Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications
Abstract
:1. Introduction
Methodology of Literature Search
2. Cannabis and Pain Relief
3. Cannabis and Inflammation
4. Cannabis and Cancer
5. Cannabis and Gastrointestinal Diseases
6. Cannabis and Neurocognitive Diseases
7. Cannabis, HIV, and Gut–Brain Axis
8. Cannabis Addiction or Cannabis Use Disorder
9. Cannabis and Emerging Viral Diseases
10. Conclusions and Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2-AG | 2-Arachidonoyl Glycerol |
ACE-2 | Angiotensin-Converting Enzyme 2 |
AD | Alzheimer’s Disease |
AEA | Ethanolamide |
ALS | Amyotrophic Lateral Sclerosis |
ARDS | Acute Respiratory Distress Syndrome |
ART | Anti-Retroviral Therapy |
CBD | Cannabidiol |
CB1 | Cannabinoid Receptor-1 |
CB2 | Cannabinoid Receptor-2 |
CBGA | Cannabigerolic Acid |
CBR | Cannabinoid Receptors |
CD | Crohn’s Disease |
CNS | Central Nervous System |
COPD | Chronic Obstructive Pulmonary Disease |
CRS | Cytokine Release Syndrome |
CUD | Cannabis Use Disorder |
ECS | Endocannabinoid System |
GABA | Gamma-Aminobutyric Acid |
GALT | Gut-Associated Lymphoid Tissue |
GI | Gastro Intestinal |
GPCRs | G-Protein Coupled Receptors. |
HIV | Human Immunodeficiency Virus |
HAND | HIV-Associated Neurocognitive Disorders |
HACVD | HIV-Associated Cardiovascular Disease |
HAOMD | Oral Mucosal Disease/Dysfunction |
IBD | Inflammatory Bowel Disease |
LPI | Lysophosphotidylinositol |
LPS | Lipopolysaccharide |
MS | Multiple Sclerosis |
MMP25 | Matrix Metalloproteinase 25 |
PD | Parkinson’s Disease |
PWH | People With HIV |
RM | Rhesus Macaque |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Virus-2 |
SIV | Simian Immunodeficiency Virus |
THC | Δ9-Tetrahydrocannabinol |
THCA | Tetrahydrocannabinolic acid |
UC | Ulcerative Colitis |
References
- Page, R.L., 2nd; Allen, L.A.; Kloner, R.A.; Carriker, C.R.; Martel, C.; Morris, A.A.; Piano, M.R.; Rana, J.S.; Saucedo, J.F.; American Heart Association Clinical Pharmacology Committee and Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; et al. Medical Marijuana, Recreational Cannabis, and Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e131–e152. [Google Scholar] [PubMed]
- Baron, E.P. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2018, 58, 1139–1186. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. Prog. Chem. Org. Nat. Prod. 2017, 103, 1–36. [Google Scholar] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Lu, H.-C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef]
- Burggren, A.C.; Shirazi, A.; Ginder, N.; London, E.D. Cannabis Effects on Brain Structure, Function, and Cognition: Considerations for Medical Uses of Cannabis and Its Derivatives. Am. J. Drug Alcohol Abuse 2019, 45, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Niesink, R.J.M.; van Laar, M.W. Does Cannabidiol Protect Against Adverse Psychological Effects of THC? Front. Psychiatry 2013, 4, 130. [Google Scholar] [CrossRef]
