Trophoblast Cell Function in the Antiphospholipid Syndrome
Abstract
:1. Introduction
2. Antiphospholipid Antibodies
3. The Impact of aPL on Trophoblast Cells
3.1. Trophoblast Survival
3.2. Trophoblast Cell Function
3.3. Internalization of aPL in Trophoblast Cells
4. Non-Coding RNAs—Emerging Players in OAPS Pathophysiology
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schreiber, K.; Sciascia, S.; de Groot, P.G.; Devreese, K.; Jacobsen, S.; Ruiz-Irastorza, G.; Salmon, J.E.; Shoenfeld, Y.; Shovman, O.; Hunt, B.J. Antiphospholipid Syndrome. Nat. Rev. Dis. Prim. 2018, 4, 17103. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.S.; Branch, D.W.; Ortel, T.L. Antiphospholipid Syndrome: Advances in Diagnosis, Pathogenesis, and Management. BMJ 2023, 380, e069717. [Google Scholar] [CrossRef] [PubMed]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.W.M.; De Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International Consensus Statement on an Update of the Classification Criteria for Definite Antiphospholipid Syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Pons-Estel, G.J.; Andreoli, L.; Scanzi, F.; Cervera, R.; Tincani, A. The Antiphospholipid Syndrome in Patients with Systemic Lupus Erythematosus. J. Autoimmun. 2017, 76, 10–20. [Google Scholar] [CrossRef]
- Cervera, R.; Khamashta, M.A.; Shoenfeld, Y.; Camps, M.T.; Jacobsen, S.; Kiss, E.; Zeher, M.M.; Tincani, A.; Kontopoulou-Griva, I.; Galeazzi, M.; et al. Morbidity and Mortality in the Antiphospholipid Syndrome during a 5-Year Period: A Multicentre Prospective Study of 1000 Patients. Ann. Rheum. Dis. 2009, 68, 1428–1432. [Google Scholar] [CrossRef]
- Rodziewicz, M.; D’Cruz, D.P.; Gulliford, M. O30 The Epidemiology of Antiphospholipid Syndrome in the UK, 1990–2016. Rheumatology 2019, 58, kez105-029. [Google Scholar] [CrossRef]
- Duarte-García, A.; Pham, M.M.; Crowson, C.S.; Amin, S.; Moder, K.G.; Pruthi, R.K.; Warrington, K.J.; Matteson, E.L. The Epidemiology of Antiphospholipid Syndrome: A Population-Based Study. Arthritis Rheumatol. 2019, 71, 1545–1552. [Google Scholar] [CrossRef]
- Hwang, J.J.; Shin, S.H.; Kim, Y.J.; Oh, Y.M.; Lee, S.D.; Kim, Y.H.; Choi, C.W.; Lee, J.S. Epidemiology of Antiphospholipid Syndrome in Korea: A Nationwide Population-Based Study. J. Korean Med. Sci. 2020, 35, e35. [Google Scholar] [CrossRef]
- Dabit, J.Y.; Valenzuela-Almada, M.O.; Vallejo-Ramos, S.; Duarte-García, A. Epidemiology of Antiphospholipid Syndrome in the General Population. Curr. Rheumatol. Rep. 2022, 23, 85. [Google Scholar] [CrossRef]
- Cervera, R.; Piette, J.-C.; Font, J.; Khamashta, M.A.; Shoenfeld, Y.; Camps, M.T.; Jacobsen, S.; Lakos, G.; Tincani, A.; Kontopoulou-Griva, I.; et al. Antiphospholipid Syndrome: Clinical and Immunologic Manifestations and Patterns of Disease Expression in a Cohort of 1000 Patients. Arthritis Rheum. 2002, 46, 1019–1027. [Google Scholar] [CrossRef]
- Ruiz-Irastorza, G.; Egurbide, M.-V.; Ugalde, J.; Aguirre, C. High Impact of Antiphospholipid Syndrome on Irreversible Organ Damage and Survival of Patients with Systemic Lupus Erythematosus. Arch. Intern. Med. 2004, 164, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Meroni, P.L.; Borghi, M.O.; Grossi, C.; Chighizola, C.B.; Durigutto, P.; Tedesco, F. Obstetric and Vascular Antiphospholipid Syndrome: Same Antibodies but Different Diseases? Nat. Rev. Rheumatol. 2018, 14, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Taraborelli, M.; Reggia, R.; Dall’Ara, F.; Fredi, M.; Andreoli, L.; Gerosa, M.; Hoxha, A.; Massaro, L.; Tonello, M.; Costedoat-Chalumeau, N.; et al. Longterm Outcome of Patients with Primary Antiphospholipid Syndrome: A Retrospective Multicenter Study. J. Rheumatol. 2017, 44, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Anunciación-Llunell, A.; Marques-Soares, J.; Pardos-Gea, J.; Miró-Mur, F. Pathogenesis, Diagnosis and Management of Obstetric Antiphospholipid Syndrome: A Comprehensive Review. J. Clin. Med. 2022, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Niznik, S.; Rapoport, M.J.; Avnery, O.; Lubetsky, A.; Shavit, R.; Ellis, M.H.; Agmon-Levin, N. Long Term Follow up of Patients with Primary Obstetric Antiphospholipid Syndrome. Front. Pharmacol. 2022, 13, 824775. [Google Scholar] [CrossRef]
- Ripoll, V.M.; Pregnolato, F.; Mazza, S.; Bodio, C.; Grossi, C.; McDonnell, T.; Pericleous, C.; Meroni, P.L.; Isenberg, D.A.; Rahman, A.; et al. Gene Expression Profiling Identifies Distinct Molecular Signatures in Thrombotic and Obstetric Antiphospholipid Syndrome. J. Autoimmun. 2018, 93, 114–123. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Ferrer-Oliveras, R.; Sáez-Comet, L.; Lefkou, E.; Mekinian, A.; Belizna, C.; Ruffatti, A.; Tincani, A.; Marozio, L.; et al. The European Registry on Obstetric Antiphospholipid Syndrome (EUROAPS): A Survey of 1000 Consecutive Cases. Autoimmun. Rev. 2019, 18, 406–414. [Google Scholar] [CrossRef]
- Erton, Z.B.; Sevim, E.; de Jesús, G.R.; Cervera, R.; Ji, L.; Pengo, V.; Ugarte, A.; Andrade, D.; Andreoli, L.; Atsumi, T.; et al. Pregnancy Outcomes in Antiphospholipid Antibody Positive Patients: Prospective Results from the AntiPhospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking (APS ACTION) Clinical Database and Repository ('Registry’). Lupus Sci. Med. 2022, 9, e000633. [Google Scholar] [CrossRef]
- Cervera, R. Antiphospholipid Syndrome. Thromb. Res. 2017, 151 (Suppl. S1), S43–S47. [Google Scholar] [CrossRef]
- Cohen, H.; Cuadrado, M.J.; Erkan, D.; Duarte-Garcia, A.; Isenberg, D.A.; Knight, J.S.; Ortel, T.L.; Rahman, A.; Salmon, J.E.; Tektonidou, M.G.; et al. 16th International Congress on Antiphospholipid Antibodies Task Force Report on Antiphospholipid Syndrome Treatment Trends. Lupus 2020, 29, 1571–1593. [Google Scholar] [CrossRef]
- Sammaritano, L.R.; Bermas, B.L.; Chakravarty, E.E.; Chambers, C.; Clowse, M.E.B.; Lockshin, M.D.; Marder, W.; Guyatt, G.; Branch, D.W.; Buyon, J.; et al. 2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases. Arthritis Rheumatol. 2020, 72, 529–556. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Llurba, E.; Gris, J.M. Treatment of Refractory Poor APL-Related Obstetric Outcomes with TNF-Alpha Blockers: Maternal-Fetal Outcomes in a Series of 18 Cases. Semin. Arthritis Rheum. 2019, 49, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.E.; Guerra, M.; Kim, M.; Branch, D.W. 1201 IMPACT Study: Preliminary Results of a Trial with a Biologic to Prevent Preeclampsia in Women with Antiphospholipid Syndrome. Lupus Sci. Med. 2022, 9, A84. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, Q.; Yang, Y.; Li, L.; Yu, M.; Li, H.; Li, A.; Wang, X.; Jiang, Y. Identification and Ultrasensitive Photoelectrochemical Detection of LncNR_040117: A Biomarker of Recurrent Miscarriage and Antiphospholipid Antibody Syndrome in Platelet-Derived Microparticles. J. Nanobiotechnol. 2022, 20, 396. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Liu, Q.; Li, Z.; Yang, S.; Cui, L. Epigenetics-Mediated Pathological Alternations and Their Potential in Antiphospholipid Syndrome Diagnosis and Therapy. Autoimmun. Rev. 2022, 21, 103130. [Google Scholar] [CrossRef]
