoint inhibitors during drug development. J. Autoimmun. 2020, 114, 102514. [Google Scholar] [CrossRef]
- Weber, J.S.; Hodi, F.S.; Wolchok, J.D.; Topalian, S.L.; Schadendorf, D.; Larkin, J.; Sznol, M.; Long, G.V.; Li, H.; Waxman, I.M.; et al. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 2017, 35, 785–792. [Google Scholar] [CrossRef]
- Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between drugs and the gut microbiome. Gut 2020, 69, 1510–1519. [Google Scholar] [CrossRef]
- Hu, P.F.; Xie, W.F. Corticosteroid therapy in drug-induced liver injury: Pros and cons. J. Dig. Dis. 2019, 20, 122–126. [Google Scholar] [CrossRef]
- Björnsson, E.S.; Vucic, V.; Stirnimann, G.; Robles-Díaz, M. Role of corticosteroids in drug-induced liver injury. A systematic review. Front. Pharmacol. 2022, 13, 820724. [Google Scholar] [CrossRef]
- Wang, J.B.; Huang, A.; Wang, Y.; Ji, D.; Liang, Q.S.; Zhao, J.; Zhou, G.; Liu, S.; Niu, M.; Sun, Y.; et al. Corticosteroid plus glycyrrhizin therapy for chronic drug- or herb-induced liver injury achieves biochemical and histological improvements: A randomised open-label trial. Aliment. Pharmacol. Ther. 2022, 55, 1297–1310. [Google Scholar] [CrossRef]
- Teschke Teschke, R.; Eickhoff, A. Chronic DILI and HILI-corticosteroid plus glycyrrhizin as standard therapy? Aliment. Pharmacol. Ther. 2022, 56, 166–167. [Google Scholar] [CrossRef]
- Tan, C.K.; Ho, D.; Wang, L.M.; Kumar, R. Drug-induced autoimmune hepatitis: A minireview. World J. Gastroenterol. 2022, 28, 2654–2666. [Google Scholar] [CrossRef]
- Weber, S.; Benesic, A.; Rotter, I.; Gerbes, A.L. Early ALT response to corticosteroid treatment distinguishes idiosyncratic drug-induced liver injury from autoimmune hepatitis. Liver. Int. 2019, 39, 1906–1917. [Google Scholar] [CrossRef] [Green Version]
- Tsang, L.; Fadia, M.; Chitturi, S. A time of pause and reflect: When a patient with autoimmune hepatitis stops responding to corticosteroids. Case Rep. Gastrointest. Med. 2016, 2016, 70922434. [Google Scholar] [CrossRef]
- Alvarez, F.; Berg, P.A.; Bianchi, F.B.; Bianchi, L.; Burroughs, A.K.; Cancado, E.L.; Chapman, R.W.; Cooksley, W.G.; Czaja, A.J.; Desmet, V.J.; et al. International Autoimmune Hepatitis Group Report: Review of criteria for diagnosis of autoimmune hepatitis. J. Hepatol. 1999, 31, 929–938. [Google Scholar] [CrossRef]
- Hennes, E.M.; Zeniya, M.; Czaja, A.J.; Parés, A.; Dalekos, G.N.; Krawitt, E.L.; Bittencourt, P.L.; Porta, G.; Boberg, K.M.; Hofer, H.; et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008, 48, 169–176. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron metabolism in ferroptosis. Front. Cell Dev. Biol. 2020, 8, 590226. [Google Scholar] [CrossRef]
- Sakaida, I.; Kayano, K.; Wasaki, S.; Nagatomi, A.; Matsumura, Y.; Okita, K. Protection against acetaminophen-induced liver injury in vivo by an iron chelator, deferoxamine. Scand. J. Gastroenterol. 1995, 30, 61–67. [Google Scholar] [CrossRef]
- Casale, M.; Picariello, S.; Corvino, F.; Cerasari, G.; Scianguetta, S.; Rossi, F.; Persico, M.; Perrotta, S. Life-threatening drug-induced liver injury in a patient with β-thalassemia major and severe iron overload on polypharmacy. Hemoglobin 2018, 42, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Bohan, T.P.; Helton, E.; McDonald, I.; König, S.; Gazitt, S.; Sugimoto, T.; Scheffner, D.; Cusmano, L.; Li, S.; Koch, G. Effect of L-carnitine treatment for valproate-induced hepatotoxicity. Neurology 2001, 56, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Gao, M.; Zhong, H.; Chen, C.; Yao, Y.; Zhang, Z.; Zhang, X.; Li, F.; Zhang, J.; et al. Efficacy and safety of magnesium isoglycyrrhizinate injection in patients with acute drug-induced liver injury: A phase II trial. Liver Int. 2019, 39, 2102–2111. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-induced hepatotoxicity: A comprehensive update. J. Clin. Transl. Hepatol. 2016, 4, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Pholmoo, N.; Bunchorntavakul, C. Characteristics and outcomes of acetaminophen overdose and hepatotoxicity in Thailand. J. Clin. Transl. Hepatol. 2019, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bunchorntavakul, C.; Reddy, K.R. Acetaminophen (APAP or N-Acetyl-p-Aminophenol) and acute liver failure. Clin. Liver Dis. 2018, 22, 325–346. [Google Scholar] [CrossRef]
- Ramachandran, A.; Jaeschke, H. Acetaminophen toxicity: Novel insights into mechanisms and future perspectives. Gene Expr. 2018, 18, 19–30. [Google Scholar] [CrossRef]
- Teschke, R. Acetaminophen syn. paracetamol: Acute liver injury and acute on chronic liver failure with case analysis and causality assessment using RUCAM. In Liver Failure; Nikolaos, T.P., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 233–258. [Google Scholar] [CrossRef]
- Teschke, R.; Stutz, G.; Strohmeyer, G. Increased paracetamol-induced hepatotoxicity after chronic alcohol consumption. Biochem. Biophys. Res. Commun. 1979, 91, 368–374. [Google Scholar] [CrossRef]
- Teschke, R.; Zhu, Y. Paracetamol (acetaminophen), alcohol, and liver injury: Biomarkers, clinical issues, and experimental aspects. SL Pharmacol. Toxicol. 2018, 1, 113. [Google Scholar]
- Keays, R.; Harrison, P.M.; Wendon, J.A.; Forbes, A.; Grove, C.; Alexander, G.J.M.; Williams, R. Intravenous acetylcysteine in paracetamol induced fulminant hepatic failure: A prospective controlled trial. Br. Med. J. 1991, 303, 1026–1029. [Google Scholar] [CrossRef] [Green Version]
- Prescott, L.F.; Illingworth, R.N.; Critchley, J.A.J.H.; Stewart, M.J.; Adam, R.D.; Proudfoot, A.T. Intravenous N-acetylcysteine; the treatment of choice for paracetamol poisoning. Br. Med. J. 1979, 2, 1097–1100. [Google Scholar] [CrossRef] [Green Version]
- Teschke, R.; Eickhoff, A.; Brown, A.C.; Neuman, M.G.; Schulze, J. Diagnostic biomarkers in liver injury by drugs, herbs, and alcohol: Tricky dilemma after EMA correctly and officially retracted Letter of Support. Int. J. Mol. Sci. 2020, 21, 212. [Google Scholar] [CrossRef]
- Rumack, B.H.; Matthew, H. Acetaminophen poisoning and toxicity. Pediatrics 1975, 55, 871–876. [Google Scholar] [CrossRef]
- Teschke, R. Aliphatic halogenated hydrocarbons: Liver injury in 60 patients. J. Clin. Trans. Hepatol. 2018, 6, 1–12. [Google Scholar]
- Teschke, R. Liver injury by carbon tetrachloride intoxication in 16 patients treated with forced ventilation to accelerate toxin removal via the lungs: A clinical report. Toxics 2018, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Chughlay, M.F.; Kramer, N.; Spearman, C.W.; Werfalli, M.; Cohen, K. N-acetylcysteine for non-paracetamol drug-induced liver injury: A systematic review. Br. J. Clin. Pharmacol. 2016, 81, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Sanabria-Cabrera, J.; Tabbai, S.; Niu, H.; Alvarez-Alvarez, I.; Licata, A.; Björnsson, E.; Andrade, R.J.; Lucena, M.I. N-acetylcysteine for the management of non-acetaminophen drug-induced liver injury in adults: A systematic review. Front. Pharmacol. 2022, 13, 876868. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, J.; Xu, Q.; Li, J.; Qian, Y.; Zhang, J.; Liu, L.; Zhong, W.; Wang, Y.; Han, X.; et al. Exploring the efficacy and safety of polyene phosphatidylcholine for treatment of drug-induced liver injury using the Roussel Uclaf causality assessment method: A propensity score matching comparison. J. Int. Med. Res. 2021, 49, 3000605211039810. [Google Scholar] [CrossRef]