- Lafaye, G.; Karila, L.; Blecha, L.; Benyamina, A. Cannabis, Cannabinoids, and Health. Dialogues Clin. Neurosci. 2017, 19, 309–316. [Google Scholar] [CrossRef]
- Parmar, J.R.; Forrest, B.D.; Freeman, R.A. Medical Marijuana Patient Counseling Points for Health Care Professionals Based on Trends in the Medical Uses, Efficacy, and Adverse Effects of Cannabis-Based Pharmaceutical Drugs. Res. Social Adm. Pharm. 2016, 12, 638–654. [Google Scholar] [CrossRef]
- Andreae, M.H.; Carter, G.M.; Shaparin, N.; Suslov, K.; Ellis, R.J.; Ware, M.A.; Abrams, D.I.; Prasad, H.; Wilsey, B.; Indyk, D.; et al. Inhaled Cannabis for Chronic Neuropathic Pain: A Meta-Analysis of Individual Patient Data. J. Pain 2015, 16, 1221–1232. [Google Scholar] [CrossRef]
- Dykukha, I.; Malessa, R.; Essner, U.; Überall, M.A. Nabiximols in Chronic Neuropathic Pain: A Meta-Analysis of Randomized Placebo-Controlled Trials. Pain Med. 2021, 22, 861–874. [Google Scholar] [CrossRef]
- Mücke, M.; Phillips, T.; Radbruch, L.; Petzke, F.; Häuser, W. Cannabis-Based Medicines for Chronic Neuropathic Pain in Adults. Cochrane Database Syst. Rev. 2018, 3, CD012182. [Google Scholar]
- Petzke, F.; Tölle, T.; Fitzcharles, M.-A.; Häuser, W. Cannabis-Based Medicines and Medical Cannabis for Chronic Neuropathic Pain. CNS Drugs 2022, 36, 31–44. [Google Scholar] [CrossRef]
- Svendsen, K.B.; Jensen, T.S.; Bach, F.W. Does the Cannabinoid Dronabinol Reduce Central Pain in Multiple Sclerosis? Randomised Double Blind Placebo Controlled Crossover Trial. BMJ 2004, 329, 253. [Google Scholar] [CrossRef]
- Hoggart, B.; Ratcliffe, S.; Ehler, E.; Simpson, K.H.; Hovorka, J.; Lejčko, J.; Taylor, L.; Lauder, H.; Serpell, M. A Multicentre, Open-Label, Follow-on Study to Assess the Long-Term Maintenance of Effect, Tolerance and Safety of THC/CBD Oromucosal Spray in the Management of Neuropathic Pain. J. Neurol. 2015, 262, 27–40. [Google Scholar] [CrossRef]
- Anil, S.M.; Peeri, H.; Koltai, H. Medical Cannabis Activity Against Inflammation: Active Compounds and Modes of Action. Front. Pharmacol. 2022, 13, 908198. [Google Scholar] [CrossRef] [PubMed]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.F.; de Vargas, D.; Toneloto, F.L.; Ito, V.D.; Volpato, R.J. Implications of Cannabis and Cannabinoid Use in COVID-19: Scoping Review. Rev. Bras. Enferm. 2022, 75 (Suppl. 1), e20201374. [Google Scholar] [CrossRef] [PubMed]
- Jean-Gilles, L.; Braitch, M.; Latif, M.L.; Aram, J.; Fahey, A.J.; Edwards, L.J.; Robins, R.A.; Tanasescu, R.; Tighe, P.J.; Gran, B.; et al. Effects of Pro-Inflammatory Cytokines on Cannabinoid CB1 and CB2 Receptors in Immune Cells. Acta Physiol. 2015, 214, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Gaffal, E.; Cron, M.; Glodde, N.; Tüting, T. Anti-Inflammatory Activity of Topical THC in DNFB-Mediated Mouse Allergic Contact Dermatitis Independent of CB1 and CB2 Receptors. Allergy 2013, 68, 994–1000. [Google Scholar] [CrossRef]
- Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. Biomed Res. Int. 2018, 2018, 1691428. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Torben, W.; Mansfield, J.; Alvarez, X.; Vande Stouwe, C.; Li, J.; Byrareddy, S.N.; Didier, P.J.; Pahar, B.; Molina, P.E.; et al. Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-Inflammatory Genes. Front. Immunol. 2019, 10, 914. [Google Scholar] [CrossRef] [PubMed]
- Burstein, S. Cannabidiol (CBD) and Its Analogs: A Review of Their Effects on Inflammation. Bioorg. Med. Chem. 2015, 23, 1377–1385. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Bufo, S.A.; Karaman, R.; Scrano, L. Cannabis: A Toxin-Producing Plant with Potential Therapeutic Uses. Toxins 2021, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Mangal, N.; Erridge, S.; Habib, N.; Sadanandam, A.; Reebye, V.; Sodergren, M.H. Cannabinoids in the Landscape of Cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 2507–2534. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Shekher, A.; Puneet; Narula, A.S.; Abrahamse, H.; Gupta, S.C. Cannabis and Its Constituents for Cancer: History, Biogenesis, Chemistry and Pharmacological Activities. Pharmacol. Res. 2021, 163, 105302. [Google Scholar] [CrossRef]
- Zaiachuk, M.; Pryimak, N.; Kovalchuk, O.; Kovalchuk, I. Cannabinoids, Medical Cannabis, and Colorectal Cancer Immunotherapy. Front. Med. 2021, 8, 713153. [Google Scholar] [CrossRef]
- Bar-Lev Schleider, L.; Mechoulam, R.; Lederman, V.; Hilou, M.; Lencovsky, O.; Betzalel, O.; Shbiro, L.; Novack, V. Prospective Analysis of Safety and Efficacy of Medical Cannabis in Large Unselected Population of Patients with Cancer. Eur. J. Intern. Med. 2018, 49, 37–43. [Google Scholar] [CrossRef]
- Aviello, G.; Romano, B.; Borrelli, F.; Capasso, R.; Gallo, L.; Piscitelli, F.; Di Marzo, V.; Izzo, A.A. Chemopreventive Effect of the Non-Psychotropic Phytocannabinoid Cannabidiol on Experimental Colon Cancer. J. Mol. Med. 2012, 90, 925–934. [Google Scholar] [CrossRef]
- Kienzl, M.; Storr, M.; Schicho, R. Cannabinoids and Opioids in the Treatment of Inflammatory Bowel Diseases. Clin. Transl. Gastroenterol. 2020, 11, e00120. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. 2021, 8, 765474. [Google Scholar] [CrossRef]
- Olbjørn, C.; Rove, J.B.; Jahnsen, J. Combination of Biological Agents in Moderate to Severe Pediatric Inflammatory Bowel Disease: A Case Series and Review of the Literature. Paediatr. Drugs 2020, 22, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Yücel, M.; Solowij, N.; Respondek, C.; Whittle, S.; Fornito, A.; Pantelis, C.; Lubman, D.I. Regional Brain Abnormalities Associated with Long-Term Heavy Cannabis Use. Arch. Gen. Psychiatry 2008, 65, 694–701. [Google Scholar] [CrossRef]
- Filbey, F.M.; Aslan, S.; Calhoun, V.D.; Spence, J.S.; Damaraju, E.; Caprihan, A.; Segall, J. Long-Term Effects of Marijuana Use on the Brain. Proc. Natl. Acad. Sci. USA 2014, 111, 16913–16918. [Google Scholar] [CrossRef] [PubMed]
