An Update on Circular RNA in Pediatric Cancers
Abstract
:1. Introduction
Biogenesis, Regulation, and Functions of CircRNAs
2. CircRNAs in Cancer
2.1. Pediatric Brain Tumors
2.1.1. Medulloblastoma
2.1.2. Ependymoma
2.2. Neuroblastoma
2.3. Sarcomas
2.3.1. Rhabdomyosarcoma
2.3.2. Osteosarcoma
2.4. Wilms’ Tumor
2.5. Hepatoblastoma
2.6. Retinoblastoma
Tumor | CircRNA | Related Network | Function | Reference |
---|---|---|---|---|
MB | circ-DTL | Promotion of proliferation | [30] | |
miR-383-5p | Promotion of proliferation | [30] | ||
Promotion of cancer progression | [31] | |||
MB | circSKA3 | miR-326 | Increased proliferation | [32] |
miR-520 h | Promotion of cancer progression | [33] | ||
EP | circRMST, circLRBA circWDR78, circDRC1, and circBBS9 | [34] | ||
NB | circAGO2 (hsa_circ_0135889) | Promotion of tumorigenesis and aggressiveness | [36] | |
NB | circCUX1 | EWS RNA-binding protein | Promotion of glycolysis, growth, and aggressiveness | [37] |
NB | circCUX1 | miR-16-5p/DMTR2 | Promotion of proliferation, migration, invasion, and glucose uptake | [39] |
NB | circCUX1 | miR-388-3p/PHF20 | Promotion of cancer progression | [40] |
NB | circDGKB (has_circ_0133622) | miR-873/GLI1 | Increased proliferation, migration, and invasion | [41] |
NB | has_circ_0002343 | PI3K/Akt/mTOR signaling | Survival | [42] |
NB | has_circ_0001361 | NOTCH2, SERPINH1, LAMC1 | Epithelial-to-mesenchymal transition | [44] |
NB | circTBC1D4, circNAALAD2, circTGFBR3 | miR-21 | Decreased migratory properties | [45] |
NB | circPDE5A (has_circ_0002474) | miR-362-5p/NOL4L | Promotion of proliferation and migration | [46] |
NB | circ_0132817 | miR-432-5p/NOL4L | Promotion of tumor progression | [45] |
NB | circ0125803 | miR-197-5p/E2F1 | Promotion of tumor progression | [48] |
NB | circ_0135889 | miR-127-5p/NEUROD1 | Promotion of proliferation and tumorigenicity | [49] |
NB | circKIF2A (hsa_circ_0129276) | miR-377-3p/PRPS1 | Promotion of cell proliferation, migration, invasion, and glycolysis | [50] |
ERMS | circZNF609 | AKT | Regulation of cell proliferation | [55] |
ARMS | circVAMP3 | AKT | Regulation of cell proliferation | [56] |
OS | has_circ_0001146 | miR-26a-5p/MNAT1 | Promotion of proliferation and invasiveness | [58] |
OS | has_circ_0005909 | miR-338-3p/HMGA1 | Promotion of cancer development | [59] |
WT | circ0093740 | miR-136/145/DNMT3A | Promotion of proliferation and migration ability | [60] |
WT | circCDYL | miR-145-5p/TJP1 | Reduction of cell proliferation, migration, and invasion | [61] |
WT | circSLC7A6 | miR-107/ABL2 | Cancer promotion | [62] |
HB | circ_0015756 | miR-1250-3p | Increased viability, proliferation, and invasion | [63] |
HB | has_circ_0000594 | miR-217/SIRT1 | Promotion of proliferation, viability, and migration | [66] |
HB | circHMGCS1 (has_circ_0072391) | miR-503-5p/IGF-PI3K-Akt signaling | Regulation of glutamine metabolism | [67] |
HB | circ_0043800 | miR-29a/b/c-3p/STAT3/GLI1 | Promotion of tumor growth | [69] |
HB | CDR1as | miR-7-5p/KLF4 | Promotion of proliferation and stemness | [70] |
HB | circSETD3 | miR-423-3p/Bim | Inhibition of proliferation, migration, and EMT and induction of apoptosis | [71] |
RB | has_circ_0001649 | AKT/mTOR | Regulation of proliferation and apoptosis | [72] |
RB | TET1-has_circ_0093996 | miR-183/PDCD4 miR-494/miR-494-3p | Chromatin modification Inhibition of tumor progression | [73] [74] |
RB | circ_0075804 | HNRNPK | Regulation of proliferation | [75] |
RB | circ_ODC1 | miR-422a/SKP2 | Regulation of cell growth | [76] |