- Santini, D.; Vincenzi, B.; Massacesi, C.; Picardi, A.; Vespasiani-Gentilucci, U.; Esposito, V.; Liuzzi, G.; La Cesa, A.; Rocci, L.; Marcucci, F.; et al. S-adenosylmethionine (AdoMet) supplementation for treatment of chemotherapy-induced liver injury. Anticancer Res. 2003, 23, 5173–5179. [Google Scholar]
- Teschke, R.; Schmidt, M. Controversy on a newly published case of assumed acute liver failure one day after kava use: Issues of confounders, causality, and an undetermined cause. J. Mod. Med. Chem. 2020, 8, 33–40. [Google Scholar] [CrossRef]
Description | Thresholds of Liver Tests | Criteria and Characteristic Features |
---|---|---|
Liver adaptation | ALT ≤ 5 times of ULN and/or ALP ≤ 2 times of ULN | ● Develops at low doses of a drug ● Presumably the majority of drugs have the potency of causing rare but clinically not apparent liver adaptation ● No signs of liver injury in histology ● Normalization or stabilization of liver tests is commonly observed whether the drug use is stopped or continued |
Idiosyncratic liver injury | ALT ≥ 5 times of ULN and/or ALP ≥ 2 times of ULN | ● Develops at low doses of a drug ● Signs of liver injury found in histology ● Cessation of drug use is mandatory and immediate ● Worsening if drug use is continued ● Most drugs cause idiosyncratic DILI ● Risk of acute liver failure |
Intrinsic liver injury | ALT ≥ 5 times of ULN and/or ALP ≥ 2 times of ULN | ● Develops with overdosed drugs ● Signs of liver injury found in histology ● Cessation of drug use is mandatory and immediate ● Caused by a few drugs ● Risk of acute liver failure |
Drug | DILI Cases Evaluated with RUCAM (n) | Metabolized by CYP Isoform |
---|---|---|
1. Amoxicillin-clavulanate | 333 | - |
2. Flucloxacilllin | 130 | CYP3A4 |
3. Atorvastatin | 50 | CYP3A4/5 |
4. Disulfiram | 48 | CYP2E1 |
5. Diclofenac | 46 | CYP2C8 |
6. Simvastatin | 41 | CYP3A4/5 |
7. Carbamazepine | 38 | CYP3A4/5 |
8. Ibuprofen | 37 | CYP2C8/9 |
9. Erythromycin | 27 | CYP3A4 |
10. Anabolic steroids | 26 | CYP2C19 |
11. Phenytoin | 22 | CYP2C9 |
12. Sulfamethoxazole/Trimethoprim | 21 | CYP2C9 |
13. Isoniazid | 19 | CYP2E1 |
14. Ticlopidine | 19 | CYP2C19 |
15. Azathioprine/ 6-Mercaptopurine | 17 | - |
16. Contraceptives | 17 | CYP3A4 |
17. Flutamide | 17 | CYP1A2 |
18. Halothane | 15 | CYP2E1 |
19. Nimesulide | 13 | CYP2C9 |
20. Valproate | 13 | CYP2C9 |
21. Chlorpromazine | 11 | CYP2D6 |
22. Nitrofurantoin | 11 | - |
23. Methotrexate | 8 | - |
24. Rifampicin | 7 | - |
25. Sulfazalazine | 7 | - |
26. Pyrazinamide | 6 | - |
27. Natriumaurothiolate | 5 | - |
28. Sulindac | 5 | CYP1A2 |
29. Amiodarone | 4 | CYP3A4 |
30. Interferon beta | 3 | - |
31. Propylthiouracil | 2 | CYP/NA |
32. Allopurinol | 1 | - |
33. Hydralazine | 1 | - |
34. Infliximab | 1 | - |
35. Interferon alpha/Peginterferon | 1 | - |
36. Ketaconazole | 1 | - |
37. Busulfan | 0 | - |
38. Dantrolene | 0 | - |
39. Didanosine | 0 | - |
40. Efavirenz | 0 | CYP2B6 |
41. Floxuridine | 0 | - |
42. Methyldopa | 0 | CYP/NA |
43. Minocycline | 0 | - |
44. Telithromycin | 0 | CYP3A4 |
45. Nevirapine | 0 | CYP3A4 |
46. Quinidine | 0 | CYP3A4 |
47. Sulfonamides | 0 | CYP/NA |
48. Thioguanine | 0 | - |