- Paland, N.; Pechkovsky, A.; Aswad, M.; Hamza, H.; Popov, T.; Shahar, E.; Louria-Hayon, I. The Immunopathology of COVID-19 and the Cannabis Paradigm. Front. Immunol. 2021, 12, 631233. [Google Scholar] [CrossRef] [PubMed]
- Naftali, T.; Lev, L.B.; Yablecovitch, D.; Half, E.; Konikoff, F.M. Treatment of Crohn’s Disease with Cannabis: An Observational Study. Isr. Med. Assoc. J. 2011, 13, 455–458. [Google Scholar] [PubMed]
- Naftali, T.; Bar-Lev Schleider, L.; Dotan, I.; Lansky, E.P.; Sklerovsky Benjaminov, F.; Konikoff, F.M. Cannabis Induces a Clinical Response in Patients with Crohn’s Disease: A Prospective Placebo-Controlled Study. Clin. Gastroenterol. Hepatol. 2013, 11, 1276–1280.e1. [Google Scholar] [CrossRef]
- Naftali, T.; Mechulam, R.; Lev, L.B.; Konikoff, F.M. Cannabis for Inflammatory Bowel Disease. Dig. Dis. 2014, 32, 468–474. [Google Scholar] [CrossRef]
- Kaur, R.; Ambwani, S.R.; Singh, S. Endocannabinoid System: A Multi-Facet Therapeutic Target. Curr. Clin. Pharmacol. 2016, 11, 110–117. [Google Scholar] [CrossRef]
- Khoury, M.; Cohen, I.; Bar-Sela, G. “The Two Sides of the Same Coin”-Medical Cannabis, Cannabinoids and Immunity: Pros and Cons Explained. Pharmaceutics 2022, 14, 389. [Google Scholar] [CrossRef]
- Suryadevara, U.; Bruijnzeel, D.M.; Nuthi, M.; Jagnarine, D.A.; Tandon, R.; Bruijnzeel, A.W. Pros and Cons of Medical Cannabis Use by People with Chronic Brain Disorders. Curr. Neuropharmacol. 2017, 15, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Cabral, G.A.; Raborn, E.S.; Griffin, L.; Dennis, J.; Marciano-Cabral, F. CB2 Receptors in the Brain: Role in Central Immune Function. Br. J. Pharmacol. 2008, 153, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.L.; Peterson, S.N.; Ellis, R.J. Cannabis and the Gut-Brain Axis Communication in HIV Infection. Cannabis Cannabinoid Res 2021, 6, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Al Khleifat, A.; Al-Chalabi, A. What Causes Amyotrophic Lateral Sclerosis? F1000Research 2017, 6, 371. [Google Scholar] [CrossRef]
- Giacoppo, S.; Mazzon, E. Can Cannabinoids Be a Potential Therapeutic Tool in Amyotrophic Lateral Sclerosis? Neural Regen. Res. 2016, 11, 1896–1899. [Google Scholar] [PubMed]
- Carter, G.T.; Rosen, B.S. Marijuana in the Management of Amyotrophic Lateral Sclerosis. Am. J. Hosp. Palliat. Care 2001, 18, 264–270. [Google Scholar] [CrossRef]
- Carter, G.T.; Abood, M.E.; Aggarwal, S.K.; Weiss, M.D. Cannabis and Amyotrophic Lateral Sclerosis: Hypothetical and Practical Applications, and a Call for Clinical Trials. Am. J. Hosp. Palliat. Care 2010, 27, 347–356. [Google Scholar] [CrossRef]
- Beitz, J.M. Parkinson’s Disease: A Review. Front. Biosci. 2014, 6, 65–74. [Google Scholar] [CrossRef]
