Antiparasitic Activity of Fluorophenyl-Substituted Pyrimido[1,2-a]benzimidazoles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. 4-Amino-2-(3-fluorophenyl)-1,2-dihydropyrimido[1,2-a]benzimidazole-3-carbonitrile (2a)
2.1.2. 4-Amino-2-(3,5-difluorophenyl)-1,2-dihydropyrimido[1,2-a]benzimidazole-3-carbonitrile (2b)
2.1.3. 4-Amino-2-(3-bromo-4,5-dimethoxyphenyl)-1,2-dihydropyrimido[1,2-a]benzimidazole-3-carbonitrile (2e)
2.1.4. 4-Amino-2-(3-pyridyl)-1,2-dihydropyrimido[1,2-a]benzimidazole-3-carbonitrile (2f)
2.1.5. 4-Amino-2-(3-fluorophenyl)pyrimido[1,2-a]benzimidazole-3-carbonitrile (3a)
2.1.6. 4-Amino-2-(3,5-difluorophenyl)pyrimido[1,2-a]benzimidazole-3-carbonitrile (3b)
2.1.7. 4-Amino-2-(2-fluorophenyl)pyrimido[1,2-a]benzimidazole-3-carbonitrile (3c)
2.1.8. 4-Pyrrolo-2-(3-fluorophenyl)-1,2-dihydropyrimido[1,2-a]benzimidazole-3-carbonitrile (4a)
2.1.9. 4-Pyrrolo-2-(3,5-difluorophenyl)-1,2-dihydropyrimido[1,2-a]benzimidazole-3-carbonitrile (4b)
2.1.10. 4-Pyrrolo-2-(2-fluorophenyl)-1,2-dihydropyrimido[1,2-a]benzimidazole-3-carbonitrile (4c)
2.1.11. 4-Pyrrolo-2-(4-fluorophenyl)-1,2-dihydropyrimido[1,2-a]benzimidazole-3-carbonitrile (4d)
2.2. Leishmania Major Cell Isolation, Culture Conditions, and Assays
2.3. Toxoplasma Gondii Cell Line, Culture Conditions, and Assay
2.4. In Vitro Cytotoxicity Assay
3. Results
Compd. | EC50 Promastigotes | EC50 Amastigotes | SI Vero/Promastigotes 2 | SI Vero/Amastigotes 2 | IC50 Macrophages |
---|---|---|---|---|---|
2a | 0.39 | 0.20 | 11.1 | 21.6 | 0.98 |
2b | 107.6 | 22.9 | 0.31 | 1.45 | 28.5 |
2c | 49.8 | 24.9 | 0.37 | 0.74 | 31.4 |
2d | 14.4 | 26.9 | 1.87 | 1.00 | 19.3 |
2e | 77.9 | 75.5 | 0.73 | 0.76 | 63.8 |
2f | 53.4 | 116.5 | 1.98 | 0.91 | 86.0 |
3a | 35.6 | 28.0 | 1.08 | 1.37 | 22.4 |
3b | 13.7 | 29.0 | 1.66 | 0.78 | 24.3 |
3c | 32.0 | 27.0 | 0.80 | 0.95 | 21.1 |
3d | 36.9 | 26.1 | 1.18 | 1.67 | 20.1 |
4a | 20.3 | 50.9 | 1.72 | 0.69 | 41.4 |
4b | 28.9 | 46.1 | 1.12 | 0.70 | 39.9 |
4c | 15.2 | 49.2 | 1.55 | 0.48 | 43.9 |
4d | 32.1 | 51.5 | 1.29 | 0.80 | 47.3 |
AmB | 0.83 | 0.47 | 9.6 | 16.4 | - |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, D.; Jain, S.K. A comprehensive review of N-heterocycles as cytotoxic agents. Curr. Med. Chem. 2016, 23, 4338–4394. [Google Scholar] [CrossRef]
- dos Santos, G.C.; Martins, L.M.; Bregadiolli, B.A.; Moreno, V.F.; da Silva-Filho, L.C.; da Silva, B.H.S.T. Heterocyclic compounds as antiviral drugs: Synthesis, structure-activity relationship and traditional applications. J. Heterocycl. Chem. 2021, 58, 2226–2260. [Google Scholar] [CrossRef]
- Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem. 2018, 158, 917–936. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.K. Anti-protozoal potential of heterocyclic compounds against giardiasis. Curr. Bioact. Compd. 2019, 15, 280–288. [Google Scholar] [CrossRef]
- Patterson, S.; Fairlamb, A.H. Current and future prospects of nitro-compounds as drugs for trypanosomiasis and leishmaniasis. Curr. Med. Chem. 2019, 26, 4454–4475. [Google Scholar] [CrossRef] [Green Version]
- Brishty, S.R.; Hossain, M.J.; Khandaker, M.U.; Faruque, M.R.I.; Osman, H.; Rahman, S.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front. Pharmacol. 2021, 12, 762807. [Google Scholar] [CrossRef]
- Fedotov, V.V.; Rusinov, V.L.; Ulomsky, E.N.; Mukhin, E.M.; Gorbunov, E.B.; Chupakhin, O.N. Pyrimido[1,2-a]benzimidazoles: Synthesis and perspective of their pharmacological use. Chem. Heterocycl. Compd. 2021, 57, 383–409. [Google Scholar] [CrossRef]
- Leishmaniasis—WHO Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 16 December 2022).
