Methylenetetrahydrofolate Reductase 677T Allele Is a Risk Factor for Arterial Thrombosis in Chinese Han Patients with Antiphospholipid Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genotype Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia, D.; Erkan, D. Diagnosis and Management of the Antiphospholipid Syndrome. N. Engl. J. Med. 2018, 378, 2010–2021. [Google Scholar] [CrossRef] [PubMed]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.W.M.; De Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dörner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019, 78, 1296–1304. [Google Scholar] [CrossRef]
- Cervera, R.; Serrano, R.; Pons-Estel, G.J.; Ceberio-Hualde, L.; Shoenfeld, Y.; De Ramón, E.; Buonaiuto, V.; Jacobsen, S.; Zeher, M.M.; Tarr, T.; et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: A multicentre prospective study of 1000 patients. Ann. Rheum. Dis. 2015, 74, 1011–1018. [Google Scholar] [CrossRef]
- Meroni, P.L.; Riboldi, P. Pathogenic mechanisms mediating antiphospholipid syndrome. Curr. Opin. Rheumatol. 2001, 13, 377–382. [Google Scholar] [CrossRef]
- Iuliano, A.; Galeazzi, M.; Sebastiani, G.D. Antiphospholipid syndrome’s genetic and epigenetic aspects. Autoimmun. Rev. 2019, 18, 102352. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.; Ugarte-Gil, M.F.; Espinosa, G.; Tàssies, D.; Monteagudo, J.; Reverter, J.C.; Cervera, R. Can inherited thrombophilia modulate the clinical phenotype of patients with antiphospholipid syndrome? Clin. Exp. Rheumatol. 2013, 31, 926–932. [Google Scholar]
- Pretorius, E.; Vermeulen, N.; Bester, J. Atypical erythrocytes and platelets in a patient with a pro-thrombin mutation. Platelets 2014, 25, 461–462. [Google Scholar] [CrossRef] [Green Version]
- Galeazzi, M.; Sebastiani, G.D.; Tincani, A.; Piette, J.-C.; Allegri, F.; Morozzi, G.; Bellisai, F.; Scorza, R.; Ferrara, G.B.; Carcassi, C.; et al. HLA class II alleles associations of anticardiolipin and anti b2GPI antibodies in a large series of European patients with systemic lupus erythematosus. Lupus 2000, 9, 47–55. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.-F.; Lu, X.; Jian, X.-R.; Jin, B.; Zheng, H.; Li, Y.-Q.; Wang, Q.-Y.; Wu, T.-C.; Guo, H.; et al. Common Genetic Risk Factors for Venous Thrombosis in the Chinese Population. Am. J. Hum. Genet. 2013, 92, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, I.; Mannucci, P.M.; Stefano, V.; Taioli, E.; Rossi, V.; Crosti, F.; Paciaroni, K.; Leone, G.; Faioni, E.M. Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia: A study of 150 families. Blood 1998, 92, 2353–2358. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Mannucci, P.M. Classic thrombophilic gene variants. Thromb. Haemost. 2015, 114, 885–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ames, P.R.J.; Margaglione, M.; Tommasino, C.; Bossone, A.; Iannaccone, L.; Brancaccio, V. Impact of plasma homocysteine and prothrombin G20210A on primary antiphospholipid syndrome. Blood Coagul. Fibrinolysis 2001, 12, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Tàssies, D.; Espinosa, G.; Muñoz-Rodríguez, F.J.; Freire, C.; Cervera, R.; Monteagudo, J.; Maragall, S.; Escolar, G.; Ingelmo, M.; Ordinas, A.; et al. The 4G/5G polymorphism of the type 1 plasminogen activator inhibitor gene and thrombosis in patients with antiphospholipid syndrome. Arthritis Rheum. 2000, 43, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Kamimoto, Y.; Wada, H.; Ikejiri, M.; Nakatani, K.; Sugiyama, T.; Osato, K.; Murabayashi, N.; Habe, K.; Mizutani, H.; Matsumoto, T.; et al. Hypofibrinogenemia and the α-Fibrinogen Thr312Ala Polymorphism may be Risk Factors for Early Pregnancy Loss. Clin. Appl. Thromb. 