miR-646/BCL-2 | Promotion of RB progression | [77] | ||
RB | circ_0000527 | miR-646/LRP6 | Promotion of cell proliferation and migration | [78] |
miR-98-5p/XIAP | Promotion of cell proliferation and migration | [79] | ||
RB | has_circ_0000034 | miR-361-3p/STX17 | Promotion of cell growth | [80,81] |
RB | circMKLN1 | miR-425-5p/PDCD4 | Inhibition of tumor progression | [82] |
RB | circ-FAM158A | miR-138-5p/SLC7A5 | Regulation of cell growth and migration | [83] |
RB | circ_0084811 | miR-18a-5p/miR-18b-5p/E2F5 | Promotion of proliferation and inhibition of apoptosis | [84] |
3. Brief View on circRNAs in Blood Cancers
4. Bioinformatic Tools and Resources for circRNAs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kos, A.; Dijkema, R.; Arnberg, A.C.; van der Meide, P.H.; Schellekens, H. The hepatitis delta (delta) virus possesses a circular RNA. Comp. Study Nat. 1986, 323, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.; Ares, M., Jr. Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4. Proc. Natl. Acad. Sci. USA 1994, 91, 3117–3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabowski, P.J.; Zaug, A.J.; Cech, T.R. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell 1981, 23, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Capel, B.; Swain, A.; Nicolis, S.; Hacker, A.; Walter, M.; Koopman, P.; Goodfellow, P.; Lovell-Badge, R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993, 73, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Y.; Kuo, H.C. The emerging roles and functions of circular RNAs and their generation. J. Biomed. Sci. 2019, 26, 29. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Liu, Y.; Wang, M.; Yu, W.; Zhang, L. Exploring the regulatory roles of circular RNAs in Alzheimer’s disease. Transl. Neurodegener. 2020, 9, 35. [Google Scholar] [CrossRef]
- Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer 2020, 6, 319–336. [Google Scholar] [CrossRef]
- Yin, Y.; Long, J.; He, Q.; Li, Y.; Liao, Y.; He, P.; Zhu, W.J. Emerging roles of circRNA in formation and progression of cancer. Cancer 2019, 10, 5015–5021. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, Y.; Gong, Z.; Yang, X.; Yang, M.; Zhang, S.; Xiong, F.; Xiang, B.; Zhou, M.; Liao, Q.; et al. Circular RNAs in human cancer. Mol. Cancer 2017, 16, 25. [Google Scholar] [CrossRef]
- Tang, X.; Ren, H.; Guo, M.; Qian, J.; Yang, Y.; Gu, C. Review on circular RNAs and new insights into their roles in cancer. Comput. Struct. Biotechnol. J. 2021, 19, 910–928. [Google Scholar] [CrossRef]
- Ivanov, A.; Memczak, S.; Wyler, E.; Torti, F.; Porath, H.T.; Orejuela, M.R.; Piechotta, M.; Levanon, E.Y.; Landthaler, M.; Dieterich, C.; et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015, 10, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; Fitzhugh, W.; et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar]
- Dong, R.; Ma, X.K.; Chen, L.L.; Yang, L. Increased complexity of circRNA expression during species evolution. RNA Biol. 2017, 14, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Wilusz, J.E. Repetitive elements regulate circular RNA biogenesis. Mob. Genet. Elem. 2015, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xue, W.; Xiang Li, X.; Zhang, J.; Chen, S.; Zhang, J.L.; Yang, L.; Chen, L.L. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016, 15, 611–624. [Google Scholar] [CrossRef] [Green Version]