- Misasi, R.; Longo, A.; Recalchi, S.; Caissutti, D.; Riitano, G.; Manganelli, V.; Garofalo, T.; Sorice, M.; Capozzi, A. Molecular Mechanisms of “Antiphospholipid Antibodies” and Their Paradoxical Role in the Pathogenesis of “Seronegative APS”. Int. J. Mol. Sci. 2020, 21, 8411. [Google Scholar] [CrossRef]
- Kaburaki, J.; Kuwana, M.; Yamamoto, M.; Kawai, S.; Ikeda, Y. Clinical Significance of Anti-Annexin V Antibodies in Patients with Systemic Lupus Erythematosus. Am. J. Hematol. 1997, 54, 209–213. [Google Scholar] [CrossRef]
- Salle, V.; Mazière, J.C.; Smail, A.; Cévallos, R.; Mazière, C.; Fuentes, V.; Tramier, B.; Makdassi, R.; Choukroun, G.; Vittecoq, O.; et al. Anti-Annexin II Antibodies in Systemic Autoimmune Diseases and Antiphospholipid Syndrome. J. Clin. Immunol. 2008, 28, 291–297. [Google Scholar] [CrossRef]
- Oosting, J.D.; Derksen, R.H.; Bobbink, I.W.; Hackeng, T.M.; Bouma, B.N.; de Groot, P.G. Antiphospholipid Antibodies Directed against a Combination of Phospholipids with Prothrombin, Protein C, or Protein S: An Explanation for Their Pathogenic Mechanism? Blood 1993, 81, 2618–2625. [Google Scholar] [CrossRef]
- Sorice, M.; Arcieri, P.; Griggi, T.; Circella, A.; Misasi, R.; Lenti, L.; Di Nucci, G.D.; Mariani, G. Inhibition of Protein S by Autoantibodies in Patients with Acquired Protein S Deficiency. Thromb. Haemost. 1996, 75, 555–559. [Google Scholar] [CrossRef]
- Sanmarco, M.; Gayet, S.; Alessi, M.-C.; Audrain, M.; de Maistre, E.; Gris, J.-C.; de Groot, P.G.; Hachulla, E.; Harlé, J.-R.; Sié, P.; et al. Antiphosphatidylethanolamine Antibodies Are Associated with an Increased Odds Ratio for Thrombosis. A Multicenter Study with the Participation of the European Forum on Antiphospholipid Antibodies. Thromb. Haemost. 2007, 97, 949–954. [Google Scholar] [PubMed]
- Alessandri, C.; Bombardieri, M.; Di Prospero, L.; Conigliaro, P.; Conti, F.; Labbadia, G.; Misasi, R.; Sorice, M.; Valesini, G. Anti-Lysobisphosphatidic Acid Antibodies in Patients with Antiphospholipid Syndrome and Systemic Lupus Erythematosus. Clin. Exp. Immunol. 2005, 140, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Arvieux, J.; Darnige, L.; Caron, C.; Reber, G.; Bensa, J.C.; Colomb, M.G. Development of an ELISA for Autoantibodies to Prothrombin Showing Their Prevalence in Patients with Lupus Anticoagulants. Thromb. Haemost. 1995, 74, 1120–1125. [Google Scholar] [CrossRef]
- Sciascia, S.; Sanna, G.; Murru, V.; Roccatello, D.; Khamashta, M.A.; Bertolaccini, M.L. Anti-Prothrombin (APT) and Anti-Phosphatidylserine/Prothrombin (APS/PT) Antibodies and the Risk of Thrombosis in the Antiphospholipid Syndrome. A Systematic Review. Thromb. Haemost. 2014, 111, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Ortona, E.; Capozzi, A.; Colasanti, T.; Conti, F.; Alessandri, C.; Longo, A.; Garofalo, T.; Margutti, P.; Misasi, R.; Khamashta, M.A.; et al. Vimentin/Cardiolipin Complex as a New Antigenic Target of the Antiphospholipid Syndrome. Blood 2010, 116, 2960–2967. [Google Scholar] [CrossRef]
- Andreoli, L.; Chighizola, C.B.; Banzato, A.; Pons-Estel, G.J.; De Jesus, G.R.; Erkan, D. Estimated Frequency of Antiphospholipid Antibodies in Patients with Pregnancy Morbidity, Stroke, Myocardial Infarction, and Deep Vein Thrombosis: A Critical Review of the Literature. Arthritis Care Res. 2013, 65, 1869–1873. [Google Scholar] [CrossRef]
- Foddai, S.G.; Radin, M.; Cecchi, I.; Gaito, S.; Orpheu, G.; Rubini, E.; Barinotti, A.; Menegatti, E.; Mengozzi, G.; Roccatello, D.; et al. The Prevalence of Antiphospholipid Antibodies in Women with Late Pregnancy Complications and Low-Risk for Chromosomal Abnormalities. J. Thromb. Haemost. 2020, 18, 2921–2928. [Google Scholar] [CrossRef]
- Rai, R.; Regan, L. Antiphospholipid Syndrome and Pregnancy Loss. Hosp. Med. 1998, 59, 637–639. [Google Scholar]
- Page, J.M.; Christiansen-Lindquist, L.; Thorsten, V.; Parker, C.B.; Reddy, U.M.; Dudley, D.J.; Saade, G.R.; Coustan, D.; Rowland Hogue, C.J.; Conway, D.; et al. Diagnostic Tests for Evaluation of Stillbirth. Obstet. Gynecol. 2017, 129, 699–706. [Google Scholar] [CrossRef]
- Gkrouzman, E.; Sevim, E.; Finik, J.; Andrade, D.; Pengo, V.; Sciascia, S.; Tektonidou, M.G.; Ugarte, A.; Chighizola, C.B.; Belmont, H.M.; et al. Antiphospholipid Antibody Profile Stability Over Time: Prospective Results From the APS ACTION Clinical Database and Repository. J. Rheumatol. 2021, 48, 541–547. [Google Scholar] [CrossRef]
- Hughes, G.R.V.; Khamashta, M.A. ‘Seronegative Antiphospholipid Syndrome’: An Update. Lupus 2019, 28, 273–274. [Google Scholar] [CrossRef] [PubMed]
- Sanmarco, M. Clinical Significance of Antiphosphatidylethanolamine Antibodies in the So-Called “Seronegative Antiphospholipid Syndrome”. Autoimmun. Rev. 2009, 9, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Abisror, N.; Nguyen, Y.; Marozio, L.; Esteve Valverde, E.; Udry, S.; Pleguezuelo, D.E.; Billoir, P.; Mayer-Pickel, K.; Urbanski, G.; Zigon, P.; et al. Obstetrical Outcome and Treatments in Seronegative Primary APS: Data from European Retrospective Study. RMD open 2020, 6, e001340. [Google Scholar] [CrossRef] [PubMed]
- Pires da Rosa, G.; Ferreira, E.; Sousa-Pinto, B.; Rodríguez-Pintó, I.; Brito, I.; Mota, A.; Cervera, R.; Espinosa, G. Comparison of Non-Criteria Antiphospholipid Syndrome with Definite Antiphospholipid Syndrome: A Systematic Review. Front. Immunol. 2022, 13, 967178. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Ferrer-Oliveras, R.; Sáez-Comet, L.; Lefkou, E.; Mekinian, A.; Belizna, C.; Ruffatti, A.; Hoxha, A.; Tincani, A.; et al. Comparative Study of Obstetric Antiphospholipid Syndrome (OAPS) and Non-Criteria Obstetric APS (NC-OAPS): Report of 1640 Cases from the EUROAPS Registry. Rheumatology 2020, 59, 1306–1314. [Google Scholar] [CrossRef]