Pharmaceutical | Tentative Mechanisms of Action in DILI | First Author |
---|---|---|
● Anticoagulants | Antithrombotic property such as in HSOS | Li 2022 [92] |
● Antioxidants (general) | Antioxidants in general are chemicals with variable structures to help protect cells and subcellular organelles from oxidative injury caused by reactive oxygen species (ROS). | Ali 2020 [93] |
● Bicyclol | Bicyclol is a synthetic drug that attenuates oxidative stress and endotoxins, partially via modulated expression of cytokines. | Yao 2009 [94] |
● Cholestyramine | Cholestyramine used orally interrupts the enterohepatic circulation of bile acids. | Einarsson 1991 [95] |
● Clausenamide | (+)-Clausenamide (CLA), a phytochemical initially isolated from leaves of Clausena lansium (Lour.) Skeels, increases in its synthetic form the hepatic cytosolic GSH content via stimulation of the key limiting enzyme γ-glutamylcysteine synthetase activity. Nowadays seen as a potential inhibitor of liver injury triggered through ferroptosis, CLA may help in DILI cases. | Wu 2006 [96] |
● Glucocorticoids (GCs) | GCs suppress excessive inflammatory processes and immunological responses. | Ye 2022 [97] |
● Immuno- suppressants | Immunosuppression of CD8+ T cell lobular and necrotic hepatitis | Corrigan 2019 [98] |
● Iron chelators | The iron chelator deferoxamine and the ferroptosis inhibitor ferrostatin-1 alleviate ferroptosis in experimental acute APAP liver injury by protecting mitochondria via inhibiting voltage-dependent anion channel 1 (VDAC1) oligomerization by restoring hepatic ceramide and cardiolipin content. | Niu 2022 [99] |
● L-carnitine | L-carnitine is an antioxidant with protective properties against lipid peroxidation, as evidenced by increased malondialdehyde concentrations due to oxidative stress in experimental APAP liver injury, whereby the positive effect can be attributed to an increase of hepatic GSH levels. | Yapar 2007 [100] |
● Magnesium isoglycyrrhizinate (MgIG) | MgIG is a phytochemical extracted from licorice roots and known for its antioxidant, anti-inflammatory, and antiapoptotic characteristics. It inhibits oxidative stress and reduces the activities of superoxide dismutase and catalase, as well as levels of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α. It also modifies the gut-liver axis by improving the gut microbial composition and intestinal barrier function. | Liu 2021 [101] Xia 2022 [102] |
● N-acetylcysteine (NAC) | NAC is known for its strong antioxidant properties and its capacity to increase hepatic levels of glutathione, enabling some protection of liver injury by the reactive intermediate N-acetyl-p-benzo quinone imine (NAPQI) as the metabolite of APAP generated via CYP 2E1 and 1A2. | Ntamo 2021 [103] |
● Polyene phosphatidylcholine (PPC) | PPC is a major component of membrane phospholipids, extract from soy, and rich in polyunsaturated fatty acids (PUFA), such as linoleic, linolenic, and oleic acids. It helps repair damaged membranes of the hepatocytes and relieve necroinflammation. | Fan 2022 [104] |
● Probiotics | Probiotics such as Lactobacillus reuteri, Lactobacillus rhamnosus, Bifidobacterium adolescens, Bacillus cereus, Akkermansia mucinophilia, Sacchoromyces boullardii, and Lactobacillus casei help reshape the gut microbiota, reinforce gut barrier function, and modulate pathways to reduce cytokines and hepatic inflammation. | Chen 2021 [105] |