- Athanasiadis, A.; Rich, A.; Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004, 2, e391. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Lv, Y. The Role of N6 -Methyladenosine Modified Circular RNA in Pathophysiological Processes. Int. J. Biol. Sci. 2021, 17, 2262–2277. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, L.; Chen, L.L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Xie, D.; Wang, R.; Liu, L.; Yu, Y.; Tang, X.; Hu, Y.; Cui, D. The emerging landascape of exosomal CircRNAs in solid cancers and hematological malignancies. Biomark. Res. 2022, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhang, L.; Fan, K.; Cheng, Z.X.; Sun, Q.C.; Wang, J.J. Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/β-Catenin Pathway. Biomed. Res. Int. 2016, 2016, 1579490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhang, Y.; Huang, L.; Zhang, J.; Pan, F.; Li, B.; Yan, Y.; Jia, B.; Liu, H.; Li, S.; et al. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int. J. Clin. Exp. Pathol. 2015, 8, 16020–16025. [Google Scholar] [PubMed]
- Ahmed, I.; Karedath, T.; Andrews, S.S.; Al-Azwani, I.K.; Mohamoud, Y.A.; Querleu, D.; Rafii, A.; Malek, J.A. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget 2016, 7, 36366–36381. [Google Scholar] [CrossRef] [Green Version]
- Hansen, T.B.; Kjems, J.; Damgaard, C.K. Circular RNA and miR-7 in cancer. Cancer Res. 2013, 73, 5609–5612. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huang, C.; Zou, Y.; Ye, J.; Yu, J.; Gui, Y. CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p. Mol. Cancer 2020, 19, 103. [Google Scholar] [CrossRef]
- Du, W.W.; Zhang, C.; Yang, W.; Yong, T.; Awan, F.M.; Yang, B.B. Identifying and Characterizing circRNA-Protein Interaction. Theranostics 2017, 7, 4183–4191. [Google Scholar] [CrossRef]
- Lv, T.; Miao, Y.F.; Jin, K.; Han, S.; Xu, T.Q.; Qiu, Z.L.; Zhang, X.H. Dysregulated circular RNAs in medulloblastoma regulate proliferation and growth of tumor cells via host genes. Cancer Med. 2018, 7, 6147–6157. [Google Scholar] [CrossRef]
- Wang, X.; Xu, D.; Pei, X.; Zhang, Y.; Zhang, Y.; Gu, Y.; Li, Y. CircSKA3 Modulates FOXM1 to Facilitate Cell Proliferation, Migration, and Invasion While Confine Apoptosis in Medulloblastoma via miR-383-5p. Cancer Manag. Res. 2020, 12, 13415–13426. [Google Scholar] [CrossRef]
- Zhao, X.; Guan, J.; Luo, M. Circ-SKA3 upregulates ID3 expression by decoying miR-326 to accelerate the development of medulloblastoma. J. Clin. Neurosci. 2021, 86, 87–96. [Google Scholar] [CrossRef]
- Liu, X.C.; Wang, F.C.; Wang, J.H.; Zhao, J.Y.; Ye, S.Y. The Circular RNA circSKA3 Facilitates the Malignant Biological Behaviors of Medulloblastoma via miR-520 h/CDK6 Pathway. Mol. Biotechnol. 2022, 64, 1022–1033. [Google Scholar] [CrossRef]
- Ahmadov, U.; Bendikas, M.M.; Ebbesen, K.K.; Sehested, A.M.; Kjems, J.; Broholm, H.; Kristensen, L.S. Distinct circular RNA expression profiles in pediatric ependymomas. Brain Pathol. 2021, 31, 387–392. [Google Scholar] [CrossRef]
- Alexander, F. Neuroblastoma. Urol. Clin. N. Am. 2000, 27, 383–392. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, F.; Fang, E.; Xiao, W.; Mei, H.; Li, H.; Li, D.; Song, H.; Wang, J.; Hong, M.; et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 2019, 26, 1346–1364. [Google Scholar] [CrossRef]
- Li, H.; Yang, F.; Hu, A.; Wang, X.; Fang, E.; Chen, Y.; Li, D.; Song, H.; Wang, J.; Guo, Y.; et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol. Med. 2019, 11, e10835. [Google Scholar] [CrossRef]