- Pierangeli, S.S.; Chen, P.P.; Raschi, E.; Scurati, S.; Grossi, C.; Borghi, M.O.; Palomo, I.; Harris, E.N.; Meroni, P.L. Antiphospholipid Antibodies and the Antiphospholipid Syndrome: Pathogenic Mechanisms. Semin. Thromb. Hemost. 2008, 34, 236–250. [Google Scholar] [CrossRef]
- Amengual, O.; Atsumi, T.; Khamashta, M.A.; Hughes, G.R. The Role of the Tissue Factor Pathway in the Hypercoagulable State in Patients with the Antiphospholipid Syndrome. Thromb. Haemost. 1998, 79, 276–281. [Google Scholar] [CrossRef]
- Rand, J.H.; Wu, X.-X.; Quinn, A.S.; Ashton, A.W.; Chen, P.P.; Hathcock, J.J.; Andree, H.A.M.; Taatjes, D.J. Hydroxychloroquine Protects the Annexin A5 Anticoagulant Shield from Disruption by Antiphospholipid Antibodies: Evidence for a Novel Effect for an Old Antimalarial Drug. Blood 2010, 115, 2292–2299. [Google Scholar] [CrossRef]
- Chamley, L.W.; Allen, J.L.; Johnson, P.M. Synthesis of Beta2 Glycoprotein 1 by the Human Placenta. Placenta 1997, 18, 403–410. [Google Scholar] [CrossRef]
- Burton, G.J.; Woods, A.W.; Jauniaux, E.; Kingdom, J.C.P. Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy. Placenta 2009, 30, 473–482. [Google Scholar] [CrossRef]
- Rand, J.H.; Wu, X.X.; Andree, H.A.; Lockwood, C.J.; Guller, S.; Scher, J.; Harpel, P.C. Pregnancy Loss in the Antiphospholipid-Antibody Syndrome—A Possible Thrombogenic Mechanism. N. Engl. J. Med. 1997, 337, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.J.; Brosens, J.J.; Chamley, L.W.; Giles, I.; Pericleous, C.; Rahman, A.; Joyce, S.K.; Panda, B.; Paidas, M.J.; Abrahams, V.M. Antiphospholipid Antibodies Induce a Pro-Inflammatory Response in First Trimester Trophoblast via the TLR4/MyD88 Pathway. Am. J. Reprod. Immunol. 2009, 62, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.J.; Weel, I.C.; Potter, J.A.; Gysler, S.M.; Salmon, J.E.; Peraçoli, M.T.S.; Rothlin, C.V.; Chamley, L.W.; Abrahams, V.M. Antiphospholipid Antibodies Inhibit Trophoblast Toll-Like Receptor and Inflammasome Negative Regulators. Arthritis Rheumatol. 2018, 70, 891–902. [Google Scholar] [CrossRef]
- Di Simone, N. In Vitro Effect of Antiphospholipid Antibody-Containing Sera on Basal and Gonadotrophin Releasing Hormonedependent Human Chorionic Gonadotrophin Release by Cultured Trophoblast Cells. Placenta 1995, 16, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Di Simone, N.; Ferrazzani, S.; Castellani, R.; De Carolis, S.; Mancuso, S.; Caruso, A. Heparin and Low-Dose Aspirin Restore Placental Human Chorionic Gonadotrophin Secretion Abolished by Antiphospholipid Antibody- Containing Sera. Hum. Reprod. 1997, 12, 2061–2065. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.J.; Myrtolli, K.; Brosens, J.J.; Chamley, L.W.; Kwak-Kim, J.Y.; Paidas, M.J.; Abrahams, V.M. Antiphospholipid Antibodies Limit Trophoblast Migration by Reducing IL-6 Production and STAT3 Activity. Am. J. Reprod. Immunol. 2010, 63, 339–348. [Google Scholar] [CrossRef]
- Girardi, G.; Berman, J.; Redecha, P.; Spruce, L.; Thurman, J.M.; Kraus, D.; Hollmann, T.J.; Casali, P.; Caroll, M.C.; Wetsel, R.A.; et al. Complement C5a Receptors and Neutrophils Mediate Fetal Injury in the Antiphospholipid Syndrome. J. Clin. Investig. 2003, 112, 1644–1654. [Google Scholar] [CrossRef]
- Girardi, G.; Yarilin, D.; Thurman, J.M.; Holers, V.M.; Salmon, J.E. Complement Activation Induces Dysregulation of Angiogenic Factors and Causes Fetal Rejection and Growth Restriction. J. Exp. Med. 2006, 203, 2165–2175. [Google Scholar] [CrossRef]
- Shamonki, J.M.; Salmon, J.E.; Hyjek, E.; Baergen, R.N. Excessive Complement Activation Is Associated with Placental Injury in Patients with Antiphospholipid Antibodies. Am. J. Obstet. Gynecol. 2007, 196, 167.e1–167.e5. [Google Scholar] [CrossRef]
- Viall, C.A.; Chen, Q.; Liu, B.; Hickey, A.; Snowise, S.; Salmon, J.E.; Stone, P.R.; Chamley, L.W. Antiphospholipid Antibodies Internalised by Human Syncytiotrophoblast Cause Aberrant Cell Death and the Release of Necrotic Trophoblast Debris. J. Autoimmun. 2013, 47, 45–57. [Google Scholar] [CrossRef]
- Knöfler, M.; Haider, S.; Saleh, L.; Pollheimer, J.; Gamage, T.K.J.B.; James, J. Human Placenta and Trophoblast Development: Key Molecular Mechanisms and Model Systems. Cell. Mol. Life Sci. 2019, 76, 3479–3496. [Google Scholar] [CrossRef] [PubMed]
- Moser, G.; Windsperger, K.; Pollheimer, J.; de Sousa Lopes, S.C.; Huppertz, B. Human Trophoblast Invasion: New and Unexpected Routes and Functions. Histochem. Cell Biol. 2018, 150, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Quenby, S.; Mountfield, S.; Cartwright, J.E.; Whitley, G.S.; Chamley, L.; Vince, G. Antiphospholipid Antibodies Prevent Extravillous Trophoblast Differentiation. Fertil. Steril. 2005, 83, 691–698. [Google Scholar] [CrossRef]
- Pantham, P.; Abrahams, V.M.; Chamley, L.W. The Role of Anti-Phospholipid Antibodies in Autoimmune Reproductive Failure. Reproduction 2016, 151, R79–R90. [Google Scholar] [CrossRef] [PubMed]
- Di Simone, N.; Caliandro, D.; Castellani, R.; Ferrazzani, S.; De Carolis, S.; Caruso, A. Low-Molecular Weight Heparin Restores in-Vitro Trophoblast Invasiveness and Differentiation in Presence of Immunoglobulin G Fractions Obtained from Patients with Antiphospholipid Syndrome. Hum. Reprod. 1999, 14, 489–495. [Google Scholar] [CrossRef]
- Blank, M.; Anafi, L.; Zandman-Goddard, G.; Krause, I.; Goldman, S.; Shalev, E.; Cervera, R.; Font, J.; Fridkin, M.; Thiesen, H.-J.; et al. The Efficacy of Specific IVIG Anti-Idiotypic Antibodies in Antiphospholipid Syndrome (APS): Trophoblast Invasiveness and APS Animal Model. Int. Immunol. 2007, 19, 857–865. [Google Scholar] [CrossRef]
- Jovanović, M.; Bozić, M.; Kovacević, T.; Radojcić, L.; Petronijević, M.; Vićovac, L. Effects of Anti-Phospholipid Antibodies on a Human Trophoblast Cell Line (HTR-8/SVneo). Acta Histochem. 2010, 112, 34–41. [Google Scholar] [CrossRef]
- Kovačević, T.M.; Radojčić, L.; Tošić, N.M.; Pavlović, S.T.; Vićovac, L.M. Monoclonal Antibody 26 Cross-Reactive with Β2-Glycoprotein I Affects Human Trophoblast Invasion in Vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 171, 23–29. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Tian, Y.; Wan, S.; Hu, M.; Song, S.; Zhang, M.; Zhou, Q.; Xia, Y.; Wang, X. Protection by Hydroxychloroquine Prevents Placental Injury in Obstetric Antiphospholipid Syndrome. J. Cell. Mol. Med. 2022, 26, 4357–4370. [Google Scholar] [CrossRef]
- Huppertz, B.; Kaufmann, P.; Kingdom, J. Trophoblast Turnover in Health and Disease. Fetal Matern. Med. Rev. 2002, 13, 103–118. [Google Scholar] [CrossRef]