- van Bocxlaer, K.; Caridha, D.; Black, C.; Vesely, B.; Leed, S.; Sciotti, R.J.; Wijnant, G.-J.; Yardley, V.; Braillard, S.; Mowbray, C.E.; et al. Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. IJP: Drugs Drug Resist. 2019, 11, 129–138. [Google Scholar] [CrossRef]
- Bennis, I.; Belaid, L.; de Brouwere, V.; Filali, H.; Sahibi, H.; Boelart, M. The mosquitoes that destroy your face”: Social impact of cutaneous leishmaniasis in south-eastern Morocco, a quality study. PLoS ONE 2017, 12, e0189906. [Google Scholar] [CrossRef] [Green Version]
- Kassi, M.; Afghan, A.; Rehman, R.; Kasi, P.M. Marring leishmaniasis: The stigmatization and the impact of cutaneous leishmaniasis in Pakistan and Afghanistan. PLoS Negl. Trop. Dis. 2008, 2, e259. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, R.; Tawk, L.; Itani, S.; Hamie, M.; Ezzeddine, J.; El Sabban, M.; El Hajj, H. Toxoplasmosis: Current and emerging parasite druggable targets. Microorganisms 2021, 9, 2531. [Google Scholar] [CrossRef] [PubMed]
- Risley, V.A.; Henry, S.; Kosyrikhina, M.V.; Manzanares, M.R.; Payan, I.; Downer, C.D.; Hellmann, C.C.; van Slambrouck, S.; Frolova, L.V. 4-Amino-2-aryl-3-cyano-1,2-dihydropyrimido-[1,2-a]benzimidazoles and their pyrimidine analogs as new anticancer agents. Chem. Heterocycl. Compd. 2014, 50, 185–194. [Google Scholar] [CrossRef]
- Yarie, M.; Zolfigol, M.A.; Baghery, S.; Khoshnood, A.; Alonso, D.A.; Kalhor, M.; Bayat, Y.; Asgari, A. Design, synthesis, and application of 1H-imidazol-3-ium trinitromethanide {[HIMI]C(NO2)3} as a recyclable nanostructured ionic liquid (NIL) catalyst for the synthesis of imidazole[1,2-a]pyrimidine-3-carbonitriles. J. Iran. Chem. Soc. 2018, 15, 2259–2270. [Google Scholar] [CrossRef] [Green Version]
- Al Nasr, I.; Jentzsch, J.; Winter, I.; Schobert, R.; Ersfeld, K.; Koko, W.; Mujawah, A.; Khan, T.; Biersack, B. Antiparasitic activities of new lawsone Mannich bases. Arch. Pharm. Chem. Life Sci. 2019, 352, 1900128. [Google Scholar] [CrossRef]
- Choi, K.M.; Gang, J.; Yun, J. Anti-Toxoplasma gondii RH strain activity of herbal extracts used in traditional medicine. Int. J. Antimicrob. Agents 2008, 32, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Badshah, S.L.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules 2016, 21, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryan, M.C.; Dunn, P.J.; Entwislte, D.; Gallou, F.; Koenig, S.G.; Hayler, J.D.; Hickey, M.R.; Hughes, S.; Kopach, M.E.; Moine, G.; et al. Key green chemistry research areas from a pharmaceutical manufacturers’ perspective. Green Chem. 2018, 20, 5082–5103. [Google Scholar] [CrossRef] [Green Version]