- van Vliet, S.A.M.; Vanwersch, R.A.P.; Jongsma, M.J.; Olivier, B.; Philippens, I.H.C.H.M. Therapeutic Effects of Delta9-THC and Modafinil in a Marmoset Parkinson Model. Eur. Neuropsychopharmacol. 2008, 18, 383–389. [Google Scholar] [CrossRef]
- van Vliet, S.A.; Vanwersch, R.A.; Jongsma, M.J.; van der Gugten, J.; Olivier, B.; Philippens, I.H. Neuroprotective Effects of Delta-9-Tetrahydrocannabinol in a Marmoset Parkinson Model. Open Pharmacol. J. 2007, 1, 13–18. [Google Scholar] [CrossRef]
- More, S.V.; Choi, D.-K. Promising Cannabinoid-Based Therapies for Parkinson’s Disease: Motor Symptoms to Neuroprotection. Mol. Neurodegener. 2015, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s Disease. Handb. Clin. Neurol. 2019, 167, 231–255. [Google Scholar]
- Weller, J.; Budson, A. Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000Research 2018, 7, 1161. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, B.G.; Blázquez, C.; Gómez del Pulgar, T.; Guzmán, M.; de Ceballos, M.L. Prevention of Alzheimer’s Disease Pathology by Cannabinoids: Neuroprotection Mediated by Blockade of Microglial Activation. J. Neurosci. 2005, 25, 1904–1913. [Google Scholar] [CrossRef] [PubMed]
- Cooray, R.; Gupta, V.; Suphioglu, C. Current Aspects of the Endocannabinoid System and Targeted THC and CBD Phytocannabinoids as Potential Therapeutics for Parkinson’s and Alzheimer’s Diseases: A Review. Mol. Neurobiol. 2020, 57, 4878–4890. [Google Scholar] [CrossRef]
- Ahmed, S.; Roth, R.M.; Stanciu, C.N.; Brunette, M.F. The Impact of THC and CBD in Schizophrenia: A Systematic Review. Front. Psychiatry 2021, 12, 694394. [Google Scholar] [CrossRef]
- Flaum, M.; Schultz, S.K. The Core Symptoms of Schizophrenia. Ann. Med. 1996, 28, 525–531. [Google Scholar] [CrossRef]
- Arranz, B.; Garriga, M.; García-Rizo, C.; San, L. Clozapine Use in Patients with Schizophrenia and a Comorbid Substance Use Disorder: A Systematic Review. Eur. Neuropsychopharmacol. 2018, 28, 227–242. [Google Scholar] [CrossRef]
- Byrareddy, S.N.; Mohan, M. SARS-CoV2 Induced Respiratory Distress: Can Cannabinoids Be Added to Anti-Viral Therapies to Reduce Lung Inflammation? Brain Behav. Immun. 2020, 87, 120–121. [Google Scholar] [CrossRef]
- Lomelí-Martínez, S.M.; González-Hernández, L.A.; Ruiz-Anaya, A.d.J.; Lomelí-Martínez, M.A.; Martínez-Salazar, S.Y.; Mercado González, A.E.; Andrade-Villanueva, J.F.; Varela-Hernández, J.J. Oral Manifestations Associated with HIV/AIDS Patients. Medicina 2022, 58, 1214. [Google Scholar] [CrossRef]
- Coker, M.O.; Cairo, C.; Garzino-Demo, A. HIV-Associated Interactions between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front. Immunol. 2021, 12, 676669. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, X.; Sestak, K.; Byrareddy, S.N.; Mohan, M. Long Term Delta-9-Tetrahydrocannabinol Administration Inhibits Proinflammatory Responses in Minor Salivary Glands of Chronically Simian Immunodeficieny Virus Infected Rhesus Macaques. Viruses 2020, 12, 713. [Google Scholar] [CrossRef]