- Sharp, A.N.; Heazell, A.E.P.; Crocker, I.P.; Mor, G. Placental Apoptosis in Health and Disease. Am. J. Reprod. Immunol. 2010, 64, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Matalon, S.T.; Shoenfeld, Y.; Blank, M.; Yacobi, S.; Von Landenberg, P.; Ornoy, A. Antiphosphatidylserine Antibodies Affect Rat Yolk Sacs in Culture: A Mechanism for Fetal Loss in Antiphospholipid Syndrome. Am. J. Reprod. Immunol. 2004, 51, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A.; Yacobi, S.; Matalon, S.T.; Blank, M.; Blumenfeld, Z.; Miller, R.K.; Shoenfeld, Y. The Effects of Antiphospholipid Antibodies Obtained from Women with SLE/APS and Associated Pregnancy Loss on Rat Embryos and Placental Explants in Culture. Lupus 2003, 12, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Sacharidou, A.; Nguyen, A.; Li, C.; Chambliss, K.L.; Salmon, J.E.; Shen, Y.-M.; Lo, J.; Leone, G.W.; Herz, J.; et al. Protein Phosphatase 2A Activation Via ApoER2 in Trophoblasts Drives Preeclampsia in a Mouse Model of the Antiphospholipid Syndrome. Circ. Res. 2021, 129, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Velayuthaprabhu, S.; Matsubayashi, H.; Sugi, T.; Nakamura, M.; Ohnishi, Y.; Ogura, T.; Archunan, G. Expression of Apoptosis in Placenta of Experimental Antiphospholipid Syndrome Mouse. Am. J. Reprod. Immunol. 2013, 69, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.; Kadyrov, M.; Goldin, R.; Hahn, S.; Backos, M.; Regan, L.; Huppertz, B. Aberrations of Early Trophoblast Differentiation Predispose to Pregnancy Failure: Lessons from the Anti-Phospholipid Syndrome. Placenta 2006, 27, 869–875. [Google Scholar] [CrossRef]
- Yacobi, S.; Ornoy, A.; Blumenfeld, Z.; Miller, R.K. Effect of Sera from Women with Systemic Lupus Erythematosus or Antiphospholipid Syndrome and Recurrent Abortions on Human Placental Explants in Culture. Teratology 2002, 66, 300–308. [Google Scholar] [CrossRef]
- Chamley, L.W.; Holland, O.J.; Chen, Q.; Viall, C.A.; Stone, P.R.; Abumaree, M. Review: Where Is the Maternofetal Interface? Placenta 2014, 35, S74–S80. [Google Scholar] [CrossRef]
- Chen, Q.; Viall, C.; Kang, Y.; Liu, B.; Stone, P.; Chamley, L. Anti-Phospholipid Antibodies Increase Non-Apoptotic Trophoblast Shedding: A Contribution to the Pathogenesis of Pre-Eclampsia in Affected Women? Placenta 2009, 30, 767–773. [Google Scholar] [CrossRef]
- Pantham, P.; Heazell, A.E.P.; Mullard, G.; Begley, P.; Chen, Q.; Brown, M.; Dunn, W.B.; Chamley, L.W. Antiphospholipid Antibodies Alter Cell-Death-Regulating Lipid Metabolites in First and Third Trimester Human Placentae. Am. J. Reprod. Immunol. 2015, 74, 181–199. [Google Scholar] [CrossRef]
- Pantham, P.; Rosario, R.; Chen, Q.; Print, C.G.; Chamley, L.W. Transcriptomic Analysis of Placenta Affected by Antiphospholipid Antibodies: Following the TRAIL of Trophoblast Death. J. Reprod. Immunol. 2012, 94, 151–154. [Google Scholar] [CrossRef] [PubMed]
- di Simone, N.; Castellani, R.; Raschi, E.; Borghi, M.O.; Meroni, P.L.; Caruso, A. Anti-Beta-2 Glycoprotein I Antibodies Affect Bcl-2 and Bax Trophoblast Expression without Evidence of Apoptosis. Ann. N. Y. Acad. Sci. 2006, 1069, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, M.; Kovacevic, T.; Stefanoska, I.; Vicovac, L. The Effect of IL-6 on the Trophoblast Cell Line HTR-8/SVneo. Arch. Biol. Sci. 2010, 62, 531–538. [Google Scholar] [CrossRef]
- Cohen, M.; Meisser, A.; Bischof, P. Metalloproteinases and Human Placental Invasiveness. Placenta 2006, 27, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Damsky, C.H.; Fitzgerald, M.L.; Fisher, S.J. Distribution Patterns of Extracellular Matrix Components and Adhesion Receptors Are Intricately Modulated during First Trimester Cytotrophoblast Differentiation along the Invasive Pathway, in Vivo. J. Clin. Investig. 1992, 89, 210–222. [Google Scholar] [CrossRef]
- Zhou, Y.; Fisher, S.J.; Janatpour, M.; Genbacev, O.; Dejana, E.; Wheelock, M.; Damsky, C.H. Human Cytotrophoblasts Adopt a Vascular Phenotype as They Differentiate. A Strategy for Successful Endovascular Invasion? J. Clin. Investig. 1997, 99, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Poulton, K.; Ripoll, V.M.; Pericleous, C.; Meroni, P.L.; Gerosa, M.; Ioannou, Y.; Rahman, A.; Giles, I.P. Purified IgG from Patients with Obstetric but Not IgG from Non-Obstetric Antiphospholipid Syndrome Inhibit Trophoblast Invasion. Am. J. Reprod. Immunol. 2015, 73, 390–401. [Google Scholar] [CrossRef]
- Di Simone, N.; Castellani, R.; Caliandro, D.; Caruso, A. Antiphospholid Antibodies Regulate the Expression of Trophoblast Cell Adhesion Molecules. Fertil. Steril. 2002, 77, 805–811. [Google Scholar] [CrossRef]
- Jovanović Krivokuća, M.; Abu Rabi, T.; Stefanoska, I.; Vrzić-Petronijević, S.; Petronijević, M.; Vićovac, L. Immunoglobulins from Sera of APS Patients Bind HTR-8/SVneo Trophoblast Cell Line and Reduce Additional Mediators of Cell Invasion. Reprod. Biol. 2017, 17, 389–395. [Google Scholar] [CrossRef]
- Cohen, M.; Bischof, P. Factors Regulating Trophoblast Invasion. Gynecol. Obstet. Investig. 2007, 64, 126–130. [Google Scholar] [CrossRef]
- Xu, P.; Alfaidy, N.; Challis, J.R.G. Expression of Matrix Metalloproteinase (MMP)-2 and MMP-9 in Human Placenta and Fetal Membranes in Relation to Preterm and Term Labor. J. Clin. Endocrinol. Metab. 2002, 87, 1353–1361. [Google Scholar] [CrossRef]
- Mulla, M.J.; Salmon, J.E.; Chamley, L.W.; Brosens, J.J.; Boeras, C.M.; Kavathas, P.B.; Abrahams, V.M. A Role for Uric Acid and the Nalp3 Inflammasome in Antiphospholipid Antibody-Induced IL-1β Production by Human First Trimester Trophoblast. PLoS ONE 2013, 8, e65237. [Google Scholar] [CrossRef] [PubMed]
- Gysler, S.M.; Mulla, M.J.; Guerra, M.; Brosens, J.J.; Salmon, J.E.; Chamley, L.W.; Abrahams, V.M. Antiphospholipid Antibody-Induced MiR-146a-3p Drives Trophoblast Interleukin-8 Secretion through Activation of Toll-like Receptor 8. Mol. Hum. Reprod. 2016, 22, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.J.; Pasternak, M.C.; Salmon, J.E.; Chamley, L.W.; Abrahams, V.M. Role of NOD2 in Antiphospholipid Antibody-Induced and Bacterial MDP Amplification of Trophoblast Inflammation. J. Autoimmun. 2019, 98, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Kolundžić, N.; Bojić-Trbojević, Ž.; Kovačević, T.; Stefanoska, I.; Kadoya, T.; Vićovac, L. Galectin-1 Is Part of Human Trophoblast Invasion Machinery—A Functional Study In Vitro. PLoS ONE 2011, 6, e28514. [Google Scholar] [CrossRef]
