Assessing Stroke-Related Sarcopenia in Chronic Stroke: Identification of Clinical Assessment Tools—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedures
2.3. Outcome Measures
2.3.1. Sarcopenia Screening: Strength, Assistance in Walking, Rise from a Chair, Climb Stairs, Falls History Questionnaire (SARC-F)
2.3.2. Muscle Strength: Hand Grip and Five-Times Sit-to-Stand Test
2.3.3. Muscle Mass: Calf Circumference
2.3.4. Gait Speed: 10 m Walk Test (10 MWT)
2.3.5. Functionality: Short Physical Performance Battery
2.4. Simple Size Estimation
2.5. Statistical Analysis
3. Results
3.1. Sarcopenia-Related Variables in the Chronic Stroke Group Compared to Non-Stroke Counterparts
3.2. Sarcopenia-Related Variables of Stroke and Non-Stroke Participants Depending on Their Age Group
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, C.; Arai, K.; Lo, E.H.; Hommel, M. Pathophysiologic cascades in ischemic stroke. Int. J. Stroke 2012, 7, 378–385. [Google Scholar] [CrossRef]
- GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart Disease and Stroke Statistics-2017 Update: A Report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018, 3238165. [Google Scholar] [CrossRef] [PubMed]
- Yew, K.S.; Cheng, E. Acute stroke diagnosis. Am. Fam. Physician 2009, 80, 33–40. [Google Scholar] [PubMed]
- Azzollini, V.; Dalise, S.; Chisari, C. How Does Stroke Affect Skeletal Muscle? State of the Art and Rehabilitation Perspective. Front. Neurol. 2021, 12, 797559. [Google Scholar] [CrossRef]
- Hunnicutt, J.L.; Gregory, C.M. Skeletal muscle changes following stroke: A systematic review and comparison to healthy individuals. Top Stroke Rehabil. 2017, 24, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Sui, S.X.; Hordacre, B.; Pasco, J.A. Are Sarcopenia and Cognitive Dysfunction Comorbid after Stroke in the Context of Brain–Muscle Crosstalk? Biomedicines 2021, 9, 223. [Google Scholar] [CrossRef]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013, 3, 346–350. [Google Scholar] [CrossRef]
- Yu, Z.; Prado, R.; Quinlan, E.B.; Cramer, S.C.; Ombao, H. Understanding the Impact of Stroke on Brain Motor Function: A Hierarchical Bayesian Approach. J. Am. Stat. Assoc. 2016, 111, 549–563. [Google Scholar] [CrossRef]
- Li, W.; Yue, T.; Liu, Y. New understanding of the pathogenesis and treatment of stroke-related sarcopenia. Biomed. Pharmacother. 2020, 131, 110721. [Google Scholar] [CrossRef]
- Battaglia, S.; Di Fazio, C.; Vicario, C.M.; Avenanti, A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int. J. Mol. Sci. 2023, 24, 5926. [Google Scholar] [CrossRef] [PubMed]
- Polyák, H.; Galla, Z.; Nánási, N.; Cseh, E.K.; Rajda, C.; Veres, G.; Spekker, E.; Szabó, Á.; Klivényi, P.; Tanaka, M.; et al. The Tryptophan-Kynurenine Metabolic System Is Suppressed in Cuprizone-Induced Model of Demyelination Simulating Progressive Multiple Sclerosis. Biomedicines 2023, 11, 945. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Spekker, E.; Polyák, H.; Tóth, F.; Vécsei, L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022, 11, 2607. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, M.R.; Di Fazio, C.; Battaglia, S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front. Mol. Neurosci. 2023, 16, 1217090. [Google Scholar] [CrossRef]
- Scherbakov, N.; von Haehling, S.; Anker, S.D.; Dirnagl, U.; Doehner, W. Stroke induced Sarcopenia: Muscle wasting and disability after stroke. Int. J. Cardiol. 2013, 170, 89–94. [Google Scholar] [CrossRef]