- Liu, K.C.; Lin, B.S.; Zhao, M.; Wang, K.Y.; Lan, X.P. Cutl1: A potential target for cancer therapy. Cell Signal. 2013, 25, 349–354. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Liu, Q.; Zhao, Y.; Zhang, W.; Haiyan Yang, H. Circ-CUX1 Accelerates the Progression of Neuroblastoma via miR-16-5p/DMRT2 Axis. Neurochem. Res. 2020, 45, 2840–2855. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Q.; Dai, J.; Shi, H.; Zhang, J. circCUX1 promotes neuroblastoma progression and glycolysis by regulating the miR-338-3p/PHF20 axis. Gen. Physiol. Biophys. 2021, 40, 17–29. [Google Scholar]
- Yang, J.; Yu, L.; Yan, J.; Xiao, Y.; Li, W.; Xiao, J.; Lei, J.; Xiang, D.; Zhang, S.; Yu, X. Circular RNA DGKB Promotes the Progression of Neuroblastoma by Targeting miR-873/GLI1 Axis. Front. Oncol. 2020, 10, 1104. [Google Scholar] [CrossRef] [PubMed]
- Harenza, J.L.; Diamond, M.A.; Adams, R.N.; Song, M.M.; Davidson, H.L.; Hart, L.S.; Dent, M.H.; Fortina, P.; Reynolds, C.P.; Maris, J.M. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines. Sci. Data 2017, 4, 170033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, H.; Li, J.; Wang, X.; Zhang, X.; Shi, T.; Feng, G. Comprehensive Characterization of Circular RNAs in Neuroblastoma Cell Lines. Technol. Cancer Res. Treat. 2020, 19, 1533033820957622. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shang, Y.M.; Wang, Q.W. MicroRNA-21 promotes the proliferation and invasion of neuroblastoma cells through targeting CHL1. Minerva Med. 2016, 107, 287–293. [Google Scholar] [PubMed]
- Lin, W.; Wang, Z.; Wang, J.; Yan, H.; Han, Q.; Yao, W.; Li, K. circRNA-TBC1D4, circRNA-NAALAD2 and circRNA-TGFBR3: Selected Key circRNAs in Neuroblastoma and Their Associations with Clinical Features. Cancer Manag. Res. 2021, 13, 4271–4281. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, L.; Hu, X.; Li, Q.; Wu, M. Silencing of circular RNA circPDE5A suppresses neuroblastoma progression by targeting the miR-362-5p/NOL4L axis. Int. J. Neurosci. 2021, 1–11. [Google Scholar] [CrossRef]
- Fang, Y.; Yao, Y.; Mao, K.; Yanyan Zhong, Y.; Xu, Y. Circ_0132817 facilitates cell proliferation, migration, invasion and glycolysis by regulating the miR-432-5p/NOL4L axis in neuroblastoma. Exp. Brain Res. 2021, 239, 1841–1852. [Google Scholar] [CrossRef]
- Tang, J.; Liu, F.; Huang, D.; Zhao, C.; Liang, J.; Wang, F.; Zeng, J.; Zhang, M.; Zhai, X.; Li, L. circ0125803 facilitates tumor progression by sponging miR-197-5p and upregulating E2F1 in neuroblastoma. Pathol. Res. Pract. 2022, 233, 153857. [Google Scholar] [CrossRef]
- Yang, J.; Liu, B.; Xu, Z.; Feng, M. Silencing of Circ_0135889 Restrains Proliferation and Tumorigenicity of Human Neuroblastoma Cells. J. Surg. Res. 2022, 279, 135–147. [Google Scholar] [CrossRef]
- Jin, Q.; Li, J.; Yang, F.; Feng, L.; Du, X. Circular RNA circKIF2A Contributes to the Progression of Neuroblastoma Through Regulating PRPS1 Expression by Sponging miR-377-3p. Biochem. Genet. 2022, 60, 1380–1401. [Google Scholar] [CrossRef]
- Karami Fath, M.; Pourbagher Benam, S.; Salmani, K.; Naderi, S.; Fahham, Z.; Ghiabi, S.; Houshmand Kia, S.A.; Naderi, M.; Darvish, M.; Barati, G. Circular RNAs in neuroblastoma: Pathogenesis, potential biomarker, and therapeutic target. Pathol. Res. Pract. 2022, 238, 154094. [Google Scholar] [CrossRef]
- Ries, L.A.G.; Harkins, D.; Krapcho, M.; Mariotto, A.; Miller, B.A.; Feuer, E.J.; Clegg, L.; Eisner, M.P.; Horner, M.J.; Howlader, N.; et al. SEER Cancer Statistics Review, 1975–2003; National Cancer Institute: Bethesda, MD, USA. Available online: http://seer.cancer.gov/csr/1975_2003 (accessed on 10 June 2011).
