Sesamin Attenuates VEGFA-Induced Angiogenesis via Inhibition of Src and FAK Signaling in Chick Chorioallantoic Membrane Model and Human Endothelial EA.hy926 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sesamin Preparation
2.3. In Vivo Angiogenesis Model: Chick Chorioallantoic Membrane (CAM) Assay
2.4. Cell Line and Culture
2.5. MTT Assay
2.6. In Vitro Wound Healing Assay
2.7. AlamarBlue Assay
2.8. Gene Expression by Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.9. Western Blotting Analysis
2.10. Statistical Analysis
3. Results
3.1. The Effect of Sesamin on Angiogenesis in In Vivo Chick Chorioallantoic Membrane (CAM) Model
3.2. The Effect of Sesamin on Cytotoxicity and Proliferation of Human Endothelial Cell Line EA.hy926
3.3. The Effect of Sesamin on Endothelial Cell Migration under Physiological and Pathological Conditions
3.4. The Effect of Sesamin on Activation of VEGFA Signaling Pathways in Human Endothelial Cells EA.hy926
3.5. The Effect of Sesamin on Angiogenic Gene Expression in Human Endothelial Cells EA.hy926
3.6. The Effect of Sesamin on NOTCH1 Protein Expression in the Endothelial Cell Line EA.hy926
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Adair, T.H.; Montani, J.P. Angiogenesis. In Integrated Systems Physiology: From Molecule to Function to Disease; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010. [Google Scholar]
- Feucht, M.; Christ, B.; Wilting, J. Vascular endothelial growth factor-induced cardiovascular malformations in embryo development. Ann. Anat. 1998, 180, 387–389. [Google Scholar] [CrossRef]
- Portal-Nunez, S.; Lozano, D.; Esbrit, P. Role of angiogenesis on bone formation. Histol. Histopathol. 2012, 27, 559–566. [Google Scholar] [CrossRef]
- Ferrara, N.; Chen, H.; Davis-Smyth, T.; Gerber, H.P.; Nguyen, T.N.; Peers, D.; Chisholm, V.; Hillan, K.J.; Schwall, R.H. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 1998, 4, 336–340. [Google Scholar] [CrossRef]
- Teodorczyk, M.; Dudvarski Stanković, N.; Bicker, F.; Schmidt, M.H.H. VEGF and Notch Signaling in Angiogenesis. In Endothelial Signaling in Development and Disease; Schmidt, M.H.H., Liebner, S., Eds.; Springer: New York, NY, USA, 2015; pp. 3–46. [Google Scholar]
- Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007, 8, 464–478. [Google Scholar] [CrossRef]
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef]
- Abhinand, C.S.; Raju, R.; Soumya, S.J.; Arya, P.S.; Sudhakaran, P.R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal. 2016, 10, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Blanco, R.; Gerhardt, H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 2013, 3, a006569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majidpoor, J.; Mortezaee, K. Angiogenesis as a hallmark of solid tumors—Clinical perspectives. Cell Oncol. 2021, 44, 715–737. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer 2013, 13, 871–882. [Google Scholar] [CrossRef]
- Lopes-Coelho, F.; Martins, F.; Pereira, S.A.; Serpa, J. Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 3765. [Google Scholar] [CrossRef]
- Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S.D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; et al. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 2002, 99, 11393–11398. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wang, Z.; Jia, X.; Wang, L.; Chen, Z.; Wang, S.; Wang, M.; Zhang, J.; Wu, M. MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumor growth. Cancer Lett. 2016, 372, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, K.; Kitagawa, Y.; Akamatsu, T.; Hirose, N.; Sugano, M.; Shimizu, S.; Yamada, H. Protective effects of sesamin against liver damage caused by alcohol or carbon tetrachloride in rodents. Ann. Nutr. Metab. 1993, 37, 218–224. [Google Scholar] [CrossRef]
- Jeng, K.C.; Hou, R.C.; Wang, J.C.; Ping, L.I. Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol. Lett. 2005, 97, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Kita, S.; Morimoto, S.; Akimoto, K.; Furuya, M.; Oka, N.; Tanaka, T. Antihypertensive effect of sesamin. I. Protection against deoxycorticosterone acetate-salt-induced hypertension and cardiovascular hypertrophy. Biol. Pharm. Bull. 1995, 18, 1016–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, B.H.; Lee, J.J.; Kim, J.D.; Jeoung, D.; Lee, H.; Choe, J.; Ha, K.S.; Kwon, Y.G.; Kim, Y.M. Angiogenic activity of sesamin through the activation of multiple signal pathways. Biochem. Biophys. Res. Commun. 2010, 391, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-C.; Ya-Chen, L.; Li, C.-P.; Huang, T.-S.; Lee, C.-C. Sesamin Inhibits Vascular Endothelial Cell Growth and Angiogenic Activity of Lung Adenocarcinoma Cells. J. Cancer Mol. 2006, 2, 199–205. [Google Scholar]
- Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Pandey, M.K.; Joy, B.; Guha, S.; Krishnan, S.; Aggarwal, B.B. Sesamin manifests chemopreventive effects through the suppression of NF-kappa B-regulated cell survival, proliferation, invasion, and angiogenic gene products. Mol. Cancer Res. 2010, 8, 751–761. [Google Scholar] [CrossRef] [Green Version]
- Ribatti, D. The Chick Embryo Chorioallantoic Membrane in the Study of Angiogenesis and Metastasis; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Phitak, T.; Pothacharoen, P.; Settakorn, J.; Poompimol, W.; Caterson, B.; Kongtawelert, P. Chondroprotective and anti-inflammatory effects of sesamin. Phytochemistry 2012, 80, 77–88. [Google Scholar] [CrossRef]
- Medhora, M.; Dhanasekaran, A.; Pratt, P.F., Jr.; Cook, C.R.; Dunn, L.K.; Gruenloh, S.K.; Jacobs, E.R. Role of JNK in network formation of human lung microvascular endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L676–L685. [Google Scholar] [CrossRef] [PubMed]
- Edgell, C.J.; McDonald, C.C.; Graham, J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 1983, 80, 3734–3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nagy, J.A.; Dvorak, A.M.; Dvorak, H.F. VEGF-A and the induction of pathological angiogenesis. Annu. Rev. Pathol. 2007, 2, 251–275. [Google Scholar] [CrossRef]
- Liu, Z.J.; Shirakawa, T.; Li, Y.; Soma, A.; Oka, M.; Dotto, G.P.; Fairman, R.M.; Velazquez, O.C.; Herlyn, M. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: Implications for modulating arteriogenesis and angiogenesis. Mol. Cell. Biol. 2003, 23, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Weis, S.M.; Cheresh, D.A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005, 437, 497–504. [Google Scholar] [CrossRef]