- Scherbakov, N.; Sandek, A.; Doehner, W. Stroke-Related Sarcopenia: Specific Characteristics. J. Am. Med. Dir. Assoc. 2015, 16, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.S.; Ivey, F.M.; Serra, M.C.; Hartstein, J.; Hafer-Macko, C.E. Sarcopenia and Physical Function in Middle-Aged and Older Stroke Survivors. Arch. Phys. Med. Rehabil. 2017, 98, 495–499. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, M.; Wakabayashi, H.; Sakata, K.; Domen, K. The Effect of Branched Chain Amino Acids-Enriched Nutritional Supplements on Activities of Daily Living and Muscle Mass in Inpatients with Gait Impairments: A Randomized Controlled Trial. J. Nutr. Health Aging 2019, 23, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T.; Nishioka, S.; Taguchi, S.; Yamanouchi, A. Sarcopenia as a predictor of activities of daily living capability in stroke patients undergoing rehabilitation. Geriatr. Gerontol. Int. 2019, 19, 1124–1128. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Bahat, G.; Yilmaz, O.; Oren, M.M.; Karan, M.A.; Reginster, J.Y.; Bruyère, O.; Beaudart, C. Cross-cultural adaptation and validation of the SARC-F to assess sarcopenia: Methodological report from European Union Geriatric Medicine Society Sarcopenia Special Interest Group. Eur. Geriatr. Med. 2018, 9, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.M.; Mercier, C.; Bourbonnais, D.; Desrosiers, J.; Gravel, D. Reliability of maximal static strength measurements of the arms in subjects with hemiparesis. Clin. Rehabil. 2007, 21, 248–257. [Google Scholar] [CrossRef]
- Yao, R.; Yao, L.; Yuan, C.; Gao, B.-L. Accuracy of Calf Circumference Measurement, SARC-F Questionnaire, and Ishii’s Score for Screening Stroke-Related Sarcopenia. Front. Neurol. 2022, 13, 880907. [Google Scholar] [CrossRef]
- American College of Sports Medicine; Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, M.; Aza-Hernández, A.; Verdugo-Alonso, M.A. [Models of public care for the population with acquired brain injury in Spain: A study of the situation by Spanish autonomous communities]. Rev. Neurol. 2022, 74, 245–257. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Cumming, T.B.; Churilov, L.; Linden, T.; Bernhardt, J. Montreal Cognitive Assessment and Mini-Mental State Examination are both valid cognitive tools in stroke. Acta Neurol. Scand 2013, 128, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Broderick, J.P.; Adeoye, O.; Elm, J. Evolution of the Modified Rankin Scale and Its Use in Future Stroke Trials. Stroke 2017, 48, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Parra-Rodríguez, L.; Szlejf, C.; García-González, A.I.; Malmstrom, T.K.; Cruz-Arenas, E.; Rosas-Carrasco, O. Cross-Cultural Adaptation and Validation of the Spanish-Language Version of the SARC-F to Assess Sarcopenia in Mexican Community-Dwelling Older Adults. J. Am. Med. Dir. Assoc. 2016, 17, 1142–1146. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Mentiplay, B.F.; Clark, R.A.; Bower, K.J.; Williams, G.; Pua, Y.-H. Five times sit-to-stand following stroke: Relationship with strength and balance. Gait Posture 2020, 78, 35–39. [Google Scholar] [CrossRef]
- World Health Organ. Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995; Volume 854, pp. 1–452. [Google Scholar]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Bushnell, C.; Bettger, J.P.; Cockroft, K.M.; Cramer, S.C.; Edelen, M.O.; Hanley, D.; Katzan, I.L.; Mattke, S.; Nilsen, D.M.; Piquado, T.; et al. Chronic Stroke Outcome Measures for Motor Function Intervention Trials: Expert Panel Recommendations. Circ. Cardiovasc. Qual. Outcomes 2015, 8, S163–S169. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef]