- Pastore, G.; Peris-Bonet, R.; Carli, M.; Martínez-García, C.; Sánchez de Toledo, J.; Steliarova-Foucher, E. Childhood soft tissue sarcomas incidence and survival in European children (1978–1997): Report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 2006, 42, 2136. [Google Scholar] [CrossRef]
- Sun, X.; Guo, W.; Shen, J.K.; Mankin, H.J.; Hornicek, F.J.; Duan, Z. Rhabdomyosarcoma: Advances in molecular and cellular biology. Sarcoma 2015, 2015, 232010. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.; Legnini, I.; Megiorni, F.; Colantoni, A.; Santini, T.; Morlando, M.; Di Timoteo, G.; Dattilo, D.; Dominici, C.; Bozzoni, I. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 2019, 38, 3843–3854. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.; Centrón-Broco, A.; Dattilo, D.; Di Timoteo, G.; Guarnacci, M.; Colantoni, A.; Beltran Nebot, M.; Bozzoni, I. CircVAMP3: A circRNA with a Role in Alveolar Rhabdomyosarcoma Cell Cycle Progression. Genes 2021, 12, 985. [Google Scholar] [CrossRef]
- Marko, T.A.; Diessner, B.J.; Spector, L.G. Prevalence of Metastasis at Diagnosis of Osteosarcoma: An International Comparison. Pediatr. Blood Cancer. 2016, 63, 1006–1011. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ni, J.; Song, D.; Ding, M.; Huang, J.; Li, W.; He, G. The regulatory effect of has-circ-0001146/miR-26a-5p/MNAT1 network on the proliferation and invasion of osteosarcoma. Biosci. Rep. 2020, 40, BSR20201232. [Google Scholar] [CrossRef]
- Zhang, C.; Na, N.; Liu, L.; Qiu, Y. CircRNA hsa_circ_0005909 Promotes Cell Proliferation of Osteosarcoma Cells by Targeting miR-338-3p/HMGA1 Axis. Cancer Manag. Res. 2021, 13, 795–803. [Google Scholar] [CrossRef]
- Cao, J.; Huang, Z.; Ou, S.; Wen, F.; Yang, G.; Miao, Q.; Zhang, H.; Wang, Y.; He, X.; Shan, Y.; et al. circ0093740 Promotes Tumor Growth and Metastasis by Sponging miR-136/145 and Upregulating DNMT3A in Wilms Tumor. Front. Oncol. 2021, 11, 647352. [Google Scholar] [CrossRef]
- Zhou, R.; Jia, W.; Gao, X.; Deng, F.; Fu, K.; Zhao, T.; Li, Z.; Fu, W.; Liu, G. CircCDYL Acts as a Tumor Suppressor in Wilms’ Tumor by Targeting miR-145-5p. Front. Cell Dev. Biol. 2021, 9, 668947. [Google Scholar] [CrossRef]
- Xu, J.; Hao, Y.; Gao, X.; Wu, Y.; Ding, Y.; Wang, B. CircSLC7A6 promotes the progression of Wilms’ tumor via microRNA-107/ ABL proto-oncogene 2 axis. Bioengineered 2022, 13, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, E. Pediatric hepatoblastoma: Diagnosis and treatment. Transl. Pediatr. 2014, 3, 293–299. [Google Scholar] [PubMed]
- Kremer, N.; Walther, A.E.; Tiao, G.M. Management of hepatoblastoma: An update. Curr. Opin. Pediatr. 2014, 26, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.H.; Zhang, B.B.; Liu, X.Q.; Zheng, S.; Dong, K.R.; Dong, R. Expression Profiling Identifies Circular RNA Signature in Hepatoblastoma. Cell Physiol. Biochem. 2018, 45, 706–719. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Bian, Z.X.; Li, H.Y.; Zhang, Y.; Ma, J.; Chen, S.H.; Zhu, J.B.; Zhang, X.; Wang, J.; Gu, S.; et al. Characterization of hsa_circ_0000594 as a new biomarker and therapeutic target for hepatoblastoma. Eur. Rev. Med. Pharm. Sci. 2019, 23, 8274–8286. [Google Scholar]