- Griewank, K.; Gazeau, C.; Eichhorn, A.; von Strebut, E. Miltefosine efficiently eliminates Leishmania major amastigotes from infected murine dendritic cells without altering their immune functions. Antimicrob. Agents Chemother. 2010, 54, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Sarouey, L.A.; Khanaliha, K.; Rahimi-Moghaddam, P.; Khorrami, S.; Dayer, M.S.; Tabataie, F. In vitro effects of ketotifen and cromolyn sodium on promastigotes and amastigotes of Leishmania major. Jundishapur J. Microbiol. 2019, 12, e82389. [Google Scholar]
- Vermeersch, M.; da Luz, R.I.; Toté, K.; Timmermans, J.-P.; Cos, P.; Maes, L. In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: Practical relevance of stage-specific differences. Antimicrob. Agents Chemother. 2009, 53, 3855–3859. [Google Scholar] [CrossRef] [Green Version]
- de Mulder, G.; Ang, K.K.H.; Chen, S.; Arkin, M.R.; Engel, J.C.; McKerrow, J.H. A screen against Leishmania intracellular amastigotes: Comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl. Trop. Dis. 2011, 5, e1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, F.; Gold, M.; Rothemund, M.; Andronache, I.; Biersack, B.; Schobert, R.; Mueller, T. New naphthopyran analogs of LY290181 as potential tumor vascular-disrupting agents. Eur. J. Med. Chem. 2019, 163, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan-Grundy, C.; Denis, R.; Barriault, N.; et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg. Med. Chem. Lett. 2005, 15, 4745–4751. [Google Scholar] [CrossRef] [PubMed]
Compd. | EC50 (T. gondii) | IC50 (Vero) | SI (Vero/T. gondii) 2 |
---|---|---|---|
2a | 4.59 | 4.32 | 0.94 |
2b | 43.6 | 33.1 | 0.76 |
2c | 26.9 | 18.3 | 0.68 |
2d | 27.8 | 26.9 | 0.97 |
2e | 28.6 | 57.2 | 2.00 |
2f | 60.0 | 105.5 | 1.75 |
3a | 35.9 | 38.3 | 1.07 |
3b | 2.80 | 22.7 | 8.12 |
3c | 20.8 | 25.7 | 1.24 |
3d | 41.9 | 43.5 | 1.04 |
4a | 33.2 | 34.9 | 1.05 |
4b | 18.2 | 32.4 | 1.78 |
4c | 24.8 | 23.6 | 0.95 |
4d | 34.9 | 41.4 | 1.19 |
AmB | - | 7.7 | - |
ATO | 0.07 | 9.5 | 136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasr, I.S.A.; Koko, W.S.; Khan, T.A.; Schobert, R.; Biersack, B. Antiparasitic Activity of Fluorophenyl-Substituted Pyrimido[1,2-a]benzimidazoles. Biomedicines 2023, 11, 219. https://doi.org/10.3390/biomedicines11010219
Nasr ISA, Koko WS, Khan TA, Schobert R, Biersack B. Antiparasitic Activity of Fluorophenyl-Substituted Pyrimido[1,2-a]benzimidazoles. Biomedicines. 2023; 11(1):219. https://doi.org/10.3390/biomedicines11010219
Chicago/Turabian StyleNasr, Ibrahim S. Al, Waleed S. Koko, Tariq A. Khan, Rainer Schobert, and Bernhard Biersack. 2023. "Antiparasitic Activity of Fluorophenyl-Substituted Pyrimido[1,2-a]benzimidazoles" Biomedicines 11, no. 1: 219. https://doi.org/10.3390/biomedicines11010219
APA StyleNasr, I. S. A., Koko, W. S., Khan, T. A., Schobert, R., & Biersack, B. (2023). Antiparasitic Activity of Fluorophenyl-Substituted Pyrimido[1,2-a]benzimidazoles. Biomedicines, 11(1), 219. https://doi.org/10.3390/biomedicines11010219