2017, 23, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Lenz, B.; Samardzija, M.; Drenjancevic, D.; Zibar, D.; Samardzija, M.; Milostic-Srb, A. The investigation of hereditary and acquired thrombophilia risk factors in the development of complications in pregnancy in Croatian women. J. Matern. Neonatal Med. 2016, 29, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Tommasino, C.; D’Andrea, G.; Iannaccone, L.; Brancaccio, V.; Margaglione, M.; Ames, P.R.J. Thrombophilic Genotypes in Subjects with Idiopathic Antiphospholipid Antibodies—Prevalence and Significance. Thromb. Haemost. 1998, 79, 46–49. [Google Scholar] [CrossRef]
- Merashli, M.; Ster, I.C.; D’Andrea, G.; Iannaccone, L.; Marottoli, V.; Margaglione, M.; Brancaccio, V.; Ames, P.R.J. Survival in primary antiphospholipid syndrome. Thromb. Haemost. 2016, 115, 1200–1208. [Google Scholar] [CrossRef] [Green Version]
- Baek, K.-H.; Lee, E.-J.; Kim, Y.-S. Recurrent pregnancy loss: The key potential mechanisms. Trends Mol. Med. 2007, 13, 310–317. [Google Scholar] [CrossRef]
- Martinelli, I.; Taioli, E.; Cetin, I.; Marinoni, A.; Gerosa, S.; Villa, M.V.; Bozzo, M.; Mannucci, P.M. Mutations in Coagulation Factors in Women with Unexplained Late Fetal Loss. N. Engl. J. Med. 2000, 343, 1015–1018. [Google Scholar] [CrossRef]
- Shi, H.; Teng, J.-L.; Sun, Y.; Wu, X.-Y.; Hu, Q.-Y.; Liu, H.-L.; Cheng, X.-B.; Yin, Y.-F.; Ye, J.-N.; Chen, P.P.; et al. Clinical characteristics and laboratory findings of 252 Chinese patients with anti-phospholipid syndrome: Comparison with Euro-Phospholipid cohort. Clin. Rheumatol. 2017, 36, 599–608. [Google Scholar] [CrossRef] [PubMed]
- The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.L.; Zhang, J.X.; Wang, P.X.; Cui, R.Z.; Zhao, F.M.; Mao, Y.M.; Li, J.Y.; Bi, Y.Y.; Li, H. Association of 4G/5G polymorphism in PAI1 promoter with PAI1 level in deep vein thrombosis. Chin. J. Med. Genet. 2005, 22, 6. [Google Scholar]
- Nelen, W.L.; AP Steegers, E.; Eskes, T.K.; Blom, H. Genetic risk factor for unexplained recurrent early pregnancy loss. Lancet 1997, 350, 861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.H.; den Heijer, M.; Kluijtmans, L.A.J.; van den Heuve, L.P.; et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113. [Google Scholar] [CrossRef]
- Jacquemin, B.; Antoniades, C.; Nyberg, F.; Plana, E.; Müller, M.; Greven, S.; Salomaa, V.; Sunyer, J.; Bellander, T.; Chalamandaris, A.-G.; et al. Common Genetic Polymorphisms and Haplotypes of Fibrinogen Alpha, Beta, and Gamma Chains Affect Fibrinogen Levels and the Response to Proinflammatory Stimulation in Myocardial Infarction Survivors: The AIRGENE Study. J. Am. Coll. Cardiol. 2008, 52, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Zapata, C.; Alvarez, G. On Fisher’s exact test for detecting gametic disequilibrium between DNA polymorphisms. Ann. Hum. Genet. 1997, 61, 69–75. [Google Scholar] [CrossRef]
- Chen, X.-X.; Gu, Y.-Y.; Li, S.-J.; Qian, J.; Hwang, K.-K.; Chen, P.P.; Chen, S.-L.; Yang, C.-D. Some Plasmin-Induced Antibodies Bind to Cardiolipin, Display Lupus Anticoagulant Activity and Induce Fetal Loss in Mice. J. Immunol. 2007, 178, 5351–5356. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Gu, J.; Wan, L.; Hu, Q.; Teng, J.; Liu, H.; Cheng, X.; Ye, J.; Su, Y.; Sun, Y.; et al. “Non-criteria” antiphospholipid antibodies add value to antiphospholipid syndrome diagnoses in a large Chinese cohort. Arthritis Res. Ther. 2020, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Gu, J.; Wan, L.; Hu, Q.; Teng, J.; Liu, H.; Cheng, X.; Ye, J.; Su, Y.; Sun, Y.; et al. Anti-β2GPI domain 1 antibodies stratify high risk of thrombosis and late pregnancy morbidity in a large cohort of Chinese patients with antiphospholipid syndrome. Thromb. Res. 2020, 185, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Zheng, H.; Yin, Y.-F.; Hu, Q.-Y.; Teng, J.-L.; Sun, Y.; Liu, H.-L.; Cheng, X.-B.; Ye, J.-N.; Su, Y.-T.; et al. Antiphosphatidylserine/prothrombin antibodies (aPS/PT) as potential diagnostic markers and risk predictors of venous thrombosis and obstetric complications in antiphospholipid syndrome. Clin. Chem. Lab. Med. 2016, 56, 614–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meroni, P.L.; Borghi, M.O.; Raschi, E.; Tedesco, F. Pathogenesis of antiphospholipid syndrome: Understanding the antibodies. Nat. Rev. Rheumatol. 2011, 7, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.-C.; Das Gupta, E. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 2015, 58, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rozen, R. Genetic Predisposition to Hyperhomocysteinemia: Deficiency of Methylenetetrahydrofolate Reductase (MTHFR). Thromb. Haemost. 1997, 78, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Finazzi, G.; Duca, F.; Norbis, F.; Moia, M. The G1691 → A mutation of factor V, but not the G20210 → A mutation of factor II or the C677 → T mutation of methylenetetrahydrofolate reductase genes, is associated with venous thrombosis in patients with lupus anticoagulants. Br. J. Haematol. 2000, 108, 865–870. [Google Scholar] [CrossRef]
- Lee, R.M.; A Brown, M.; Ward, K.; Nelson, L.; Branch, D.; Silver, R.M. Homocysteine levels in women with antiphospholipid syndrome and normal fertile controls. J. Reprod. Immunol. 2004, 63, 23–30. [Google Scholar] [CrossRef]
- Mutch, N.J.; Thomas, L.; Moore, N.R.; Lisiak, K.M.; Booth, N.A. TAFIa, PAI-1 and ?2-antiplasmin: Complementary roles in regulating lysis of thrombi and plasma clots. J. Thromb. Haemost. 2007, 5, 812–817. [Google Scholar] [CrossRef]
- Sartori, M.T.; Wiman, B.; Vettore, S.; Dazzi, F.; Girolami, A.; Patrassi, G.M. 4G/5G Polymorphism of PAI-1 Gene Promoter and Fibrinolytic Capacity in Patients with Deep Vein Thrombosis. Thromb. Haemost. 1998, 80, 956–960. [Google Scholar] [CrossRef]
- Huang, G.; Wang, P.; Li, T.; Deng, X. Genetic association between plasminogen activator inhibitor-1 rs1799889 polymorphism and venous thromboembolism: Evidence from a comprehensive meta-analysis. Clin. Cardiol. 2019, 42, 1232–1238. [Google Scholar] [CrossRef]
APS | aPL Carrier | p Value | |
---|---|---|---|
n | 41 | 26 | |
Sex (M/F) | 13/28 | 2/24 | 0.023 |
Age (median(q1–q3)) | 38 (32–47) | 34 (30–42) | 0.221 |
Clinical manifestations, n (%) | |||
Thrombosis | 33 (80.5) | / | / |
AT only | 10 (24.4) | / | / |
VT only | 18 (43.9) | / | / |
AT + VT | 5 (12.2) | / | / |
Pregnancy morbidity | 12 (29.3) | / | / |
EPM | 2 (4.9) | / | / |
LPM | 9 (21.9) | / | / |
EPM + LPM | 1 (2.4) | / | / |
Thrombocytopenia | 8 (19.5) | 4 (15.4) | 0.933 |
aPL profile, n (%) | |||
Positive aCL IgG | 19 (46.3) | 15 (57.7) | 0.573 |
Positive aCL IgM | 10 (24.4) | 12 (46.2) | 0.002 |
Positive anti-β2GP1 IgG | 12 (29.3) | 7 (26.9) | 0.531 |
Positive anti-β2GP1 IgM | 6 (14.6) | 4 (15.4) | 0.206 |
Positive LAC | 31 (75.6) | 16 (61.5) | 0.113 |
Low-risk aPL † | 6 (14.6) | 2 (7.7) | 0.469 |
High-risk aPL ‡ | 35 (85.4) | 24 (92.3) | 0.469 |
Polymorphism | aPL(+) Patients | Healthy Controls | OR (95% CI) | p Value | χ2 | p Value | |
---|---|---|---|---|---|---|---|