- Zhen, N.; Gu, S.; Ma, J.; Zhu, J.; Yin, M.; Xu, M.; Wang, J.; Huang, N.; Cui, Z.; Bian, Z.; et al. CircHMGCS1 Promotes Hepatoblastoma Cell Proliferation by Regulating the IGF Signaling Pathway and Glutaminolysis. Theranostics 2019, 9, 900–919. [Google Scholar] [CrossRef]
- Glazar, P.; Papavasileiou, P.; Rajewsky, N. Circbase: A database for circular RNAs. RNA 2014, 20, 1666–1670. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Song, J.; Liu, Y.; Zhou, Z.; Wang, X. Transcription activation of circ-STAT3 induced by Gli2 promotes the progression of hepatoblastoma via acting as a sponge for miR-29a/b/c-3p to upregulate STAT3/Gli2. J. Exp. Clin. Cancer Res. 2020, 39, 101. [Google Scholar] [CrossRef]
- Luping, C.; Juanyi, S.; Yaohao, W.; Ronglin, Q.; Lexiang, Z.; Lei, L.; Jianhang, S.; Minyi, L.; Xiaogeng, D. CircRNA CDR1as promotes hepatoblastoma proliferation and stemness by acting as a miR-7-5p sponge to upregulate KLF4 expression. Aging (Albany NY) 2020, 12, 19233–19253. [Google Scholar]
- Li, X.; Wang, H.; Liu, Z.; Abudureyimu, A. CircSETD3 (Hsa_circ_0000567) Suppresses Hepatoblastoma Pathogenesis viaTargeting the miR-423-3p/Bcl-2-Interacting Mediator of Cell Death Axis. Front. Genet. 2021, 12, 724197. [Google Scholar]
- Xing, L.; Zhang, L.; Feng, Y.; Cui, Z.; Ding, L. Downregulation of circular RNA hsa_circ_0001649 indicates poor prognosis for retinoblastoma and regulates cell proliferation and apoptosis via AKT/mTOR signaling pathway. Biomed. Pharmacother. 2018, 105, 326–333. [Google Scholar] [CrossRef]
- Lyu, J.; Wang, Y.; Zheng, Q.; Hua, P.; Zhu, X.; Li, J.; Li, J.; Ji, X.; Zhao, P. Reduction of circular RNA expression associated with human retinoblastoma. Exp. Eye Res. 2019, 184, 278–285. [Google Scholar] [CrossRef]
- Fu, C.; Wang, S.; Jin, L.; Zhang, M.; Li, M. CircTET1 Inhibits Retinoblastoma Progression via Targeting miR-492 and miR-494-3p through Wnt/beta-catenin Signaling Pathway. Curr. Eye Res. 2021, 46, 978–987. [Google Scholar] [CrossRef]
- Wenbo, Z.; Shuai, W.; Tingyu, Q.; Wenzhan, W. Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3. J. Cell. Biochem. 2020, 121, 3516–3525. [Google Scholar]
- Du, S.; Wang, S.; Zhang, F.; Lv, Y. SKP2, positively regulated by circ_ODC1/miR-422a axis, promotes the proliferation of retinoblastoma.]. J. Cell. Biochem. 2020, 121, 322–331. [Google Scholar] [CrossRef]
- Chen, N.N.; Chao, D.L.; Li, X.G. Circular RNA has_circ_0000527 participates in proliferation, invasion and migration of retinoblastoma cells via miR-646/BCL-2 axis. Cell Biochem. Funct. 2020, 38, 1036–1046. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Li, Y.; Jiang, Y.; Wang, L.; Chen, Y.; Lv, Y.; Zou, Y.; Ding, X. Circ_0000527 promotes the progression of retinoblastoma by regulating miR-646/LRP6 axis. Cancer Cell Int. 2020, 20, 301. [Google Scholar] [CrossRef]
