Atrial Fibrillation Risk and Urate-Lowering Therapy in Patients with Gout: A Cohort Study Using a Clinical Database
Abstract
:1. Introduction
2. Methods and Materials
2.1. Ethics Statement
2.2. Patient Characteristics
2.3. Outcome Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saito, Y.; Tanaka, A.; Node, K.; Kobayashi, Y. Uric acid and cardiovascular disease: A clinical review. J. Cardiol. 2021, 78, 51–57. [Google Scholar] [CrossRef]
- Chao, T.F.; Hung, C.L.; Chen, S.J.; Wang, K.L.; Chen, T.J.; Lin, Y.J.; Chang, S.L.; Lo, L.W.; Hu, Y.F.; Tuan, T.C.; et al. The association between hyperuricemia, left atrial size and new-onset atrial fibrillation. Int. J. Cardiol. 2013, 168, 4027–4032. [Google Scholar] [CrossRef]
- Tamariz, L.; Hernandez, F.; Bush, A.; Palacio, A.; Hare, J.M. Association between serum uric acid and atrial fibrillation: A systematic review and meta-analysis. Heart Rhythm 2014, 11, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xia, Y.; Han, X.; Yang, Y.; Yin, X.; Qiu, J.; Liu, H.; Zhou, Y.; Liu, Y. Association between serum uric acid and atrial fibrillation: A cross-sectional community-based study in China. BMJ Open 2017, 7, e019037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.F.; Grainge, M.J.; Mallen, C.; Zhang, W.; Doherty, M. Impact of gout on the risk of atrial fibrillation. Rheumatology 2016, 55, 721–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, Y.J.; Tsai, T.H.; Chang, H.P.; Chua, S.; Chung, S.Y.; Yang, C.H.; Lin, C.-J.; Wu, C.-J.; Hang, C.-L. The risk of atrial fibrillation in patients with gout: A nationwide population-based study. Sci. Rep. 2016, 6, 32220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.A.; Cleveland, J.D. Gout and the risk of incident atrial fibrillation in older adults: A study of US Medicare data. RMD Open 2018, 4, e000712. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res. 2020, 72, 744–760. [Google Scholar] [CrossRef]
- White, W.B.; Saag, K.G.; Becker, M.A.; Borer, J.S.; Gorelick, P.B.; Whelton, A.; Hunt, B.; Castillo, M.; Gunawardhana, L. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N. Engl. J. Med. 2018, 378, 1200–1210. [Google Scholar] [CrossRef]
- White, W.B.; Chohan, S.; Dabholkar, A.; Hunt, B.; Jackson, R. Cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular comorbidities. Am. Heart J. 2012, 164, 14–20. [Google Scholar] [CrossRef]
- Singh, J.A.; Cleveland, J.D. Comparative effectiveness of allopurinol and febuxostat for the risk of atrial fibrillation in the elderly: A propensity-matched analysis of Medicare claims data. Eur. Heart J. 2019, 40, 3046–3054. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Matsui, K.; Hiramitsu, S.; Hisatome, I.; Waki, M.; Uchiyama, K.; Yokota, N.; Tokutake, E.; Wakasa, Y.; Jinnouchi, H.; et al. Febuxostat for cerebral and cardiorenovascular events prevention study. Eur. Heart J. 2019, 40, 1778–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Solomon, D.H.; Desai, R.J.; Kang, E.H.; Liu, J.; Neogi, T.; Kim, S.C. Assessment of Cardiovascular Risk in Older Patients with Gout Initiating Febuxostat Versus Allopurinol: Population-Based Cohort Study. Circulation 2018, 138, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.H.; Choi, H.K.; Shin, A.; Lee, Y.J.; Lee, E.B.; Song, Y.W.; Kim, S.C. Comparative cardiovascular risk of allopurinol versus febuxostat in patients with gout: A nation-wide cohort study. Rheumatology 2019, 58, 2122–2129. [Google Scholar] [CrossRef]