- McDew-White, M.; Lee, E.; Alvarez, X.; Sestak, K.; Ling, B.J.; Byrareddy, S.N.; Okeoma, C.M.; Mohan, M. Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome. EBioMedicine 2022, 75, 103769. [Google Scholar] [CrossRef]
- Premadasa, L.S.; Lee, E.; McDew-White, M.; Alvarez, X.; Jayakumar, S.; Ling, B.; Okeoma, C.M.; Byrareddy, S.N.; Kulkarni, S.; Mohan, M. Cannabinoid Enhancement of LncRNA MMP25-AS1/MMP25 Interaction Reduces Neutrophil Infiltration and Intestinal Epithelial Injury in HIV/SIV Infection. JCI Insight 2023, 8, e167903. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.A.; Wapinski, O.L.; Yang, Y.W.; Bureau, J.-F.; Gopinath, S.; Monack, D.M.; Chang, H.Y.; Brahic, M.; Kirkegaard, K. The NeST Long NcRNA Controls Microbial Susceptibility and Epigenetic Activation of the Interferon-γ Locus. Cell 2013, 152, 743–754. [Google Scholar] [CrossRef] [PubMed]
- McDew-White, M.; Lee, E.; Premadasa, L.S.; Alvarez, X.; Okeoma, C.M.; Mohan, M. Cannabinoids Modulate the Microbiota-Gut-Brain Axis in HIV/SIV Infection by Reducing Neuroinflammation and Dysbiosis While Concurrently Elevating Endocannabinoid and Indole-3-Propionate Levels. J. Neuroinflammation 2023, 20, 62. [Google Scholar] [CrossRef]
- Mboumba Bouassa, R.-S.; Comeau, E.; Alexandrova, Y.; Pagliuzza, A.; Yero, A.; Samarani, S.; Needham, J.; Singer, J.; Lee, T.; Bobeuf, F.; et al. Effects of Oral Cannabinoids on Systemic Inflammation and Viral Reservoir Markers in People with HIV on Antiretroviral Therapy: Results of the CTN PT028 Pilot Clinical Trial. Cells 2023, 12, 1811. [Google Scholar] [CrossRef]
- Aceto, M.D.; Scates, S.M.; Lowe, J.A.; Martin, B.R. Dependence on Delta 9-Tetrahydrocannabinol: Studies on Precipitated and Abrupt Withdrawal. J. Pharmacol. Exp. Ther. 1996, 278, 1290–1295. [Google Scholar]
- Bruijnzeel, A.W.; Qi, X.; Guzhva, L.V.; Wall, S.; Deng, J.V.; Gold, M.S.; Febo, M.; Setlow, B. Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats. PLoS ONE 2016, 11, e0153327. [Google Scholar] [CrossRef]
- Wilson, D.M.; Varvel, S.A.; Harloe, J.P.; Martin, B.R.; Lichtman, A.H. SR 141716 (Rimonabant) Precipitates Withdrawal in Marijuana-Dependent Mice. Pharmacol. Biochem. Behav. 2006, 85, 105–113. [Google Scholar] [CrossRef]
- Rodríguez de Fonseca, F.; Carrera, M.R.; Navarro, M.; Koob, G.F.; Weiss, F. Activation of Corticotropin-Releasing Factor in the Limbic System during Cannabinoid Withdrawal. Science 1997, 276, 2050–2054. [Google Scholar] [CrossRef] [PubMed]
- Bruijnzeel, A.W.; Knight, P.; Panunzio, S.; Xue, S.; Bruner, M.M.; Wall, S.C.; Pompilus, M.; Febo, M.; Setlow, B. Effects in Rats of Adolescent Exposure to Cannabis Smoke or THC on Emotional Behavior and Cognitive Function in Adulthood. Psychopharmacology 2019, 236, 2773–2784. [Google Scholar] [CrossRef] [PubMed]
- Medina, K.L.; Nagel, B.J.; Tapert, S.F. Abnormal Cerebellar Morphometry in Abstinent Adolescent Marijuana Users. Psychiatry Res. 2010, 182, 152–159. [Google Scholar] [CrossRef] [PubMed]