- American Society of Hand Therapists. Clinical Assessment Recommendations; American Society of Hand Therapists: Mt. Laurel, NJ, USA, 1992. [Google Scholar]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip strength across the life course: Normative data from twelve British studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef]
- Abizanda, P.; Navarro, J.L.; García-Tomás, M.I.; López-Jiménez, E.; Martínez-Sánchez, E.; Paterna, G. Validity and usefulness of hand-held dynamometry for measuring muscle strength in community-dwelling older persons. Arch. Gerontol. Geriatr. 2012, 54, 21–27. [Google Scholar] [CrossRef]
- Mong, Y.; Teo, T.W.; Ng, S.S. 5-repetition sit-to-stand test in subjects with chronic stroke: Reliability and validity. Arch. Phys. Med. Rehabil. 2010, 91, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Maeda, K.; Shimizu, A.; Nagano, A.; Ueshima, J.; Sato, K.; Murotani, K. Calf circumference value for sarcopenia screening among older adults with stroke. Arch. Gerontol. Geriatr. 2021, 93, 104290. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Garrett, M.; Gronley, J.K.; Mulroy, S.J. Classification of walking handicap in the stroke population. Stroke 1995, 26, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Flansbjer, U.-B.; Holmbäck, A.M.; Downham, D.; Patten, C.; Lexell, J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 2005, 37, 75–82. [Google Scholar] [CrossRef]
- Phu, S.; Kirk, B.; Bani Hassan, E.; Vogrin, S.; Zanker, J.; Bernardo, S.; Duque, G. The diagnostic value of the Short Physical Performance Battery for sarcopenia. BMC Geriatr. 2020, 20, 242. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gonzalez-Buonomo, J.; Ghuman, J.; Huang, X.; Malik, A.; Yozbatiran, N.; Magat, E.; Gerard, E.; Hulin, W.U.; Frontera, W.R. Aging after stroke: How to define post-stroke sarcopenia and what are its risk factors? Eur. J. Phys. Rehabil. Med. 2022, 58, 683–692. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Hatem, S.M.; Saussez, G.; Della Faille, M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front. Hum. Neurosci. 2016, 10, 442. [Google Scholar] [CrossRef]
- Arnal-Gómez, A.; Cebrià IIranzo, M.A.; Tomas, J.M.; Tortosa-Chuliá, M.A.; Balasch-Bernat, M.; Sentandreu-Mañó, T.; Forcano, S.; Cezón-Serrano, N. Using the Updated EWGSOP2 Definition in Diagnosing Sarcopenia in Spanish Older Adults: Clinical Approach. J. Clin. Med. 2021, 10, 1018. [Google Scholar] [CrossRef]
- Woo, J.; Leung, J.; Morley, J.E. Validating the SARC-F: A suitable community screening tool for sarcopenia? J. Am. Med. Dir. Assoc. 2014, 15, 630–634. [Google Scholar] [CrossRef]
- Bahat, G.; Cruz-Jentoft, A. Putting Sarcopenia at the Forefront of Clinical Practice. Ejgg 2019, 1, 43–45. [Google Scholar] [CrossRef]
- Liu, T.-W.; Ng, G.Y.F.; Chung, R.C.K.; Ng, S.S.M. Decreasing Fear of Falling in Chronic Stroke Survivors Through Cognitive Behavior Therapy and Task-Oriented Training. Stroke 2019, 50, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Pollet, A.K.; Patel, P.; Lodha, N. Does the contribution of the paretic hand to bimanual tasks change with grip strength capacity following stroke? Neuropsychologia 2022, 168, 108186. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, M.E.; Selles, R.W.; Stam, H.J.; Ribbers, G.M.; Bussmann, J.B. Quantifying nonuse in chronic stroke patients: A study into paretic, nonparetic, and bimanual upper-limb use in daily life. Arch. Phys. Med. Rehabil. 2012, 93, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.C.Y.; Khow, K.S.F.; Jadczak, A.D.; Visvanathan, R. Clinical Screening Tools for Sarcopenia and Its Management. Curr. Gerontol. Geriatr. Res. 2016, 2016, 5978523. [Google Scholar] [CrossRef]