- Cai, W.; Li, Y.; Yi, Q.; Xie, F.; Du, B.; Feng, L.; Qiu, L. Total saponins from Albizia julibrissin inhibit vascular endothelial growth factor-mediated angiogenesis in vitro and in vivo. Mol. Med. Rep. 2015, 11, 3405–3413. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-X.; Li, Y.; Qian, Z.-J.; Ryu, B.; Kim, S.-K. Suppression of vascular endothelial growth factor (VEGF) induced angiogenic responses by fucodiphloroethol G. Process. Biochem. 2011, 46, 1095–1103. [Google Scholar] [CrossRef]
- Munoz-Chapuli, R.; Quesada, A.R.; Angel Medina, M. Angiogenesis and signal transduction in endothelial cells. Cell. Mol. Life Sci. 2004, 61, 2224–2243. [Google Scholar] [CrossRef]
- Ding, Q.; Tian, X.G.; Li, Y.; Wang, Q.Z.; Zhang, C.Q. Carvedilol may attenuate liver cirrhosis by inhibiting angiogenesis through the VEGF-Src-ERK signaling pathway. World J. Gastroenterol. 2015, 21, 9566–9576. [Google Scholar] [CrossRef] [PubMed]
- Dufraine, J.; Funahashi, Y.; Kitajewski, J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 2008, 27, 5132–5137. [Google Scholar] [CrossRef]
Gene | Real-Time PCR Primer Sequence (5′-3′) | Reference |
---|---|---|
Ang1 | Forward: 5′ CAGGAGGATGGTGGTTTGATG 3′ Reverse: 5′ TGGTTTTGTCCCGCAGTATAGAA 3′ | NM_001146.4 |
Ang2 | Forward: 5′ AGCTGTGATCTTGTCTTGGC 3′ Reverse: 5′ GTTCAAGTCTCGTGGTCTGA 3′ | NM_001118887.1 |
Tie 2 | Forward: 5′ GATTTTGGATTGTCCCGAGGTCAAG 3′ Reverse: 5′ CACCAATATCTGGGCAAATGATGG 3′ | NM_000459.4 |
VEGFA | Forward: 5′ CTACCTCCACCATGCCAAGT 3′ Reverse: 5′ AGCTGCGCTGATAGACATCC 3′ | NM_001025366.2 |
KDR | Forward: 5′ AGCATGGAAGAGGATTCTGG 3′ Reverse: 5′ CGGCTCTTTCGCTTACTGTT 3′ | NM_002253.2 |
NOTCH1 | Forward: 5′ GTCAACGCCGTAGATGACC 3′ Reverse: 5′ TTGTTAGCCCCGTTCTTCAG 3′ | NM_017617.5 |
Dll4 | Forward: 5′ GCACTCCCTGGCAATGTACT 3′ Reverse: 5′ CGACAGGTGCAGGTGTAGC 3′ | NM_019074.3 |
GAPDH | Forward: 5′ CCCTTCATTGACCTCAACTA 3′ Reverse: 5′ AGATGATGACCCTTTTGGCT 3′ | NM_001289745.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keratibumrungpong, T.; Srisuthtayanont, W.; Wanachewin, O.; Klangjorhor, J.; Phitak, T.; Pothacharoen, P.; Shwe, T.H.; Kongtawelert, P. Sesamin Attenuates VEGFA-Induced Angiogenesis via Inhibition of Src and FAK Signaling in Chick Chorioallantoic Membrane Model and Human Endothelial EA.hy926 Cells. Biomedicines 2023, 11, 188. https://doi.org/10.3390/biomedicines11010188
Keratibumrungpong T, Srisuthtayanont W, Wanachewin O, Klangjorhor J, Phitak T, Pothacharoen P, Shwe TH, Kongtawelert P. Sesamin Attenuates VEGFA-Induced Angiogenesis via Inhibition of Src and FAK Signaling in Chick Chorioallantoic Membrane Model and Human Endothelial EA.hy926 Cells. Biomedicines. 2023; 11(1):188. https://doi.org/10.3390/biomedicines11010188
Chicago/Turabian StyleKeratibumrungpong, Tanyaporn, Warunee Srisuthtayanont, Orawan Wanachewin, Jeerawan Klangjorhor, Thanyaluck Phitak, Peraphan Pothacharoen, Thuzar Hla Shwe, and Prachya Kongtawelert. 2023. "Sesamin Attenuates VEGFA-Induced Angiogenesis via Inhibition of Src and FAK Signaling in Chick Chorioallantoic Membrane Model and Human Endothelial EA.hy926 Cells" Biomedicines 11, no. 1: 188. https://doi.org/10.3390/biomedicines11010188
APA StyleKeratibumrungpong, T., Srisuthtayanont, W., Wanachewin, O., Klangjorhor, J., Phitak, T., Pothacharoen, P., Shwe, T. H., & Kongtawelert, P. (2023). Sesamin Attenuates VEGFA-Induced Angiogenesis via Inhibition of Src and FAK Signaling in Chick Chorioallantoic Membrane Model and Human Endothelial EA.hy926 Cells. Biomedicines, 11(1), 188. https://doi.org/10.3390/biomedicines11010188