- Bojic-Trbojevic, Ž.; Jovanovic Krivokuca, M.; Stefanoska, I.; Kolundžic, N.; Vilotic, A.; Kadoya, T.; Vicovac, L. Integrin Β1 Is Bound to Galectin-1 in Human Trophoblast. J. Biochem. 2018, 163, 39–50. [Google Scholar] [CrossRef]
- LaMarca, H.L.; Dash, P.R.; Vishnuthevan, K.; Harvey, E.; Sullivan, D.E.; Morris, C.A.; Whitley, G.S.J. Epidermal Growth Factor-Stimulated Extravillous Cytotrophoblast Motility Is Mediated by the Activation of PI3-K, Akt and Both P38 and P42/44 Mitogen-Activated Protein Kinases. Hum. Reprod. 2008, 23, 1733–1741. [Google Scholar] [CrossRef]
- Alvarez, A.M.; Mulla, M.J.; Chamley, L.W.; Cadavid, A.P.; Abrahams, V.M. Aspirin-Triggered Lipoxin Prevents Antiphospholipid Antibody Effects on Human Trophoblast Migration and Endothelial Cell Interactions. Arthritis Rheumatol. 2015, 67, 488–497. [Google Scholar] [CrossRef]
- Bulla, R.; Villa, A.; Bossi, F.; Cassetti, A.; Radillo, O.; Spessotto, P.; De Seta, F.; Guaschino, S.; Tedesco, F. VE-Cadherin Is a Critical Molecule for Trophoblast-Endothelial Cell Interaction in Decidual Spiral Arteries. Exp. Cell Res. 2005, 303, 101–113. [Google Scholar] [CrossRef]
- Sung, D.C.; Chen, X.; Chen, M.; Yang, J.; Schultz, S.; Babu, A.; Xu, Y.; Gao, S.; Keller, T.C.S.; Mericko-Ishizuka, P.; et al. VE-Cadherin Enables Trophoblast Endovascular Invasion and Spiral Artery Remodeling during Placental Development. eLife 2022, 11, e77241. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, Z.; Guan, H.; Leung, W.; Wang, L.; Xia, H.; Zhang, W. Inactivation of Yes-Associated Protein Mediates Trophoblast Dysfunction: A New Mechanism of Pregnancy Loss Associated with Anti-Phospholipid Antibodies? Biomedicines 2022, 10, 3296. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Na, Q.; Huang, L.; Song, G.; Jin, F.; Li, Y.; Hou, Y.; Kang, D.; Qiao, C. YAP Is Decreased in Preeclampsia and Regulates Invasion and Apoptosis of HTR-8/SVneo. Reprod. Sci. 2018, 25, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wei, C.; Ma, Q.; Wang, W. Hippo-YAP1 Signaling Pathway and Severe Preeclampsia (SPE) in the Chinese Population. Pregnancy Hypertens. 2020, 19, 1–10. [Google Scholar] [CrossRef]
- Yue, C.; Chen, A.C.H.; Tian, S.; Fong, S.W.; Lee, K.C.; Zhang, J.; Ng, E.H.Y.; Lee, K.F.; Yeung, W.S.B.; Lee, Y.L. Human Embryonic Stem Cell-Derived Blastocyst-like Spheroids Resemble Human Trophectoderm during Early Implantation Process. Fertil. Steril. 2020, 114, 653–664.e6. [Google Scholar] [CrossRef] [PubMed]
- Adler, R.R.; Ng, A.K.; Rote, N.S. Monoclonal Antiphosphatidylserine Antibody Inhibits Intercellular Fusion of the Choriocarcinoma Line, JAR. Biol. Reprod. 1995, 53, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, T.; Ruffatti, A.; Wuillemin, C.; de Moerloose, P.; Cohen, M. Hydroxychloroquine Restores Trophoblast Fusion Affected by Antiphospholipid Antibodies. J. Thromb. Haemost. 2014, 12, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Shurtz-Swirski, R.; Inbar, O.; Blank, M.; Cohen, J.; Bakimer, R.; Barnea, E.R.; Shoenfeld, Y. In Vitro Effect of Anticardiolipin Autoantibodies upon Total and Pulsatile Placental HCG Secretion during Early Pregnancy. Am. J. Reprod. Immunol. 1993, 29, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Zussman, R.; Xu, L.Y.; Damani, T.; Groom, K.M.; Chen, Q.; Seers, B.; Viall, C.A.; Chamley, L.W.; Hickey, A. Antiphospholipid Antibodies Can Specifically Target Placental Mitochondria and Induce ROS Production. J. Autoimmun. 2020, 111, 102437. [Google Scholar] [CrossRef]
- Alarcón-Segovia, D.; Ruíz-Argüelles, A.; Fishbein, E. Antibody Penetration into Living Cells. I. Intranuclear Immunoglobulin in Peripheral Blood Mononuclear Cells in Mixed Connective Tissue Disease and Systemic Lupus Erythematosus. Clin. Exp. Immunol. 1979, 35, 364–375. [Google Scholar]
- Galve-de Rochemonteix, B.; Kobayashi, T.; Rosnoblet, C.; Lindsay, M.; Parton, R.G.; Reber, G.; de Maistre, E.; Wahl, D.; Kruithof, E.K.; Gruenberg, J.; et al. Interaction of Anti-Phospholipid Antibodies with Late Endosomes of Human Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 563–574. [Google Scholar] [CrossRef]
- Hou, S.; Fölsch, H.; Ke, K.; Cook Mills, J.; Ramsey-Goldman, R.; Zhao, M. Early Endosome as a Pathogenic Target for Antiphosphatidylethanolamine Antibodies. Proc. Natl. Acad. Sci. USA 2017, 114, 13798–13803. [Google Scholar] [CrossRef] [PubMed]
- Virachith, S.; Saito, M.; Watanabe, Y.; Inoue, K.; Hoshi, O.; Kubota, T. Anti-Β2-Glycoprotein I Antibody with DNA Binding Activity Enters Living Monocytes via Cell Surface DNA and Induces Tissue Factor Expression. Clin. Exp. Immunol. 2019, 195, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Jovanović Krivokuća, M.; Stefanoska, I.; Abu Rabi, T.; Marković, M.; Janković, S.; Vrzić-Petronijević, S.; Vićovac, L. Immunoglobulins from Sera of Antiphospholipid Syndrome Patients Are Internalized in the HTR-8/SVneo Cell Line and Cytotrophoblast in Culture. Immunobiology 2018, 223, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Viall, C.A.; Chen, Q.; Stone, P.R.; Chamley, L.W. Human Extravillous Trophoblasts Bind but Do Not Internalize Antiphospholipid Antibodies. Placenta 2016, 42, 9–16. [Google Scholar] [CrossRef]
- Pérez-Sánchez, C.; Arias-de la Rosa, I.; Aguirre, M.Á.; Luque-Tévar, M.; Ruiz-Limón, P.; Barbarroja, N.; Jiménez-Gómez, Y.; Ábalos-Aguilera, M.C.; Collantes-Estévez, E.; Segui, P.; et al. Circulating MicroRNAs as Biomarkers of Disease and Typification of the Atherothrombotic Status in Antiphospholipid Syndrome. Haematologica 2018, 103, 908–918. [Google Scholar] [CrossRef]
- Juárez-Vicuña, Y.; Guzmán-Martín, C.A.; Martínez-Martínez, L.A.; Hernández-Díazcouder, A.; Huesca-Gómez, C.; Gamboa, R.; Amezcua-Guerra, L.M.; Chacon-Perez, M.; Amigo, M.C.; Sánchez-Muñoz, F. MiR-19b-3p and MiR-20a-5p Are Associated with the Levels of Antiphospholipid Antibodies in Patients with Antiphospholipid Syndrome. Rheumatol. Int. 2021, 41, 1329–1335. [Google Scholar] [CrossRef]
- Pérez-Sánchez, L.; Patiño-Trives, A.M.; Aguirre-Zamorano, M.Á.; Luque-Tévar, M.; Ábalos-Aguilera, M.C.; Arias-de la Rosa, I.; Seguí, P.; Velasco-Gimena, F.; Barbarroja, N.; Escudero-Contreras, A.; et al. Characterization of Antiphospholipid Syndrome Atherothrombotic Risk by Unsupervised Integrated Transcriptomic Analyses. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 865–877. [Google Scholar] [CrossRef]