- McQueeny, T.; Padula, C.B.; Price, J.; Medina, K.L.; Logan, P.; Tapert, S.F. Gender Effects on Amygdala Morphometry in Adolescent Marijuana Users. Behav. Brain Res. 2011, 224, 128–134. [Google Scholar] [CrossRef]
- Cousijn, J.; Wiers, R.W.; Ridderinkhof, K.R.; van den Brink, W.; Veltman, D.J.; Goudriaan, A.E. Grey Matter Alterations Associated with Cannabis Use: Results of a VBM Study in Heavy Cannabis Users and Healthy Controls. Neuroimage 2012, 59, 3845–3851. [Google Scholar] [CrossRef]
- Churchwell, J.C.; Lopez-Larson, M.; Yurgelun-Todd, D.A. Altered Frontal Cortical Volume and Decision Making in Adolescent Cannabis Users. Front. Psychol. 2010, 1, 225. [Google Scholar] [CrossRef]
- Ashtari, M.; Avants, B.; Cyckowski, L.; Cervellione, K.L.; Roofeh, D.; Cook, P.; Gee, J.; Sevy, S.; Kumra, S. Medial Temporal Structures and Memory Functions in Adolescents with Heavy Cannabis Use. J. Psychiatr. Res. 2011, 45, 1055–1066. [Google Scholar] [CrossRef]
- Kovalchuk, A.; Wang, B.; Li, D.; Rodriguez-Juarez, R.; Ilnytskyy, S.; Kovalchuk, I.; Kovalchuk, O. Fighting the Storm: Could Novel Anti-TNFα and Anti-IL-6 C. sativa Cultivars Tame Cytokine Storm in COVID-19? Aging 2021, 13, 1571–1590. [Google Scholar] [CrossRef]
- Pérez, R.; Glaser, T.; Villegas, C.; Burgos, V.; Ulrich, H.; Paz, C. Therapeutic Effects of Cannabinoids and Their Applications in COVID-19 Treatment. Life 2022, 12, 2117. [Google Scholar] [CrossRef]
- van Breemen, R.B.; Muchiri, R.N.; Bates, T.A.; Weinstein, J.B.; Leier, H.C.; Farley, S.; Tafesse, F.G. Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. J. Nat. Prod. 2022, 85, 176–184. [Google Scholar] [CrossRef]
- Nguyen, L.C.; Yang, D.; Nicolaescu, V.; Best, T.J.; Gula, H.; Saxena, D.; Gabbard, J.D.; Chen, S.-N.; Ohtsuki, T.; Friesen, J.B.; et al. Cannabidiol Inhibits SARS-CoV-2 Replication through Induction of the Host ER Stress and Innate Immune Responses. Sci. Adv. 2022, 8, eabi6110. [Google Scholar] [CrossRef] [PubMed]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The Changing Epidemiology of Human Monkeypox-A Potential Threat? A Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Acharya, A.; Gendelman, H.E.; Byrareddy, S.N. The 2022 Outbreak and the Pathobiology of the Monkeypox Virus. J. Autoimmun. 2022, 131, 102855. [Google Scholar] [CrossRef] [PubMed]
- Adler, H.; Gould, S.; Hine, P.; Snell, L.B.; Wong, W.; Houlihan, C.F.; Osborne, J.C.; Rampling, T.; Beadsworth, M.B.; Duncan, C.J.; et al. Clinical Features and Management of Human Monkeypox: A Retrospective Observational Study in the UK. Lancet Infect. Dis. 2022, 22, 1153–1162. [Google Scholar] [CrossRef]
- Crist, C. Monkeypox Can Cause Brain Inflammation, CDC Says. Available online: https://www.webmd.com/a-to-z-guides/news/20220914/monkeypox-can-cause-brain-inflammation-cdc (accessed on 10 August 2023).