- Ng, S.S.M.; Cheung, S.Y.; Lai, L.S.W.; Liu, A.S.L.; Ieong, S.H.I.; Fong, S.S.M. Five Times Sit-To-Stand test completion times among older women: Influence of seat height and arm position. J. Rehabil. Med. 2015, 47, 262–266. [Google Scholar] [CrossRef]
- Pusparini, N.D.; Probosari, E.; Murbawani, E.A.; Muis, S.F.; Christianto, F. Diagnostic accuracy of calf circumference for decreased muscle mass in older adults with sarcopenia. J. Biomed. Transl. Res. 2022, 8, 1–6. [Google Scholar] [CrossRef]
- Scherbakov, N.; Dirnagl, U.; Doehner, W. Body weight after stroke: Lessons from the obesity paradox. Stroke 2011, 42, 3646–3650. [Google Scholar] [CrossRef]
- McGee, S. (Ed.) CHAPTER 57—Examination of the Motor System: Approach to Weakness and Tremor. Evidence-Based Physical Diagnosis, 2nd ed.; W.B. Saunders: Saint Louis, MI, USA, 2007; pp. 707–735. [Google Scholar]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Tanoue, M. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin. Nutr. 2018, 37, 2022–2028. [Google Scholar] [CrossRef]
- Ryan, A.S.; Buscemi, A.; Forrester, L.; Hafer-Macko, C.E.; Ivey, F.M. Atrophy and intramuscular fat in specific muscles of the thigh: Associated weakness and hyperinsulinemia in stroke survivors. Neurorehabil. Neural. Repair. 2011, 25, 865–872. [Google Scholar] [CrossRef]
- Addison, O.; Drummond, M.J.; LaStayo, P.C.; Dibble, L.E.; Wende, A.R.; McClain, D.A.; Marcus, R.L. Intramuscular fat and inflammation differ in older adults: The impact of frailty and inactivity. J. Nutr. Health Aging 2014, 18, 532–538. [Google Scholar] [CrossRef]
- Pavasini, R.; Guralnik, J.; Brown, J.C.; di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med. 2016, 14, 215. [Google Scholar] [CrossRef] [PubMed]
- Salbach, N.M.; Mayo, N.E.; Higgins, J.; Ahmed, S.; Finch, L.E.; Richards, C.L. Responsiveness and predictability of gait speed and other disability measures in acute stroke. Arch. Phys. Med. Rehabil. 2001, 82, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
Stroke Group (n = 34) | Control Group (n = 34) | Between-Group Differences (p-Value; Effect Size) | |
---|---|---|---|
Demographics and anthropometrics | |||
Age | 60.74 (9.73) | 60.85 (9.72) | 0.96; - |
Women/men, n (%) | 16 (47.1)/18 (52.9) | 16 (47.1)/18 (52.9) | 1.00; - |
BMI | 28.72 (4.73) | 25.31 (3.65) | 0.001; 0.81 |
Clinical characteristics | |||
Comorbidity—CCI score | 3.0 (1.0–6.0) | 0.0 (0.0–2.0) | <0.001; 2.91 |
Cognitive status—MOCA | 21.74 (4.53) | 26.35 (2.57) | <0.001; 1.25 |
Specific characteristics for stroke | |||
Time since stroke (months) | 55.0 (9.0–224.0) | - | |
Type of stroke: Ischemic/hemorrhagic, n (%) | 22 (64.7)/12 (35.3) | - | |
Side of hemiparesis: left/right, n (%) | 13 (38.2)/21 (61.8) | - |
Stroke Group (n = 34) | Control Group (n = 34) | Between-Group Differences (p-Value; Effect Size) | |
---|---|---|---|
Sarcopenia Screening | |||
SARC-F | 3.00 (0.00–8.00) | 0.00 (0.00–2.00) | <0.001; 1.83 |
Muscle Strength | |||
Maximum hand grip strength (kg) | 22.56 (9.82) | 25.71 (10.17) | 0.20; - |
Women | 18.00 (2.00–22.00) | 18.00 (8.00–24.00) | 0.87; - |
Men | 28.22 (9.35) | 33.56 (6.30) | 0.05; - |