- Guzmán-Martín, C.A.; Juárez-Vicuña, Y.; Domínguez-López, A.; González-Ramírez, J.; Amezcua-Guerra, L.M.; Martínez-Martínez, L.A.; Sánchez-Muñoz, F. LncRNAs Dysregulation in Monocytes from Primary Antiphospholipid Syndrome Patients: A Bioinformatic and an Experimental Proof-of-Concept Approach. Mol. Biol. Rep. 2023, 50, 937–941. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, H. Involvement of Long Noncoding RNAs in the Pathogenesis of Autoimmune Diseases. J. Transl. Autoimmun. 2020, 3, 100044. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.; Zhao, M.; Chang, C.; Lu, Q. Clinical Significance of MiRNAs in Autoimmunity. J. Autoimmun. 2020, 109, 102438. [Google Scholar] [CrossRef]
- Wu, H.; Chen, S.; Li, A.; Shen, K.; Wang, S.; Wang, S.; Wu, P.; Luo, W.; Pan, Q. LncRNA Expression Profiles in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Front. Immunol. 2021, 12, 792884. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, G.C.; Magalhães, L.; Ribeiro-Dos-Santos, Â.; Vidal, A.F. Mitochondrial Epigenetics: Non-Coding RNAs as a Novel Layer of Complexity. Int. J. Mol. Sci. 2020, 21, 1838. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Anamag, F.T.; Taheri, M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front. Oncol. 2020, 10, 608975. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, X.; Gu, X.; Li, X.; Shang, L. Progress in Understanding the Role of LncRNA in Programmed Cell Death. Cell Death Discov. 2021, 7, 30. [Google Scholar] [CrossRef]
- Taganov, K.D.; Boldin, M.P.; Chang, K.-J.; Baltimore, D. NF-ΚB-Dependent Induction of MicroRNA MiR-146, an Inhibitor Targeted to Signaling Proteins of Innate Immune Responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef]
- Tang, B.; Xiao, B.; Liu, Z.; Li, N.; Zhu, E.-D.; Li, B.-S.; Xie, Q.-H.; Zhuang, Y.; Zou, Q.-M.; Mao, X.-H. Identification of MyD88 as a Novel Target of MiR-155, Involved in Negative Regulation of Helicobacter Pylori-Induced Inflammation. FEBS Lett. 2010, 584, 1481–1486. [Google Scholar] [CrossRef]
- Qi, J.; Qiao, Y.; Wang, P.; Li, S.; Zhao, W.; Gao, C. MicroRNA-210 Negatively Regulates LPS-Induced Production of Proinflammatory Cytokines by Targeting NF-ΚB1 in Murine Macrophages. FEBS Lett. 2012, 586, 1201–1207. [Google Scholar] [CrossRef]
- Arenas-Padilla, M.; Mata-Haro, V. Regulation of TLR Signaling Pathways by MicroRNAs: Implications in Inflammatory Diseases. Cent. J. Immunol. 2018, 43, 482–489. [Google Scholar] [CrossRef]
- Yang, C.; Lim, W.; Park, J.; Park, S.; You, S.; Song, G. Anti-Inflammatory Effects of Mesenchymal Stem Cell-Derived Exosomal MicroRNA-146a-5p and MicroRNA-548e-5p on Human Trophoblast Cells. Mol. Hum. Reprod. 2019, 25, 755–771. [Google Scholar] [CrossRef]
- Qi, Y.; Cui, S.; Liu, L.; Liu, B.; Wang, T.; Yan, S.; Tian, H.; Huang, X. Expression and Role of MiR-146a and SMAD4 in Placental Tissue of Pregnant Women with Preeclampsia. J. Obstet. Gynaecol. Res. 2022, 48, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Rui, Y.; Zhou, S.; Huang, Y.; Wei, Y.; Wang, Z. TNF-Related Apoptosis-Inducing Ligand (TRAIL) Promotes Trophoblast Cell Invasion via MiR-146a-EGFR/CXCR4 Axis: A Novel Mechanism for Preeclampsia? Placenta 2020, 93, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhang, Y.; Cai, X.; Zhang, Y.; Yan, S.; Wang, J.; Zhang, S.; Yin, T.; Yang, C.; Yang, J. Extracellular Vesicles Derived from M1 Macrophages Deliver MiR-146a-5p and MiR-146b-5p to Suppress Trophoblast Migration and Invasion by Targeting TRAF6 in Recurrent Spontaneous Abortion. Theranostics 2021, 11, 5813–5830. [Google Scholar] [CrossRef]
- Peng, P.; Song, H.; Xie, C.; Zheng, W.; Ma, H.; Xin, D.; Zhan, J.; Yuan, X.; Chen, A.; Tao, J.; et al. MiR-146a-5p-Mediated Suppression on Trophoblast Cell Progression and Epithelial-Mesenchymal Transition in Preeclampsia. Biol. Res. 2021, 54, 30. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; An, X.; Fan, D. Histone Deacetylase Sirtuin 2 Enhances Viability of Trophoblasts Through P65-Mediated MicroRNA-146a/ACKR2 Axis. Reprod. Sci. 2021, 28, 1370–1381. [Google Scholar] [CrossRef]
- Zhang, Y.; Diao, Z.; Su, L.; Sun, H.; Li, R.; Cui, H.; Hu, Y. MicroRNA-155 Contributes to Preeclampsia by down-Regulating CYR61. Am. J. Obstet. Gynecol. 2010, 202, 466.e1–466.e7. [Google Scholar] [CrossRef]
- Dai, Y.; Diao, Z.; Sun, H.; Li, R.; Qiu, Z.; Hu, Y. MicroRNA-155 Is Involved in the Remodelling of Human-Trophoblast-Derived HTR-8/SVneo Cells Induced by Lipopolysaccharides. Hum. Reprod. 2011, 26, 1882–1891. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Dong, X.; Gou, W. MicroRNA-155 Inhibits Migration of Trophoblast Cells and Contributes to the Pathogenesis of Severe Preeclampsia by Regulating Endothelial Nitric Oxide Synthase. Mol. Med. Rep. 2014, 10, 550–554. [Google Scholar] [CrossRef]
- Anton, L.; Olarerin-George, A.O.; Schwartz, N.; Srinivas, S.; Bastek, J.; Hogenesch, J.B.; Elovitz, M.A. MiR-210 Inhibits Trophoblast Invasion and Is a Serum Biomarker for Preeclampsia. Am. J. Pathol. 2013, 183, 1437–1445. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; He, Z.; Xiong, Y.; Fang, Q. MiRNA-210-3p Regulates Trophoblast Proliferation and Invasiveness through Fibroblast Growth Factor 1 in Selective Intrauterine Growth Restriction. J. Cell. Mol. Med. 2019, 23, 4422–4433. [Google Scholar] [CrossRef] [PubMed]
- Hayder, H.; Fu, G.; Nadeem, L.; O’Brien, J.A.; Lye, S.J.; Peng, C. Overexpression of MiR-210-3p Impairs Extravillous Trophoblast Functions Associated with Uterine Spiral Artery Remodeling. Int. J. Mol. Sci. 2021, 22, 3961. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zou, L.; Yang, X. MicroRNA-210/ Long Non-Coding RNA MEG3 Axis Inhibits Trophoblast Cell Migration and Invasion by Suppressing EMT Process. Placenta 2021, 109, 64–71. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. MiR-146 and MiR-155: Two Key Modulators of Immune Response and Tumor Development. Non-Coding RNA 2017, 3, 22. [Google Scholar] [CrossRef]
- Kobayashi, T.; Walsh, M.C.; Choi, Y. The Role of TRAF6 in Signal Transduction and the Immune Response. Microbes Infect. 2004, 6, 1333–1338. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Jiang, M.; Tai, G. Mechanism by Which TRAF6 Participates in the Immune Regulation of Autoimmune Diseases and Cancer. Biomed Res. Int. 2020, 2020, 4607197. [Google Scholar] [CrossRef]
- Gowhari Shabgah, A.; Jadidi-Niaragh, F.; Mohammadi, H.; Ebrahimzadeh, F.; Oveisee, M.; Jahanara, A.; Gholizadeh Navashenaq, J. The Role of Atypical Chemokine Receptor D6 (ACKR2) in Physiological and Pathological Conditions; Friend, Foe, or Both? Front. Immunol. 2022, 13, 861931. [Google Scholar] [CrossRef] [PubMed]