- Mungmunpuntipantip, R.; Wiwanitkit, V. Marijauna (Cannabis sativa L.) and Roles against Monkeypox. Ayu 2021, 42, 175. [Google Scholar] [CrossRef]
- Urits, I.; Charipova, K.; Gress, K.; Li, N.; Berger, A.A.; Cornett, E.M.; Kassem, H.; Ngo, A.L.; Kaye, A.D.; Viswanath, O. Adverse Effects of Recreational and Medical Cannabis. Psychopharmacol. Bull. 2021, 51, 94–109. [Google Scholar]
- Xin, Y.; Tang, A.; Pan, S.; Zhang, J. Components of the Endocannabinoid System and Effects of Cannabinoids against Bone Diseases: A Mini-Review. Front. Pharmacol. 2021, 12, 793750. [Google Scholar] [CrossRef]
- Brusa, P.; Baratta, F.; Collino, M.; Ben-Shabat, S. Editorial: Medicinal Cannabis: Evolution of Therapeutic Use, Future Approaches and Other Implications. Front. Pharmacol. 2022, 13, 999068. [Google Scholar] [CrossRef]
- Lins, B.R.; Anyaegbu, C.C.; Hellewell, S.C.; Papini, M.; McGonigle, T.; De Prato, L.; Shales, M.; Fitzgerald, M. Cannabinoids in Traumatic Brain Injury and Related Neuropathologies: Preclinical and Clinical Research on Endogenous, Plant-Derived, and Synthetic Compounds. J. Neuroinflammation 2023, 20, 77. [Google Scholar] [CrossRef]
- You, W.; Zhu, Y.; Wei, A.; Du, J.; Wang, Y.; Zheng, P.; Tu, M.; Wang, H.; Wen, L.; Yang, X. Traumatic Brain Injury Induces Gastrointestinal Dysfunction and Dysbiosis of Gut Microbiota Accompanied by Alterations of Bile Acid Profile. J. Neurotrauma 2022, 39, 227–237. [Google Scholar] [CrossRef]
- Hanscom, M.; Loane, D.J.; Shea-Donohue, T. Brain-Gut Axis Dysfunction in the Pathogenesis of Traumatic Brain Injury. J. Clin. Investig. 2021, 131, e143777. [Google Scholar] [CrossRef] [PubMed]
- Izzy, S.; Grashow, R.; Radmanesh, F.; Chen, P.; Taylor, H.; Formisano, R.; Wilson, F.; Wasfy, M.; Baggish, A.; Zafonte, R. Long-Term Risk of Cardiovascular Disease after Traumatic Brain Injury: Screening and Prevention. Lancet Neurol. 2023, 22, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Abu-Sawwa, R.; Scutt, B.; Park, Y. Emerging Use of Epidiolex (Cannabidiol) in Epilepsy. J. Pediatr. Pharmacol. Ther. 2020, 25, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.C.; Chamberland, S.; Bazelot, M.; Nebet, E.R.; Wang, X.; McKenzie, S.; Jain, S.; Greenhill, S.; Wilson, M.; Marley, N.; et al. Cannabidiol Modulates Excitatory-Inhibitory Ratio to Counter Hippocampal Hyperactivity. Neuron 2023, 111, 1282–1300.e8. [Google Scholar] [CrossRef] [PubMed]
- Nagarkatti, P.; Pandey, R.; Rieder, S.A.; Hegde, V.L.; Nagarkatti, M. Cannabinoids as Novel Anti-Inflammatory Drugs. Future Med. Chem. 2009, 1, 1333–1349. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leinen, Z.J.; Mohan, R.; Premadasa, L.S.; Acharya, A.; Mohan, M.; Byrareddy, S.N. Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications. Biomedicines 2023, 11, 2630. https://doi.org/10.3390/biomedicines11102630
Leinen ZJ, Mohan R, Premadasa LS, Acharya A, Mohan M, Byrareddy SN. Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications. Biomedicines. 2023; 11(10):2630. https://doi.org/10.3390/biomedicines11102630
Chicago/Turabian StyleLeinen, Zach J., Rahul Mohan, Lakmini S. Premadasa, Arpan Acharya, Mahesh Mohan, and Siddappa N. Byrareddy. 2023. "Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications" Biomedicines 11, no. 10: 2630. https://doi.org/10.3390/biomedicines11102630
APA StyleLeinen, Z. J., Mohan, R., Premadasa, L. S., Acharya, A., Mohan, M., & Byrareddy, S. N. (2023). Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications. Biomedicines, 11(10), 2630. https://doi.org/10.3390/biomedicines11102630