Genotype, n (%) | CC | 18 (26.8) | 54 (51.5) | 1.00 (referent) | 10.67 | 0.004 * | |
CT | 42 (62.7) | 41 (39.0) | 3.07 (1.55–6.09) | 0.002 * | |||
TT | 7 (10.5) | 10 (9.5) | 2.10 (0.69–6.33) | 0.232 | |||
Allele, n (%) | C | 78 (58.2) | 149 (70.9) | 1.00 (referent) | |||
T | 56 (41.8) | 61 (29.1) | 1.75 (1.11–2.76) | 5.92 | 0.019 * |
Group | Genotype | Allele | χ2 | p Value | |||
---|---|---|---|---|---|---|---|
CC Case (%) | CT Case (%) | TT Case (%) | C Case (%) | T Case (%) | |||
Control | 54 (51.5) | 41 (39.0) | 10 (9.5) | 149 (70.9) | 61 (29.1) | 0.192 | 0.959 |
aPL(+) Patients | 18 (26.8) | 42 (62.7) | 7 (10.5) | 78 (58.2) | 56 (41.8) | 2.796 | 0.261 |
Genotype, CC, CT, TT, No. of Patients | p Value | Allele Frequency C/T | p Value | |
---|---|---|---|---|
Criteria manifestation | ||||
Thrombosis | ||||
Yes (n = 33) | 8, 21, 4 | 0.577 | 0.56/0.44 | 0.409 |
No (n = 8) | 4, 3, 1 | 0.69/0.31 | ||
Arterial thrombosis | ||||
Yes (n = 15) | 1, 12, 2 | 0.052 | 0.47/0.53 | 0.110 |
No (n = 26) | 11,12, 3 | 0.65/0.35 | ||
Venous thrombosis | ||||
Yes (n = 23) | 8, 12, 3 | 0.737 | 0.61/0.39 | 0.658 |
No (n = 18) | 4, 12, 2 | 0.56/0.44 | ||
Pregnancy morbidity | ||||
Yes (n = 12) | 5, 5, 2 | 0.418 | 0.63/0.37 | 0.806 |
No (n = 29) | 7, 19, 3 | 0.57/0.43 | ||
Early pregnancy morbidity | ||||
Yes (n = 3) | 1, 2, 0 | 0.990 | 0.67/0.33 | 0.990 |
No (n = 38) | 11, 22, 5 | 0.58/0.42 | ||
Late pregnancy morbidity | ||||
Yes (n = 10) | 4, 4, 2 | 0.447 | 0.60/0.40 | 0.990 |
No (n = 31) | 8, 20, 3 | 0.58/0.42 | ||
Non-criteria manifestation | ||||
Thrombocytopenia | ||||
Yes (n = 8) | 0, 6, 2 | 0.040 * | 0.37/0.63 | 0.088 |
No (n = 33) | 12, 18, 3 | 0.64/0.36 |
Polymorphism | Arterial Thrombosis, n (%) | No Arterial Thrombosis, n (%) | OR (95% CI) | p Value |
---|---|---|---|---|
Genotype | ||||
CC | 1 (6.7) | 11 (42.3) | 1.00 (referent) | |
CT | 12 (80.0) | 12 (46.2) | 11.00 (1.22–99.07) | 0.025 * |
TT | 2 (13.3) | 3 (11.5) | 7.33 (0.484–111.19) | 0.191 |
CT + TT | 14 (93.3) | 15 (57.7) | 10.27 (1.17–90.17) | 0.018 * |
Allele | ||||
C | 14 (46.7) | 34 (65.4) | 1.00 (referent) | |
T | 16 (53.3) | 18 (34.6) | 2.16 (0.86–5.40) | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Shi, H.; Liu, H.; Cheng, X.; Su, Y.; Ye, J.; Sun, Y.; Hu, Q.; Chi, H.; Zhou, Z.; et al. Methylenetetrahydrofolate Reductase 677T Allele Is a Risk Factor for Arterial Thrombosis in Chinese Han Patients with Antiphospholipid Syndrome. Biomedicines 2023, 11, 55. https://doi.org/10.3390/biomedicines11010055
Tang Z, Shi H, Liu H, Cheng X, Su Y, Ye J, Sun Y, Hu Q, Chi H, Zhou Z, et al. Methylenetetrahydrofolate Reductase 677T Allele Is a Risk Factor for Arterial Thrombosis in Chinese Han Patients with Antiphospholipid Syndrome. Biomedicines. 2023; 11(1):55. https://doi.org/10.3390/biomedicines11010055
Chicago/Turabian StyleTang, Zihan, Hui Shi, Honglei Liu, Xiaobing Cheng, Yutong Su, Junna Ye, Yue Sun, Qiongyi Hu, Huihui Chi, Zhuochao Zhou, and et al. 2023. "Methylenetetrahydrofolate Reductase 677T Allele Is a Risk Factor for Arterial Thrombosis in Chinese Han Patients with Antiphospholipid Syndrome" Biomedicines 11, no. 1: 55. https://doi.org/10.3390/biomedicines11010055
APA StyleTang, Z., Shi, H., Liu, H., Cheng, X., Su, Y., Ye, J., Sun, Y., Hu, Q., Chi, H., Zhou, Z., Jia, J., Meng, J., Wang, M., Wang, F., Teng, J., Yang, C., & Liu, T. (2023). Methylenetetrahydrofolate Reductase 677T Allele Is a Risk Factor for Arterial Thrombosis in Chinese Han Patients with Antiphospholipid Syndrome. Biomedicines, 11(1), 55. https://doi.org/10.3390/biomedicines11010055