● S-Adenosyl-methionine (SAM) | SAM participates in cellular reactions like transmethylation, transsulfuration, and aminopropylation; is the principal methyl donor in methyltransferase reactions; and the precursor for glutathione synthesis. | Noureddin 2020 [106] |
● Silymarin | Silymarin is a phytochemical derived from the milk thistle, syn Silybum marianum, with polyphenols, flavonolignans, and flavonoids as its constituents. It inhibits ROS formation, functions as a scavenger of ROS once formed, increases the hepatic level of glutathione, decreases lipid peroxidation, stimulates the synthesis of proteins and phospholipids within the hepatocytes, and inhibits hepatic NF-κB activation. | Aghemo 2020 [107] |
● Ursodeoxycholic acid (UDCA) | UCDA protects cholangiocytes against cytotoxic actions of hydrophobic bile acids, stimulates hepatobiliary secretion through enhanced expression of several transporter proteins like ABCB1, MRP2, and BSEP, and protects hepatocytes against apoptotic actions of bile acids. | Paumgartner 2002 [108] Parra-Landázury 2021 [109] |
Challenges of Studies on Therapy Approaches in DILI | First Author |
---|---|
Some liver injury study cohorts did not provide a list of offending drug(s), while other cohorts included a mix of potential hepatotoxic compounds such as conventional drugs used at recommended doses, overdosed drugs like acetaminophen, herbal medicine, alternative medications, ethyl alcohol, and alcohol surrogates. | Benić 2022 [112] |
Heterogeneity of clinical presentation, disease severity, or toxicity grades | Delire 2022 [113] |
Ancillary analysis of liver injury severity | Niu 2020 [114] |
Lack of DILI definition | Benić 2022 [112] |
Divergent therapy efficacy results and variability of efficacy criteria | Niu 2020 [114] |
Failure to consider and differentiate liver injury pattern as hepatocellular, cholestatic, or mixed | Delire 2022 [113] Niu 2020 [114] |
Medications not used alone but in combination with other medications | Niu 2022 [114] |
Low case number of DILI study cohorts | Benić 2022 [112] Niu 2020 [114] |
Inclusion of cases with ALT values 2–5 times those of the ULN, thereby representing liver adaptation rather than real liver injury characteristics | Benić 2022 [112] Niu 2020 [114] |
Low or very low grade of certainty evidence reached in most studies | Benić 2022 [112] |
Retrospective rather than the preferred prospective study design | Benić 2022 [112] |
Bias with respect to selection (random sequence generation and allocation concealment), performance and detection of bias (blinding of participants, personnel, and outcome assessment) | Benić 2022 [112] Niu 2020 [114] |
Lack of data about causality assessment or with only limited use of RUCAM | Benić 2022 [112] Delire 2022 [113] Niu 2020 [114] |
Randomized, single blind rather than double blind study protocol | Benić 2020 [112] |
China as the preferred reporting country, as many treatment efficiency trials had their focus on traditional Chinese medicines (TCMs) | Benić 2022 [112] Niu 2020 [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teschke, R. Treatment of Drug-Induced Liver Injury. Biomedicines 2023, 11, 15. https://doi.org/10.3390/biomedicines11010015
Teschke R. Treatment of Drug-Induced Liver Injury. Biomedicines. 2023; 11(1):15. https://doi.org/10.3390/biomedicines11010015
Chicago/Turabian StyleTeschke, Rolf. 2023. "Treatment of Drug-Induced Liver Injury" Biomedicines 11, no. 1: 15. https://doi.org/10.3390/biomedicines11010015
APA StyleTeschke, R. (2023). Treatment of Drug-Induced Liver Injury. Biomedicines, 11(1), 15. https://doi.org/10.3390/biomedicines11010015