- Martinez de la Torre, Y.; Buracchi, C.; Borroni, E.M.; Dupor, J.; Bonecchi, R.; Nebuloni, M.; Pasqualini, F.; Doni, A.; Lauri, E.; Agostinis, C.; et al. Protection against Inflammation- and Autoantibody-Caused Fetal Loss by the Chemokine Decoy Receptor D6. Proc. Natl. Acad. Sci. USA 2007, 104, 2319–2324. [Google Scholar] [CrossRef]
- Yan, S.; Cui, S.; Zhang, L.; Yang, B.; Yuan, Y.; Lv, X.; Fu, H.; Li, Y.; Huang, C.; Wang, P. Expression of ACKR2 in Placentas from Different Types of Preeclampsia. Placenta 2020, 90, 121–127. [Google Scholar] [CrossRef]
- Knöfler, M. Critical Growth Factors and Signalling Pathways Controlling Human Trophoblast Invasion. Int. J. Dev. Biol. 2010, 54, 269–280. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Zhao, Y.; Fang, C.; Lian, Y.; Gou, W.; Han, T.; Zhu, X. Insights into the Mechanism of CXCL12-Mediated Signaling in Trophoblast Functions and Placental Angiogenesis. Acta Biochim. Biophys. Sin. 2015, 47, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, J.; Chang, H.-M.; Chen, Z.-J.; Leung, P.C.K. Roles of TGF-β Superfamily Proteins in Extravillous Trophoblast Invasion. Trends Endocrinol. Metab. 2021, 32, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-X.; Shi, M.; Gong, B.-M.; Ji, B.-W.; Hu, C.-C.; Wang, G.-C.; Lei, L.; Tang, C.; Sun, L.V.; Wu, X.-H.; et al. An MiRNA-MRNA Integrative Analysis in Human Placentas and Mice: Role of the Smad2/MiR-155-5p Axis in the Development of Fetal Growth Restriction. Front. Bioeng. Biotechnol. 2023, 11, 1159805. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Qiu, Z.; Diao, Z.; Shen, L.; Xue, P.; Sun, H.; Hu, Y. MicroRNA-155 Inhibits Proliferation and Migration of Human Extravillous Trophoblast Derived HTR-8/SVneo Cells via down-Regulating Cyclin D1. Placenta 2012, 33, 824–829. [Google Scholar] [CrossRef]
- Luo, X.; Pan, C.; Guo, X.; Gu, C.; Huang, Y.; Guo, J.; Zeng, Y.; Yue, J.; Cui, S. Methylation Mediated Silencing of MiR-155 Suppresses the Development of Preeclampsia In Vitro and In Vivo by Targeting FOXO3. Mediat. Inflamm. 2022, 2022, 4250621. [Google Scholar] [CrossRef]
- Chan, Y.C.; Banerjee, J.; Choi, S.Y.; Sen, C.K. MiR-210: The Master Hypoxamir. Microcirculation 2012, 19, 215–223. [Google Scholar] [CrossRef]
- Anton, L.; DeVine, A.; Polyak, E.; Olarerin-George, A.; Brown, A.G.; Falk, M.J.; Elovitz, M.A. HIF-1α Stabilization Increases MiR-210 Eliciting First Trimester Extravillous Trophoblast Mitochondrial Dysfunction. Front. Physiol. 2019, 10, 699. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.-Z.; Liu, Y.; Wang, H.-J.; Pang, W.-W.; Zhang, J.-J. Downregulated MALAT1 Relates to Recurrent Pregnancy Loss via Sponging MiRNAs. Kaohsiung J. Med. Sci. 2018, 34, 503–510. [Google Scholar] [CrossRef]
- Bahia, W.; Soltani, I.; Abidi, A.; Haddad, A.; Ferchichi, S.; Menif, S.; Almawi, W.Y. Identification of Genes and MiRNA Associated with Idiopathic Recurrent Pregnancy Loss: An Exploratory Data Mining Study. BMC Med. Genom. 2020, 13, 75. [Google Scholar] [CrossRef]
- Huang, Y.; Hao, J.; Liao, Y.; Zhou, L.; Wang, K.; Zou, H.; Hu, Y.; Li, J. Transcriptome Sequencing Identified the CeRNA Network Associated with Recurrent Spontaneous Abortion. BMC Med. Genom. 2021, 14, 278. [Google Scholar] [CrossRef]
- Pineles, B.L.; Romero, R.; Montenegro, D.; Tarca, A.L.; Han, Y.M.; Kim, Y.M.; Draghici, S.; Espinoza, J.; Kusanovic, J.P.; Mittal, P.; et al. Distinct Subsets of MicroRNAs Are Expressed Differentially in the Human Placentas of Patients with Preeclampsia. Am. J. Obstet. Gynecol. 2007, 196, 261.e1–261.e6. [Google Scholar] [CrossRef] [PubMed]
- Enquobahrie, D.A.; Abetew, D.F.; Sorensen, T.K.; Willoughby, D.; Chidambaram, K.; Williams, M.A. Placental MicroRNA Expression in Pregnancies Complicated by Preeclampsia. Am. J. Obstet. Gynecol. 2011, 204, 178.e12–178.e21. [Google Scholar] [CrossRef]
- Muralimanoharan, S.; Maloyan, A.; Mele, J.; Guo, C.; Myatt, L.G.; Myatt, L. MIR-210 Modulates Mitochondrial Respiration in Placenta with Preeclampsia. Placenta 2012, 33, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines 2022, 10, 256. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. First-Trimester Screening for Miscarriage or Stillbirth-Prediction Model Based on MicroRNA Biomarkers. Int. J. Mol. Sci. 2023, 24, 10137. [Google Scholar] [CrossRef]
- Kim, S.; Park, M.; Kim, J.-Y.; Kim, T.; Hwang, J.Y.; Ha, K.-S.; Won, M.-H.; Ryoo, S.; Kwon, Y.-G.; Kim, Y.-M. Circulating MiRNAs Associated with Dysregulated Vascular and Trophoblast Function as Target-Based Diagnostic Biomarkers for Preeclampsia. Cells 2020, 9, 2003. [Google Scholar] [CrossRef]
- Gan, L.; Liu, Z.; Wei, M.; Chen, Y.; Yang, X.; Chen, L.; Xiao, X. MiR-210 and MiR-155 as Potential Diagnostic Markers for Pre-Eclampsia Pregnancies. Medicine 2017, 96, e7515. [Google Scholar] [CrossRef]
- Rai, R.; Regan, L. Recurrent Miscarriage. Lancet 2006, 368, 601–611. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Wang, X.-H.; Liu, K.; Zhang, J.-L. LncRNA MALAT1 Regulates Trophoblast Cells Migration and Invasion via MiR-206/IGF-1 Axis. Cell Cycle 2020, 19, 39–52. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Huang, S.; Zuo, Q.; Jiang, Z.; Yang, N.; Sun, L. LncRNA MALAT1 Affects the Migration and Invasion of Trophoblast Cells by Regulating FOS Expression in Early-Onset Preeclampsia. Pregnancy Hypertens. 2020, 21, 50–57. [Google Scholar] [CrossRef]
- Feng, C.; Cheng, L.; Jin, J.; Liu, X.; Wang, F. Long Non-Coding RNA MALAT1 Regulates Trophoblast Functions through VEGF/VEGFR1 Signaling Pathway. Arch. Gynecol. Obstet. 2021, 304, 873–882. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Zhang, C.; Li, Y.; Guo, J.; Tian, C. Metastasis-Associated Lung Adenocarcinoma Transcript 1 Induces Methyl-CpG-Binding Domain Protein 4 in Mice with Recurrent Spontaneous Abortion Caused by Anti-Phospholipid Antibody Positivity. Placenta 2023, 137, 38–48. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Ding, J.; Pang, B.; Li, R.; Cao, H.; Ling, L. MALAT1 Modulates Trophoblast Phenotype via MiR-101-3p/VEGFA Axis. Arch. Biochem. Biophys. 2023, 744, 109692. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.-Z.; Liu, Y.; Wang, H.-J.; Pang, W.-W.; Zhang, J.-J. Disordered P53-MALAT1 Pathway Is Associated with Recurrent Miscarriage. Kaohsiung J. Med. Sci. 2019, 35, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Meng, T.; Liu, X.; Sun, M.; Tong, C.; Liu, J.; Wang, H.; Du, J. Long Non-Coding RNA MALAT-1 Is Downregulated in Preeclampsia and Regulates Proliferation, Apoptosis, Migration and Invasion of JEG-3 Trophoblast Cells. Int. J. Clin. Exp. Pathol. 2015, 8, 12718–12727. [Google Scholar] [PubMed]