- Sawada, S.; Kajiyama, K.; Shida, H.; Kimura, R.; Nakazato, Y.; Iguchi, T.; Oniyama, Y.; Ishiguro, C.; Uyama, Y. Cardiovascular risk of urate-lowering drugs: A study using the National Database of Health Insurance Claims and Specific Health Checkups of Japan. Clin. Transl. Sci. 2022. [Google Scholar] [CrossRef]
- Mackenzie, I.S.; Ford, I.; Nuki, G.; Hallas, J.; Hawkey, C.J.; Webster, J.; Ralston, S.H.; Walters, M.; Robertson, M.; De Caterina, R.; et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): A multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 2020, 396, 1745–1757. [Google Scholar] [CrossRef]
- Kang, H.R.; Jee, Y.K.; Kim, Y.S.; Lee, C.H.; Jung, J.W.; Kim, S.H.; Park, H.W.; Chang, Y.S.; Jang, I.J.; Cho, S.H.; et al. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet. Genom. 2011, 21, 303–307. [Google Scholar] [CrossRef]
- Wells, A.F.; MacDonald, P.A.; Chefo, S.; Jackson, R.L. African American patients with gout: Efficacy and safety of febuxostat vs. allopurinol. BMC Musculoskelet. Disord. 2012, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Alrajeh, K.Y.; Roman, Y.M. Pharmacogenetic Perspective for Optimal Gout Management. Future Pharmacol. 2022, 2, 135–152. [Google Scholar] [CrossRef]
- Alghubayshi, A.; Edelman, A.; Alrajeh, K.; Roman, Y. Genetic assessment of hyperuricemia and gout in Asian, Native Hawaiian, and Pacific Islander subgroups of pregnant women: Biospecimens repository cross-sectional study. BMC Rheumatol. 2022, 6, 1. [Google Scholar] [CrossRef]
- Butler, F.; Alghubayshi, A.; Roman, Y. The Epidemiology and Genetics of Hyperuricemia and Gout across Major Racial Groups: A Literature Review and Population Genetics Secondary Database Analysis. J. Pers. Med. 2021, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Navar-Boggan, A.M.; Rymer, J.A.; Piccini, J.P.; Shatila, W.; Ring, L.; Stafford, J.A.; Al-Khatib, S.M.; Peterson, E.D. Accuracy and validation of an automated electronic algorithm to identify patients with atrial fibrillation at risk for stroke. Am. Heart J. 2015, 169, 39–44.e2. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.N.; Johnson, K.; Floyd, J.; Heckbert, S.R.; Carnahan, R.; Dublin, S. A systematic review of validated methods for identifying atrial fibrillation using administrative data. Pharmacoepidemiol. Drug Saf. 2012, 21 (Suppl. 1), 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.A.; Hodges, J.S.; Toscano, J.P.; Asch, S.M. Quality of care for gout in the US needs improvement. Arthritis Rheum. 2007, 57, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, C.; Cherubini, A.; Ble, A.; Bos, A.J.; Maggio, M.; Dixit, V.D.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. Uric acid and inflammatory markers. Eur. Heart J. 2006, 27, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
- Borghi, C.; Rosei, E.A.; Bardin, T.; Dawson, J.; Dominiczak, A.; Kielstein, J.T.; Manolis, A.J.; Perez-Ruiz, F.; Mancia, G. Serum uric acid and the risk of cardiovascular and renal disease. J. Hypertens. 2015, 33, 1729–1741, discussion 1741. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Song, Y.; Yan, Y.; Ding, Z. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis 2016, 254, 193–199. [Google Scholar] [CrossRef]
- Kwon, C.H.; Lee, S.H.; Lee, J.Y.; Ryu, S.; Sung, K.C. Uric acid and risk of atrial fibrillation in the Korean general population. Circ. J. 2018, 82, 2728–2735. [Google Scholar] [CrossRef] [Green Version]
- Desai, R.J.; Franklin, J.M.; Spoendlin-Allen, J.; Solomon, D.H.; Danaei, G.; Kim, S.C. An evaluation of longitudinal changes in serum uric acid levels and associated risk of cardio-metabolic events and renal function decline in gout. PLoS One 2018, 13, e0193622. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Xie, D.; Liu, H.; Zhen, L.; Guo, D.; Liu, X. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in maintenance hemodialysis patients: A meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 372–381. [Google Scholar] [CrossRef]