- Yu, B.; Zhao, J.; Dong, Y. Circ_0000527 Promotes Retinoblastoma Progression through Modulating miR-98-5p/XIAP Pathway. Curr. Eye Res. 2021, 46, 1414–1423. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, H.; Xu, D.; Chen, K.; Tan, N.; Zheng, Q.-J. Circular RNA circ_0000034 upregulates STX17 level to promote human retinoblastoma development via inhibiting miR-361-3p. Eur. Rev. Med. Pharm. Sci. 2020, 23, 12080–12092. [Google Scholar]
- Zhe, S.; Ai, Z.; Mingyu, H.; Tao, J. Circular RNA hsa_circ_0000034 promotes the progression of retinoblastoma via sponging microRNA-361-3p.]. Bioengineered 2020, 1, 949–957. [Google Scholar]
- Xu, L.; Long, H.; Zhou, B.; Jiang, H.; Cai, M. CircMKLN1 Suppresses the Progression of Human Retinoblastoma by Modulation of miR-425-5p/PDCD4 Axis. Curr. Eye Res. 2021, 46, 1751–1761. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Chen, W.; Wang, X.; Cai, W.; Wu, F.; Lin, C. Circular RNA circ-FAM158A promotes retinoblastoma progression by regulating miR-138-5p/SLC7A5 axis. Exp. Eye Res. 2021, 11, 108650. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Qu, M.; Kong, L.; Song, X.; Jiang, S. hsa_circ_0084811 Regulates Cell Proliferation and Apoptosis in Retinoblastoma through miR-18a-5p/miR-18b-5p/E2F5 Axis. Biomed. Res. Int. 2022, 2022, 6918396. [Google Scholar] [CrossRef]
- Zhou, X.; Zhan, L.; Huang, K.; Wang, X. The functions and clinical significance of circRNAs in hematological malignancies. J. Hematol. Oncol 2020, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Guo, A.; Sun, B.; Zhou, Z. Comprehensive elaboration of circular RNA in multiple myeloma. Front. Pharm. 2022, 13, 971070. [Google Scholar] [CrossRef]
- Allegra, A.; Cicero, N.; Tonacci, A.; Musolino, C.; Gangemi, S. Circular RNA as a Novel Biomarker for Diagnosis and Prognosis and Potential Therapeutic Targets in Multiple Myeloma. Cancers 2022, 14, 1700. [Google Scholar] [CrossRef]
- Hu, J.; Han, Q.; Gu, Y.; Ma, J.; McGrath, M.; Fengchang Qiao, F.; Chen, B.; Song, C.; Ge, Z. Circular RNA PVT1 expression and its roles in acute lympho-blastic leukemia. Epigenomics 2018, 10, 723–732. [Google Scholar] [CrossRef]
- Gaffo, E.; Boldrin, E.; Dal Molin, A.; Bresolin, S.; Bonizzato, A.; Trentin, L.; Frasson, C.; Debatin, K.M.; Meyer, L.H.; Kronnie, G.T.; et al. Circular RNA differential expression in blood cell populations and exploration of circRNA deregulation in pediatric acute lymphoblastic leukemia. Sci. Rep. 2019, 9, 14670. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Cai, M.; Luo, A.; He, Y.; Liu, S.; Zhang, X.; Yang, X.; Xu, L.; Jiang, H. CircRNF220, not its linear cognate gene RNF220, regulates cell growth and is associated with relapse in pediatric acute myeloid leukemia. Mol. Cancer 2021, 20, 139. [Google Scholar] [CrossRef]
- Dal Molin, A.; Hofmans, M.; Gaffo, E.; Bu-ratin, A.; Cavé, H.; Flotho, C.; de Haas, V.; Niemeyer, C.M.; Stary, J.; Van Vlierberghe, P.; et al. CircR-NAs Dysregulated in Juvenile Myelomonocytic Leukemia: CircMCTP1 Stands Out. Front. Cell Dev. Biol. 2021, 8, 613540. [Google Scholar] [CrossRef]