Limb difference hand grip strength (kg) | 12.00 (0.00–38.00) | 2.50 (0.00–12.00) | <0.001; 1.30 |
Women | 9.50 (1.00–20.00) | 2.00 (0.00–9.00) | 0.003; 1.21 |
Men | 16.06 (12.35) | 3.89 (3.55) | 0.001; 1.34 |
Five-times sit-to-stand (sec) | 16.26 (7.88–38.26) | 11.27 (6.42–20.63) | <0.001; 1.38 |
Muscle Mass | |||
Maximum calf circumference | 38.76 (3.22) | 36.74 (3.67) | 0.018; 0.59 |
Difference between limbs calf circumference | 1.65 (0.00–5.50) | 0.75 (0.00–3.00) | 0.001; 0.82 |
Functionality | |||
SPPB (0–12 score) | 7.00 (1.00–12.00) | 11.00 (9.00–12.00) | <0.001; 1.45 |
10 MWTAuto (m/s) | 0.72 (0.38) | 1.40 (0.16) | <0.001; 2.33 |
Group 40–65 Years | Group > 65 Years | |||||
---|---|---|---|---|---|---|
Stroke Group (n = 23) | Control Group (n = 23) | Between-Group Differences (p-Value; Effect Size) | Stroke Group (n = 11) | Control Group (n = 11) | Between-Group Differences (p-Value; Effect Size) | |
Sarcopenia Screening | ||||||
SARC-F | 2.00 (0.00–8.00) | 0.00 (0.00–2.00) | <0.001; 1.77 | 3.00 (0.00–8.00) | 0.00 (0.00–2.00) | <0.001; 2.17 |
Muscle Strength | ||||||
Maximum hand grip strength (kg) | 21.00 (7.00–47.00) | 24.00 (9.00–42.00) | 0.29; - | 21.09 (11.61) | 25.09 (11.50) | 0.21; - |
Limb difference hand grip strength (kg) | 13.00 (1.00–36.00) | 3.00 (0.00–10.00) | <0.001; 1.44 | 10.00 (0.00–38.00) | 2.00 (0.00–12.00) | 0.047; 0.91 |
Five-times sit-to-stand (sec) | 16.26 (7.94–28.97) | 11.34 (6.42–20.63) | <0.001; 1.46 | 16.93 (7.88–38.26) | 11.08 (8.60–15.08) | 0.016; 1.19 |
Muscle Mass | ||||||
Maximum calf circumference | 39.17 (2.96) | 36.76 (4.11) | 0.027; 0.67 | 37.91 (3.72) | 36.68 (2.71) | 0.39; - |
Difference between limbs calf circumference | 1.00 (0.00–5.00) | 1.00 (0.00–1.50) | 0.026; 0.67 | 2.00 (0.00–5.50) | 0.00 (0.00–3.00) | 0.034; 1.00 |
Functionality | ||||||
SPPB (0–12 score) | 8.00 (1.00–12.00) | 11.00 (9.00–12.00) | <0.001; 2.08 | 5.00 (2.00–12.00) | 11.00 (9.00–12.00) | 0.003; 1.54 |
10 MWT Auto (m/s) | 0.76 (0.37) | 1.42 (0.13) | <0.001; 2.38 | 0.63 (0.39) | 1.35 (0.20) | <0.001; 2.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnal-Gómez, A.; Cortés-Amador, S.; Ruescas-Nicolau, M.-A.; Carrasco, J.J.; Pérez-Alenda, S.; Santamaría-Balfagón, A.; Sánchez-Sánchez, M.L. Assessing Stroke-Related Sarcopenia in Chronic Stroke: Identification of Clinical Assessment Tools—A Pilot Study. Biomedicines 2023, 11, 2601. https://doi.org/10.3390/biomedicines11102601
Arnal-Gómez A, Cortés-Amador S, Ruescas-Nicolau M-A, Carrasco JJ, Pérez-Alenda S, Santamaría-Balfagón A, Sánchez-Sánchez ML. Assessing Stroke-Related Sarcopenia in Chronic Stroke: Identification of Clinical Assessment Tools—A Pilot Study. Biomedicines. 2023; 11(10):2601. https://doi.org/10.3390/biomedicines11102601
Chicago/Turabian StyleArnal-Gómez, Anna, Sara Cortés-Amador, Maria-Arantzazu Ruescas-Nicolau, Juan J. Carrasco, Sofía Pérez-Alenda, Ana Santamaría-Balfagón, and M. Luz Sánchez-Sánchez. 2023. "Assessing Stroke-Related Sarcopenia in Chronic Stroke: Identification of Clinical Assessment Tools—A Pilot Study" Biomedicines 11, no. 10: 2601. https://doi.org/10.3390/biomedicines11102601
APA StyleArnal-Gómez, A., Cortés-Amador, S., Ruescas-Nicolau, M. -A., Carrasco, J. J., Pérez-Alenda, S., Santamaría-Balfagón, A., & Sánchez-Sánchez, M. L. (2023). Assessing Stroke-Related Sarcopenia in Chronic Stroke: Identification of Clinical Assessment Tools—A Pilot Study. Biomedicines, 11(10), 2601. https://doi.org/10.3390/biomedicines11102601