- Tamariz, L.; Agarwal, S.; Soliman, E.Z.; Chamberlain, A.M.; Prineas, R.; Folsom, A.R.; Ambrose, M.; Alonso, A. Association of serum uric acid with incident atrial fibrillation (from the Atherosclerosis Risk in Communities [ARIC] study). Am. J. Cardiol. 2011, 108, 1272–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zheng, R.; Li, H.; Guo, J. Serum uric acid and incident atrial fibrillation: A systematic review and dose-response meta-analysis. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, E. Inflammation, oxidative stress, and lipids: The risk triad for atherosclerosis in gout. Rheumatology 2010, 49, 1229–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, J.C.; Libby, P. Cardiovascular disease in patients with chronic inflammation: Mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur. Heart J. 2015, 36, 482–489c. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubreuil, M.; Zhu, Y.; Zhang, Y.; Seeger, J.D.; Lu, N.; Rho, Y.H.; Choi, H.K. Allopurinol initiation and all-cause mortality in the general population. Ann. Rheum. Dis. 2015, 74, 1368–1372. [Google Scholar] [CrossRef]
- MacIsaac, R.L.; Salatzki, J.; Higgins, P.; Walters, M.R.; Padmanabhan, S.; Dominiczak, A.F.; Touyz, R.M.; Dawson, J. Allopurinol and cardiovascular outcomes in adults with hypertension. Hypertension 2016, 67, 535–540. [Google Scholar] [CrossRef]
- Kok, V.C.; Horng, J.T.; Chang, W.S.; Hong, Y.F.; Chang, T.H. Allopurinol therapy in gout patients does not associate with beneficial cardiovascular outcomes: A population-based matched-cohort study. PLoS One 2014, 9, e99102. [Google Scholar] [CrossRef]
- Schumacher, H.R., Jr.; Becker, M.A.; Wortmann, R.L.; Macdonald, P.A.; Hunt, B.; Streit, J.; Lademacher, C.; Joseph-Ridge, N. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: A 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum. 2008, 59, 1540–1548. [Google Scholar] [CrossRef]
- Su, C.Y.; Shen, L.J.; Hsieh, S.C.; Lin, L.Y.; Lin, F.J. Comparing Cardiovascular Safety of Febuxostat and Allopurinol in the Real World: A Population-Based Cohort Study. Mayo Clin. Proc. 2019, 94, 1147–1157. [Google Scholar] [CrossRef]
- Masi, S.; Pugliese, N.R.; Taddei, S. The difficult relationship between uric acid and cardiovascular disease. Eur. Heart J. 2019, 40, 3055–3057. [Google Scholar] [CrossRef]
- Ambrosio, G.; Camm, A.J.; Bassand, J.P.; Corbalan, R.; Kayani, G.; Carluccio, E.; Mantovani, L.G.; Virdone, S.; Kakkar, A.K.; for the GARFIELD-AF Investigators. Characteristics, treatment, and outcomes of newly diagnosed atrial fibrillation patients with heart failure: GARFIELD-AF. ESC Heart Fail. 2021, 8, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, G.; Leiro, M.G.C.; Lund, L.H.; Coiro, S.; Cardona, A.; Filippatos, G.; Ferrari, R.; Piepoli, M.F.; Coats, A.J.; Anker, S.D.; et al. Serum uric acid and outcomes in patients with chronic heart failure through the whole spectrum of ejection fraction phenotypes: Analysis of the ESC-EORP Heart Failure Long-Term (HF LT) Registry. Eur. J. Intern. Med. 2021, 89, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.H.; Kim, S.C. Cardiovascular safety of urate lowering therapies. Curr. Rheumatol. Rep. 2019, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Kaakeh, Y.; Overholser, B.R.; Lopshire, J.C.; Tisdale, J.E. Drug-induced atrial fibrillation. Drugs 2012, 72, 1617–1630. [Google Scholar] [CrossRef]