- Cocquet, J.; Chong, A.; Zhang, G.; Veitia, R.A. Reverse transcriptase template switching and false alternative transcripts. Genomics 2006, 88, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Szabo, L.; Salzman, J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nat. Rev. Genet. 2016, 17, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Hansen, T.B.; Venø, M.T.; Damgaard, C.K.; Kjems, J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016, 44, e58. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.; Chia-Ying Chen, C.Y.; Chuang, T.J. Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip. Rev. RNA 2015, 6, 563–679. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Sun, H.; Wang, J.; Liang, Y.; Wang, Y.; Wong, G. The bioinformatics toolbox for circRNA discovery and analysis. Brief. Bioinform. 2021, 22, 1706–1728. [Google Scholar] [CrossRef]
- Wang, K.; Singh, D.; Zeng, Z.; Coleman, S.J.; Huang, Y.; Savich, G.L.; He, X.; Mieczkowski, P.; Grimm, S.A.; Perou, C.M.; et al. MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 2010, 38, e178. [Google Scholar] [CrossRef] [Green Version]
- Westholm, J.O.; Miura, P.; Sara Olson, S.; Shenker, S.; Joseph, B.; Sanfilippo, P.; Celniker, S.E.; Graveley, B.R.; Lai, E.C. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014, 9, 1966–1980. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, J.; Zhao, F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015, 16, 4. [Google Scholar] [CrossRef]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [Green Version]
- Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular RNA expression. PLoS Genet. 2013, 9, e1003777. [Google Scholar] [CrossRef]
- Hoffmann, S.; Otto, C.; Doose, G.; Tanzer, A.; Langenberger, D.; Christ, S.; Kunz, M.; Holdt, L.M.; Teupser, D.; Hackermüller, J.; et al. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol. 2014, 15, R34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.O.; Agarwal, V.; Guo, H.; Bartel, D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014, 15, 409. [Google Scholar] [CrossRef] [PubMed]
- Szabo, L.; Morey, R.; Palpant, N.J.; Wang, P.L.; Afari, N.; Jiang, C.; Parast, M.M.; Murry, C.E.; Laurent, L.C.; Salzman, J. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015, 16, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Metge, F.; Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 2016, 32, 1094–1096. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galardi, A.; Colletti, M.; Palma, A.; Di Giannatale, A. An Update on Circular RNA in Pediatric Cancers. Biomedicines 2023, 11, 36. https://doi.org/10.3390/biomedicines11010036
Galardi A, Colletti M, Palma A, Di Giannatale A. An Update on Circular RNA in Pediatric Cancers. Biomedicines. 2023; 11(1):36. https://doi.org/10.3390/biomedicines11010036
Chicago/Turabian StyleGalardi, Angela, Marta Colletti, Alessandro Palma, and Angela Di Giannatale. 2023. "An Update on Circular RNA in Pediatric Cancers" Biomedicines 11, no. 1: 36. https://doi.org/10.3390/biomedicines11010036
APA StyleGalardi, A., Colletti, M., Palma, A., & Di Giannatale, A. (2023). An Update on Circular RNA in Pediatric Cancers. Biomedicines, 11(1), 36. https://doi.org/10.3390/biomedicines11010036