- Ala, U. Competing Endogenous RNAs, Non-Coding RNAs and Diseases: An Intertwined Story. Cells 2020, 9, 1574. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, F.; Zhu, T.; Li, J.; Gu, D.; Jiang, W.; Lu, Y.; Zhou, D. Mechanism of Long Non-Coding RNA MALAT1 in Lipopolysaccharide-Induced Acute Kidney Injury Is Mediated by the MiR-146a/NF-ΚB Signaling Pathway. Int. J. Mol. Med. 2018, 41, 446–454. [Google Scholar] [CrossRef]
- Peng, N.; He, J.; Li, J.; Huang, H.; Huang, W.; Liao, Y.; Zhu, S. Long Noncoding RNA MALAT1 Inhibits the Apoptosis and Autophagy of Hepatocellular Carcinoma Cell by Targeting the MicroRNA-146a/PI3K/Akt/MTOR Axis. Cancer Cell Int. 2020, 20, 165. [Google Scholar] [CrossRef]
- Sheng, X.-F.; Hong, L.-L.; Li, H.; Huang, F.-Y.; Wen, Q.; Zhuang, H.-F. Long Non-Coding RNA MALAT1 Modulate Cell Migration, Proliferation and Apoptosis by Sponging MicroRNA-146a to Regulate CXCR4 Expression in Acute Myeloid Leukemia. Hematology 2021, 26, 43–52. [Google Scholar] [CrossRef]
- Pei, C.; Gong, X.; Zhang, Y. LncRNA MALAT-1 Promotes Growth and Metastasis of Epithelial Ovarian Cancer via Sponging Microrna-22. Am. J. Transl. Res. 2020, 12, 6977–6987. [Google Scholar] [PubMed]
- Shi, C.; Ren, S.; Zhao, X.; Li, Q. LncRNA MALAT1 Regulates the Resistance of Breast Cancer Cells to Paclitaxel via the MiR-497-5p/SHOC2 Axis. Pharmacogenomics 2022, 23, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Hajibabaei, S.; Nafissi, N.; Azimi, Y.; Mahdian, R.; Rahimi-Jamnani, F.; Valizadeh, V.; Rafiee, M.H.; Azizi, M. Targeting Long Non-Coding RNA MALAT1 Reverses Cancerous Phenotypes of Breast Cancer Cells through MicroRNA-561-3p/TOP2A Axis. Sci. Rep. 2023, 13, 8652. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, Y.; Li, J.; Lv, M.; Niu, H.; Tian, Y. Tumor-Suppressive Function of Long Noncoding RNA MALAT1 in Glioma Cells by Suppressing MiR-155 Expression and Activating FBXW7 Function. Am. J. Cancer Res. 2016, 6, 2561–2574. [Google Scholar] [PubMed]
- Li, S.; Sun, Y.; Zhong, L.; Xiao, Z.; Yang, M.; Chen, M.; Wang, C.; Xie, X.; Chen, X. The Suppression of Ox-LDL-Induced Inflammatory Cytokine Release and Apoptosis of HCAECs by Long Non-Coding RNA-MALAT1 via Regulating MicroRNA-155/SOCS1 Pathway. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lian, Y.; Zhang, Y.; Li, L.; Li, H.; Shen, D.; Zhou, Y.; Zhang, M.; Lu, Y.; Liu, J.; et al. Platelet-Derived Microparticles from Recurrent Miscarriage Associated with Antiphospholipid Antibody Syndrome Influence Behaviours of Trophoblast and Endothelial Cells. Mol. Hum. Reprod. 2019, 25, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Q. Platelet-Derived Microparticles and Autoimmune Diseases. Int. J. Mol. Sci. 2023, 24, 10275. [Google Scholar] [CrossRef]
- Lugo-Gavidia, L.M.; Burger, D.; Matthews, V.B.; Nolde, J.M.; Galindo Kiuchi, M.; Carnagarin, R.; Kannenkeril, D.; Chan, J.; Joyson, A.; Herat, L.Y.; et al. Role of Microparticles in Cardiovascular Disease: Implications for Endothelial Dysfunction, Thrombosis, and Inflammation. Hypertension 2021, 77, 1825–1844. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Wang, Y.; Xu, S.; Jiang, F.; Han, Y.; Hu, M.; Liu, Z. Platelet-Derived Microvesicles (PMVs) in Cancer Progression and Clinical Applications. Clin. Transl. Oncol. 2023, 25, 873–881. [Google Scholar] [CrossRef]
- Laffont, B.; Corduan, A.; Plé, H.; Duchez, A.-C.; Cloutier, N.; Boilard, E.; Provost, P. Activated Platelets Can Deliver MRNA Regulatory Ago2•microRNA Complexes to Endothelial Cells via Microparticles. Blood 2013, 122, 253–261. [Google Scholar] [CrossRef]
- Provost, P. The Clinical Significance of Platelet Microparticle-Associated MicroRNAs. Clin. Chem. Lab. Med. 2017, 55, 657–666. [Google Scholar] [CrossRef]
- Wang, D.; Tian, Y.; Wang, S.; Li, Y.; Li, H.; Jiang, N.; Xie, Y.; Yu, M.; Li, A.; Wang, X.; et al. Antisense Oligonuleotides Influences Trophoblasts Behaviors by Changing LncNR_040117 Expression in Antiphospholipid Antibody Syndrome-Induced Recurrent Pregnancy Loss. J. Matern. Fetal. Neonatal Med. 2023, 36, 2183083. [Google Scholar] [CrossRef] [PubMed]
APS Disease Classification Criteria According to Sydney Protocol | |
---|---|
Clinical Criteria (at Least 1 of 2) | Laboratory Criteria (at Least 1 of 3) |
Vascular thrombosis:
Pregnancy morbidity:
| Presence of (at least twice in min. 12 weeks):
Classification based on laboratory tests:
|
ncRNA | APS-Associated ncRNA Dysregulation | Implication in Trophoblast Function |
---|---|---|
miR-146a-5p miR-146a-3p miR-155 miR-210 | Upregulated in anti-β2GPI treated HTR-8/SVneo cells [93] | Overexpression of miR-146a [133,134,135,136], miR-155 [137,138,139] and miR-210 [140,141,142,143] inhibited invasion and migration of HTR-8/SVneo cells |
Overexpression of miR-210 inhibited mitochondrial respiration in primary EVT cells [157] | ||
Overexpression of miR-210-3pinhibited tube formation of HTR-8/SVneo cells [142] | ||
lncRNA MALAT1 | Downregulated in placentas of APS-induced RPL patients [172] | MALAT1 downregulation inhibited proliferation, migration and invasion of HTR-8/SVneo cells [158,169,170,171,172] |
LncNR_040117 | Upregulated in PMPs isolated from APS-induced RPL patients [24] | LncNR_040117 downregulation stimulated proliferation, migration and invasion of HTR-8/SVneo cells [185,191] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrzić Petronijević, S.; Vilotić, A.; Bojić-Trbojević, Ž.; Kostić, S.; Petronijević, M.; Vićovac, L.; Jovanović Krivokuća, M. Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines 2023, 11, 2681. https://doi.org/10.3390/biomedicines11102681
Vrzić Petronijević S, Vilotić A, Bojić-Trbojević Ž, Kostić S, Petronijević M, Vićovac L, Jovanović Krivokuća M. Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines. 2023; 11(10):2681. https://doi.org/10.3390/biomedicines11102681
Chicago/Turabian StyleVrzić Petronijević, Svetlana, Aleksandra Vilotić, Žanka Bojić-Trbojević, Sanja Kostić, Miloš Petronijević, Ljiljana Vićovac, and Milica Jovanović Krivokuća. 2023. "Trophoblast Cell Function in the Antiphospholipid Syndrome" Biomedicines 11, no. 10: 2681. https://doi.org/10.3390/biomedicines11102681
APA StyleVrzić Petronijević, S., Vilotić, A., Bojić-Trbojević, Ž., Kostić, S., Petronijević, M., Vićovac, L., & Jovanović Krivokuća, M. (2023). Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines, 11(10), 2681. https://doi.org/10.3390/biomedicines11102681