Total n = 713 (%) | Allopurinol n = 63 (%) | Febuxostat n = 430 (%) | Benzbromarone n = 220 (%) | p-Value | |
---|---|---|---|---|---|
Age, years | 65.9 ± 13.3 | 64.1 ± 14.1 | 68.2 ± 13.5 | 62.0 ± 11.6 | <0.001 * |
Men | 591 (83) | 56 (89) | 355 (83) | 180 (82) | 0.405 |
Drinking | 242 (34) | 19 (30) | 143 (33) | 80 (36) | 0.586 |
Smoking | 274 (38) | 22 (35) | 156 (36) | 96 (44) | 0.158 |
BMI, kg/m2 | 25.4 ± 4.5 | 25.9 ± 5.0 | 25.1 ± 4.6 | 25.9 ± 4.1 | 0.103 |
Hypertension | 263 (37) | 25 (40) | 170 (40) | 68 (31) | 0.087 |
Hyperlipidemia | 437 (61) | 33 (52) | 271 (63) | 133 (61) | 0.257 |
DM | 284 (40) | 12 (19) | 234 (54) | 38 (17) | <0.001 * |
CAD | 225 (32) | 13 (21) | 135 (31) | 77 (35) | 0.096 |
CHF | 123 (17) | 11 (18) | 86 (20) | 26 (12) | 0.033 * |
Stroke | 27 (4) | 1 (2) | 22 (5) | 4 (2) | 0.072 |
Peripheral artery disease | 117 (16) | 14 (22) | 71 (17) | 32 (15) | 0.348 |
CHA2DS2-VASc | 2.6 ± 1.7 | 2.7 ± 1.8 | 2.9 ± 1.7 | 2.1 ± 1.6 | <0.001 * |
Laboratory tests | |||||
†eGFR, mL/min | 53.9 ± 26.0 | 64.5 ± 25.1 | 44.2 ± 25.0 | 69.8 ± 18.1 | <0.001 * |
Stage of CKD | <0.001 * | ||||
Stage 1 or 2 | 302 (42) | 37 (59) | 110 (26) | 155 (70) | |
Stage 3 or 4 | 411 (58) | 26 (41) | 320 (74) | 65 (30) |
All ULT Users | Allopurinol Users | Febuxostat Users | Benzbromarone Users | ||
---|---|---|---|---|---|
n = 713 | n = 63 | n = 430 | n = 220 | p-Value | |
Mean follow-up period (months) | 49.4 ± 26.6 | 62.2 ± 29.6 | 47.2 ± 26.0 | 50.0 ± 25.8 | <0.001 * |
AF development (n, %) | 43 (6) | 5 (8) | 28 (7) | 10 (5) | 0.488 |
Crude Analysis | Multivariate Analysis † | |||
---|---|---|---|---|
HR (95% CI) ∫ | p-Value ‡ | HR (95% CI) ∫ | p-Value ‡ | |
Allopurinol users | 1 | 1 | ||
Febuxostat users | 1.09 (0.42–2.86) | 0.863 | 1.20 (0.43–3.34) | 0.730 |
Benzbromarone users | 0.71 (0.24–2.09) | 0.709 | 0.68 (0.22–2.08) | 0.492 |
Type of ULT | sUA Levels | ||
---|---|---|---|
Baseline | After ULT | Change in sUA | |
Allopurinol users, mg/dL | 7.70 | 7.20 | −0.65 |
Febuxostat users, mg/dL | 7.91 | 6.45 | −1.50 |
Benzbromarone users, mg/dL | 7.34 | 5.83 | −1.64 |
p-Value | 0.147 | 0.020 * | 0.002 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-H.; Huang, S.-C.; Yin, C.-H.; Huang, W.-C.; Chen, J.-S.; Chen, Y.-S.; Gan, S.-T.; Tzou, S.-J.; Hsu, C.-T.; Wu, H.-M.; et al. Atrial Fibrillation Risk and Urate-Lowering Therapy in Patients with Gout: A Cohort Study Using a Clinical Database. Biomedicines 2023, 11, 59. https://doi.org/10.3390/biomedicines11010059
Liu C-H, Huang S-C, Yin C-H, Huang W-C, Chen J-S, Chen Y-S, Gan S-T, Tzou S-J, Hsu C-T, Wu H-M, et al. Atrial Fibrillation Risk and Urate-Lowering Therapy in Patients with Gout: A Cohort Study Using a Clinical Database. Biomedicines. 2023; 11(1):59. https://doi.org/10.3390/biomedicines11010059
Chicago/Turabian StyleLiu, Ching-Han, Shih-Chung Huang, Chun-Hao Yin, Wei-Chun Huang, Jin-Shuen Chen, Yao-Shen Chen, Su-Ting Gan, Shiow-Jyu Tzou, Ching-Tsai Hsu, Hao-Ming Wu, and et al. 2023. "Atrial Fibrillation Risk and Urate-Lowering Therapy in Patients with Gout: A Cohort Study Using a Clinical Database" Biomedicines 11, no. 1: 59. https://doi.org/10.3390/biomedicines11010059
APA StyleLiu, C.-H., Huang, S.-C., Yin, C.-H., Huang, W.-C., Chen, J.-S., Chen, Y.-S., Gan, S.-T., Tzou, S.-J., Hsu, C.-T., Wu, H.-M., & Wang, W.-H. (2023). Atrial Fibrillation Risk and Urate-Lowering Therapy in Patients with Gout: A Cohort Study Using a Clinical Database. Biomedicines, 11(1), 59. https://doi.org/10.3390/biomedicines11010059